
Chapter 21
General Framework of Quantitative
Target Selections

Guocheng Pan

Abstract Mineral target selection has been an important research subject for
geoscientists around the world in the past three decades. Significant progress has
been made in development of mathematical techniques and estimation method-
ologies for mineral mapping and resource assessment. Integration of multiple data
sets, either by experts or statistical methods, has become a common practice in
estimation of mineral potentials. However, real effect of these methodologies is at
best very limited in terms of uses for government macro policy making, resource
management, and mineral exploration in commercial sectors. Several major prob-
lems in data integration remain to be solved in order to achieve significant
improvement in the effect of resource estimation. Geoscience map patterns are used
for decision-making for mineral target selections. The optimal data integration
methods proposed so far can be effectively applied by using GIS technologies. The
output of these methods is a prognostic map that indicates where hidden ore bodies
may occur. Issues related to randomness of mineral endowment, intrinsic statistical
relations, exceptionalness of ore, intrinsic geological units, and economic transla-
tion and truncation, are addressed in this chapter. Moreover, a number of specific
important technical issues in information synthesis are also identified, including
information enhancement, spatial continuity, data integration and target delineation.
Finally, a new concept of dynamic control areas is proposed for future development
of quantification of mineral resources.

21.1 Introduction

Instead of elaboration of new techniques, this chapter focuses on fundamental
aspects in mineral resources assessment (Pan et al. 1992). Some of the critical issues
are reconsidered here with respect to new understanding of basic geo-relations
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between resource descriptors and geological processes. Various multivariate models
and techniques have been used over the past two decades to relate geological
variables to some aspects of mineral occurrence or deposits. Conventional objective
methods for mineral resource assessment have estimated either mineral endowment
or discoverable mineral resources of a particular type of deposit in a region. The
mineral endowment of a region usually refers to that quantity of mineral in accu-
mulations meeting specified physical characteristics, such as grade, size, and depth.
A multivariate endowment model is essentially characterized by a particular
information extraction strategy for the so-called optimum combination of those
geological features most related to spatial variations of endowment (Pan and Harris
1991). Most of these models estimate mineral resources based upon the principle of
analogy, i.e., the resources in a study region are estimated by a model that is
established on a control area by assuming different regions with similar geological
environments have similar endowment (Pan and Harris 1991; Harris 1984; Harris
and Pan 1991; Pan and Harris 2000; Agterberg 1981, 2014).

Most of these models have employed as information reference a grid of regularly
spaced cells (inter-grid areas) and have dealt in one way or another with either
mineral favorability, probability, mineral wealth or density of mineral occurrence
(deposit). Of special interest have been those models that describe uncertainty about
these estimates, such as the probability for occurrence of mineral deposits within a
cell. These studies seem to have been a necessary step in the evolution of the
science of mineral resources prediction, because geologists in general have been
slow to adapt quantitative methods, and even reluctant to substitute objective and
quantitative analysis for all or part of subjective analysis. Thus, there was a need to
demonstrate quantitative methods that could be used to estimate undiscovered
mineral resources. However, to some extent, this reluctance represented the dis-
satisfaction by geologists for the at-best low, and sometimes trivial, level of geo-
science information captured by the quantitative variables and related to mineral
occurrence by the multivariate models. Simply stated, mineral resource estimates by
quantitative and objective methods will not improve significantly until more geo-
science information is related in more appropriate ways to the various descriptors of
mineral resources.

Supplying worldwide demand of metallic raw materials throughout the rest of this
century may require multiple times the amount of metals contained in known ore
deposits (Patiño Douce 2016a, b). Sustainability of resource supply is a key task for
scientific mineral assessments. The concept of mineral resource is many faceted,
including physical and chemical properties ofmineral deposits, as they occur naturally
in the earth’s crust and economic properties created by man’s socio–technical pro-
duction system and the demands for mineral materials derived there from. The dis-
cussion presented here focuses upon several aspects of mineral resources that are
fundamental considerations in the effective information synthesis formineral resource
estimation: randomness of mineral endowment, basic statistical relations, scarceness,
geological foundations, economic truncation and translation, and spatial continuity.
Some major issues in quantitative mineral resource estimation are addressed,
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including information enhancement, information synthesis, as well as target identi-
fication. Information synthesis is a central task in both mineral exploration and
resource estimation.

21.2 Randomness of Mineral Endowment

Most of the past and current studies on mineral resource estimation have been
constructed and applied on the basis of a common assumption that mineral
endowment descriptors and at least some of the related geologic processes behave
more or less according to certain stochastic rules. The assumption is seldom
challenged, although controversies have continued over four decades, for example,
the types of the stochastic laws that govern the true distributions of geochemical
element concentrations (Harris 1984; Vistelius 1960; Brinck 1972). This seems to
indicate that the assumption that some geological processes are to some extent
stochastic and follow certain stochastic laws has been widely accepted, although it
is premature to assert that all of the geoscience features are stochastic. It is useful to
examine this notion before investigating specific stochastic laws for particular
geologic events, the use of statistical models to estimate mineral resources, and
probabilistic descriptions of resource descriptors.

In his famous ‘Ideal Granite Model’, Vistelius (1972) showed that the crystal-
lization of minerals, such as potassium feldspar, quartz, as well as plagioclase
contained in the ‘ideal granite’ can be modeled by some stochastic functions that
vary in space and time. It has been proved mathematically that there is a
three-dimensional ‘packing of particles’ such that the three mutually perpendicular
directions can be described according to the Markov property in each direction with
identical transition probability matrices in the three directions (Vistelius and Har-
baugh 1980). Another example due to Vistelius is his gravitational stratification
package model (Visteluus 1981). In the study of red beds of the Cheleken Penin-
sula, under certain assumptions, Vistelius showed that the sequence of red beds
with two distinct states, S (arenaceous beds) and A (argillaceous beds), can be
treated as a homogenous reversible Markov chain of second order, with the partial
transition through A being first order Markov and the partial transitions through S
being second-order Markov.

Sedimentary sequences have been regarded generally as some types of cyclic
processes which are associated with certain Markov properties (Schwarzacher
1969; Hattori 1976; Pan 1987; Kantsel 1967; Pan and Porterfield 1995). Pan (1987)
demonstrated that many sedimentary sections can be treated as homogeneous
stochastic processes if no significant depositional discontinuities or structural
unconformities occur in the sequences and that homogeneous sedimentary pro-
cesses can be decomposed uniquely into the sum of independent reversible and
unidirectional stochastic flows.

The process of ore deposition was closely examined by Kantsel (1967) based
upon the function of metal distribution in ores. The process of hydrothermal
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mineralization during a single stage can be treated as a continuous stationary
process of the Markov type. The resulting concentration of metal can be represented
by a distribution function, the most important characteristic reflecting speed of the
mineralization process. Stochastic modeling methods and uncertainty quantification
are important tools for gaining insight into the geological variability of subsurface
structures and formation of mineral deposits (Wang et al. 2017). Modeling of 3D
geological processes helps reveal hidden information on the variability of con-
trolling factors, which defines likelihood of occurrence of mineralization processes.

These contributions are informative about some fundamental and crucial con-
troversial issues regarding the application of stochastic models to mineral explo-
ration, although some concerns cannot be satisfactorily resolved without more
research. A partial conclusion drawn from these preliminary works should be that at
least under certain conditions some of the geologic or earth processes can be
modeled by stochastic laws. However, it would be incorrect to associate the earth
processes with the stochastic laws through one to one relations, since the random
properties of geologic events generally are space and time dependent.

21.3 Fundamental Geo-process Relations

Observations on geologic features in certain spatial and temporal settings are the
outcomes of a sequence of geologic processes superimposed during crustal evo-
lution and initiated by inner energies of the earth, biosphere, hydrosphere, atmo-
sphere, as well as other universal forces. Conceptually, there should be two levels
of cause–effect relations among the geologic events, crustal evolution and initial
forces, that created the earth. The earth commonly represents the entity of earth
processes, e.g., crustal movement, magmatic intrusion, migration of ore-bearing
fluids, erosions, etc., while geologic entities, such as lithologic phases, hydrother-
mal alterations, geologic structures, ore deposits, etc., are outcomes of the pro-
cesses. Let o1, o2, …, ok denote the k initial forces, f1, f2, …, fp the p earth
processes, and z1, z2, …, zm the m geological features, including resource
descriptors. Then, the cause–effect relations may be conceptualized as follows:

fj = gj o1, o2, . . . , okð Þ, j= 1, 2, . . . , p, ð21:1aÞ

zi = hi f1, f2, . . . , fp
� �

, i= 1, 2, . . . , m. ð21:1bÞ

The conceptual model (21.1a, 21.1b) implies that the original forces are direct
causes of the crustal evolution represented by a series of geologic processes which
in turn are the direct causes of the geologic features (outcomes). Since some of
these geologic features are resource descriptors, such as number of deposits,
quantity of endowment, etc., relation (21.1a, 21.1b) states that a mineral deposit is
the result of a sequence of superimposed geologic processes. The functions gj’s and
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hi’s may be assumed to be random, provided that the original causes or geologic
processes are considered to be stochastic.

A relevant question in statistical estimation of resources concerns basic statistical
models useful for describing inherent relations between the geodata and resource
descriptors given that geoscience information is stochastic. One should keep in
mind the basic cause-effect relations (21.1a, 21.1b) and that these cause-effect
relations do not imply any cause-effect between the resource descriptors and other
geological features, although syngenetic or parallel relations do exist because both
of these are outcomes of some common earth processes. For example, both argillic
alteration and copper mineralization result from the same process of magmatic
intrusion. Since the current knowledge on the original causes is very limited, it is
not realistic to discover relations gj’s in (21.1a, 21.1b). Assuming that the random
portions of the earth’s processes can be isolated from the deterministic part, the
following two sets of auxiliary relations should be essential:

rl =φl f1, f2, . . . , fp
� �

+ vl, l = 1, 2, . . . , d, ð21:2aÞ

zi =ψ i f1, f2, . . . , fp
� �

+ ei, i = 1, 2, . . . ,m, ð21:2bÞ

where rl’s are the resource descriptors, zi’s are other geologic features and vl’s and
ei’s are the random errors. However, a further difficulty arises because our
knowledge of earth processes is also limited. What one can observe in practice are
only the geological features zj’s and maybe part of the resource descriptors.
Although there is no direct causal relation between the mineral resource descriptors
and other geologic features, their syngenetic and concurrent relations will assure
some indirect information from the geologic features about the resources. Hence,
the geological processes, and thus the mineral resource descriptors, can be math-
ematically reconstructed through a reverse functional estimation:

fj =Ψ j z1, z2, . . . , zmð Þ + ωj, j = 1, 2, . . . , p, ð21:3aÞ

rl =Φl f1, f2, . . . , fp
� �

+ εl, l = 1, 2, . . . , d, ð21:3bÞ

where ωj and εl are the random error terms for the geological process and resource
descriptor estimates.

Accordingly, if m is much greater than d, a feasible solution for mineral resource
estimate may be completed in two steps:

(a) Factor out the f1, f2, etc. from relations (21.3a) based upon the known infor-
mation on the geological features zi’s;

(b) Substitute these estimates of the factors into relations (21.3b) and derive the
estimates for the multivariate resource descriptors.

The first step of the manipulation is exactly analogous to factor-type analysis,
constructing significant geologic factors (causes) from observable geological fea-
tures, whereas the second step is regression-type analysis, predicting the resource
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descriptors (effects) from the geological factors. Consequently, factor-type and
regression-type models should be fundamental multivariate statistical models for
quantitative mineral resource estimation, and other relevant statistical methods
may be considered as variations and combinations of the two types of method.
That’s why the mineral resource descriptors (r) can be statistically estimated
through the geological features by the following function:

rl =Θl z1, z2, . . . , zmð Þ + ϑl, l = 1, 2, . . . , d, ð21:4Þ

where θl the random error. The geological processes are directly created by the
initial forces of earth movement, while accumulation of mineral resources is
directly resulted from complex interactions of the geological processes. Since the
geological processes cannot be directly measured, they must be reconstructed by
observable geological features, which can be, in turn, indirectly used to estimate
mineral resource descriptors through relation (21.4).

21.4 Scarceness, Rareness, and Exceptionalness

The activities of mineral exploration have been motivated chiefly by economic and
social pursuits (Pan et al. 1992). Constantly growing economic and social demands
require greater amounts of raw material, including nonrenewable mineral com-
modities. The conduct of mineral resource exploration is predicated upon the
economic return expected from the discovery of new deposits. An increase in the
price of a mineral product, which is equivalent to the sum of the marginal rent and
marginal extraction cost, indicates that the mineral resource has become scarce.
A basic perspective of both geologists and economists is that mineral resources are
scarce materials in the crust as they occupy only an insignificant portion of crustal
material.

Any major ore deposit may be regarded in principle as an anomalous or rare
phenomenon commonly characterized by one or more geological, geochemical, and
geophysical features. Consequently, signatures of significant endogenic mineral-
ization are anomalous and exceptional geologic settings (Gorelov 1982). In par-
ticular, the formation of a giant deposit is an extremely rare event created by an
exceptional combination of earth processes. Rareness of the giant deposits is
reflected in both spatial and temporal dimensions. Significant concentrations of a
metal usually have a strong affinity or correlation with particular geologic forma-
tions and epochs, as well as metallogenic environments. The genesis of giant
deposits may be controlled by particular regularities that differ from those con-
trolling the formation of medium and small–size deposits of the same composition.
It is also thought that the formation of huge deposits appears to be controlled by a
so–called ‘ore–controlling structure’ (Tomson and Polyakova 1984).

Giant deposits often dominate reserves and production. It is not uncommon for a
few supergiant and giant deposits to constitute over 50% of the total metal
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recoverable under current economic and technological conditions; accordingly, the
metal quantity in small size deposits is almost negligible (Laznicka 1983). Con-
versely, giant deposits typically constitute an insignificant part of the total number
of ore deposits.

Thus, the scarcity of a mineral resource is essentially determined by the fact that
few giant deposits exist in the crust, but the few that do exist strongly dominate
reserves and production. Accordingly, the economic viability of mineral exploration
is strongly predicated upon its capability of locating the giant or large mineral
deposits through delineating the associated geologically anomalous regions of the
crust. Unfortunately, conventional quantitative techniques employed have failed to
deal with these important particulars satisfactorily, mainly owing to inability to
capture the nature of these exceptional constraints, since these unique deposits
rarely exhibit common statistical properties.

The discovery process for some deposit types, e.g., those for which structural,
geochemical, alteration, or geophysical signatures are correlated to deposit size or
those for which discovery is primarily by drilling and for which size is strongly
related to areal extent, is size biased, meaning that large, high-grade deposits tend to
be discovered in early stages of the exploration of regions (Chung et al. 1992; Pan
and Harris 1991). For such deposit types, the prognostication of exploration out-
comes or the estimation of additional resources in undiscovered deposits should
take into account the implication of this bias to the tonnages and grades of the
undiscovered deposits. However, representing the discovery process of other
deposit types, such as vein deposits with great vertical extent or those for which size
is only weakly related to exploration anomalies, as size bias sampling may not be
appropriate (Stanley 1992). Improvement in locating deposits or in estimating
probabilities for their occurrence requires consideration of the exploration effect and
the conjunction of improved genetic, tectonic, and other unifying geoscience the-
ories with improved synthesis methods for the effective extraction of information
from diverse geodata and improved quantitative models for inference or estimation.

Considering the low concentration of many elements, e.g., 65 ppm for copper, in
common crust rock, the presence of a large accumulation (1 to 10 million tons for
copper) of metal at concentrations that are mined today requires enrichments by 100
or 1000 s times crustal concentrations and the accumulation of metal from a large
amount of common crustal materials into a relatively small volume. Typically, this
concentration or accumulation is seen as requiring the successive operations of
several enrichment-depletion stages. Since these sub-processes rarely take place at
the scale and strength required to form an ore deposit, their joint (sequential)
occurrence could be an extremely rare event in both space and time. If each of these
processes is assumed to be stochastic, the mineralization process is also stochastic,
and thus the formation of ore deposits is deemed to be a rare, random event. To the
extent that this assumption is acceptable, the concept of rareness of ore deposits is
equivalent to the smallness of the probability for the formation of an economic
deposit.

The concept of rareness can be compared to that of exceptionalness described by
Gorelov (1982) and the conditional exceptionalness proposed by Pan (1989). Some
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other terms found in literature carrying similar meanings include atypicality,
uniqueness, anomaly, etc. The concept of exceptionalness is important and useful in
quantitative mineral exploration. The most general feature of major commercial ore
deposits is that the geological structures of their ore fields are exceptional and
anomalous compared with those of neighboring areas.

It is noted that scarceness is a term relevant to economic aspects of resources,
rareness is more closely associated with statistical (probabilistic) characteristics of
mineral occurrences; and exceptionalness should be used in a geological context.
More specifically, one would say that ore deposits are probabilistically rare and
geologically exceptional, even though the metal derived from them may not be
scarce in the economic sense described by Barnett and Morse (Barnett and Morse
1963). These terms are often used to describe the status of mineralization events in a
relative sense, but they can be statistically quantified in a rigorous framework.

21.5 Intrinsic Geological Unit

Most traditional resource estimations have been made on the basis of regular
inter-grids or cells as the sampling scheme and estimation unit. The “cell” approach
is associated with a number of drawbacks. The most significant problem is that
geological processes can be reconstructed through observable geoscience features,
which are measurable in geological units, not artificial cells. The cell-based mea-
surements tend to distort the intrinsic relations between geological features and
mineral resource descriptors. Secondly, quantification of the geological features,
spatially correlated and even connected, is difficult to capture essential genetic
factors that played key roles of metal enrichment. Finally, the cell-approach easily
ignores exceptional conditions for formation of large deposits, which cannot be
readily quantified through grids.

21.5.1 IGU Definition

In contrast with a population of cells having multiple attributes, consider a popu-
lation in which each member consists of a set of genetically related objects, e.g.,
igneous intrusives and associated altered host rock, and each member is described
by fields of the related geologic objects. Here, mineral resource descriptors and
geoscience measures are attributes of a group of geoscience fields which in turn are
attributes of a set of genetically related geologic bodies. Such a scheme employs a
sampling reference for quantification and integration of geoscience information that
is intrinsic to the deposit type being sought. That is why the Intrinsic Geological
Units (IGU) was proposed by Pan (1989) and Harris and Pan (1990).

The concept of intrinsic geological units, formally documented in Pan and Harris
(1993), has evolved from the notion of intrinsic samples (IS), or consistent
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geological area. The basic ideas behind both notions are identical and a minor
difference lies in the procedure for delineation. This concept has some common
characteristics with the notion of “geological anomalies” proposed by Zhao (2007)
(also see Zhao and Chi 1991), although the procedure of unit delineations differs
significantly.

An appropriately delineated IGU is at once a great improvement over the tra-
ditional inter-grid area or cell because it represents the joint occurrence of geologic
bodies that are genetically related to the mineral resources of interest. Thus, even
before geological attributes of the IGU are quantified, the very presence of an IGU
implies highly significant geoscience information about geology and mineral
resources. In contrast, the cell is simply a geometric reference. Therefore, it is
inevitably true that geological attributes of an IGU carry far more geoscience
information than do the geological attributes of a cell.

IGUs may be formally defined as members of a population consisting of sets of
genetically related geologic objects that are usually defined by their geofields (Pan
1989). Each member (IGU) of the population of IGUs constitutes an independent
set of geologic objects that are genetically related to each other and to mineral
deposits, although generally only some of these members contain ore deposits and
mineral resources. Moreover, although a particular member of a population of IGUs
contains mineral deposits, it may not be uniformly mineralized everywhere within
its volume. In other words, a mineral resource unit generally is a subset of an
intrinsic geologic unit.

21.5.2 Critical Genetic Factor

Any mineral deposit or mineralization can be considered as an anomalous con-
centration of one or more elements or their chemical compounds when compared to
crustal materials. This anomalous region originated from anomalous genetic pro-
cesses or their superposition during certain geological epochs. Usually, a genetic
model consists of a hierarchy of earth processes—from preconditions to post
mineralization preservation—which acted during one or more previous time spans,
and as such, these processes are not observable. Instead, the geologist must infer
their previous existence and operation using observable indirect evidence, e.g.,
geologic features, geochemical suites, hydrothermal alteration, aeromagnetic and
gravity anomalies, etc.

Since particular genetic processes were initiated and developed under certain
specialized circumstances, existence ofmineralization, as a significant outcome of the
processes,must also be conditional upon these relevant circumstances. In otherwords,
whether an anomalous concentration of a metal exists in a region depends solely upon
the existence of certain necessary conditions during crustal evolution. Although there
might exist a number of such necessary conditions for a particular genetic process or
mineralization, one, or atmost a fewof them, is referred to as critical. For convenience,
this (these) critical or necessary condition(s) is called the Critical Genetic Factor(s)
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(CGF). The idea of CGF does not rest solely upon one factor being more important or
critical than another in the formation of a mineral deposit, because unless all genetic
factors are present, there is no mineral deposit or mineral endowment. Criticality, as
used here, rests more upon the idea that the CGF arises from few, preferably only one,
earth process and that those features formed by that process can be detected reasonably
well by conventional sensing technologies, e.g., magnetics, gravity, geochemistry,
and geology mapping. If this CGF is not present, the intrinsic geological unit is
considered to be absent. For example, for amineral deposit related tomagmatic fluids,
the heat source that drives intrusionmay be treated as the CGF for identification of the
IGUs associated with the deposits of this type. Practically, only a single CGF is
necessary for identifying spatial units that are intrinsic for mineral deposits of a single
genetic type, but more than one CGF may be necessary when there is more than one
genetic type of interest.

An IGU can be further understood to be a member of a population consisting of
sets of geologic objects genetically associated with the CGF, each set being a
member of the IGU population. Individuals from the population are called known
IGUs if the related CGF is directly observed, while others are unknown or predicted
when the CGF cannot be observed directly, but is inferred to exist because of the
presence of geologic fields related to the CGF and to recognition criteria.

21.5.3 Critical Recognition Criteria

The CGF often may be identified as a process, based upon geoscience; conceptu-
ally, it may be an abstraction, instead of an observable feature. In order to make the
CGF concept workable in practice, a set of special geologic features which give
firm evidence of the previous existence and operation of the CGF are established.
Such a feature is here termed a Critical Recognition Criterion (CRC). Each of these
CRCs constitutes a sufficient condition for existence of the CGF. Any spatial
location at which one or more CRCs occur is by definition a location within an
intrinsic unit.

Although the concepts of CRC make it possible for identification of CGF, the
occurrence of CRCs known at the time of application may not represent the entire
picture of a CGF. In other words, estimation of the presence of a CGF based upon
only CRCs could be biased due to imperfect knowledge on the spatial distribution of
CRCs. For example, a CRC might exist underneath the sedimentary cover, even
though it is not found by surface geological mapping. This fact dictates that the
identification of CRCs beyond surface observation is an important step in the
appropriate prediction of the distribution of the CGF. This can be done by estab-
lishing statistical relations of each CRC to a set of selected geological, geochemical,
and geophysical fields, which provide indirect evidence for the presence of the CGF.

Although the existence of a recognition criterion at a spatial location almost
surely indicates that the location is within an IGU, the boundary of the IGU still is
unknown. Consider, for example, the outcrop of a Tertiary intrusive assumed to be
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a CRC. Then, the outcrop area is surely within an IGU, but probably, some of the
area around the outcrop also is within the same IGU because of the likelihood that
at depth the intrusive extends laterally underneath the surface rocks. Consequently,
the boundary of an IGU is usually uncertain. One way of representing such
uncertainty is to assign each spatial location a probability for presence of one or
more recognition criteria based upon a collection of geological observations at that
location.

21.5.4 IGU Delineation

At a known location (with at least one observed CRC), the probability for the CGF
should be one or very close to one. This implies that the point is almost surely
within an IGU. At an unknown location (with no observed CRCs), all of the CRC
probabilities estimated from geoscience fields will provide a measure of the like-
lihood of the presence of the CGF.

Several methods have been proposed and employed for delineating IGUs. One
such example is that which consists of three steps developed by Pan and Harris
(1993). The method delineates IGUs by estimating and combining probabilities of
CRCs. Another example is given by Pan (1989) and Harris and Pan (Harris and Pan
1991) based on the union of marginal field anomalies. As discussed, the presence of
a CRC gives evidence for the existence of an IGU; delineation of the boundary of
the IGU is made by resolution of the geoscience fields associated with the CRCs. In
this approach, the key step is to establish a procedure to identify the anomalies in
terms of CRCs for each geosciences field. These anomalies (called marginal
anomalies) are then combined into one anomaly through spatial union. This is
similar to the concept of using the maximum CRC probability to represent the
probability for CGF.

As we know, genetic theories are most useful for grass-roots exploration or
reconnaissance programs, where deposit information is not abundant. Without the
guidance of genetic models, it is unsafe to select an area for a massive investment.
Hence, the concept of IGU is most useful for regional mineral exploration, because
it provides a quantitative framework for delineation of those areas having the
conditions necessary for the presence of deposit. In large-scale exploration, such as
deposit or district scale, the methodology of IGU is still useful if detailed aspects of
deposit genetic models can be specified. With abundant occurrence information, it
is possible to extract genetic factors as necessary conditions for the localization of
deposit. However, in most cases, this detailed information is not available or not in
a usable form. In general, a mining district is already a known IGU defined by
broad genetic models. Unless refined genetic models are available, IGU will not
provide additional power to identify areas for the potentials of deposit or district
scale.
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21.5.5 Relations Between IGU and Mineral Target

As discussed, CGF serves as the necessary condition for presence of an IGU, but it
is not a sufficient condition for the boundary definition of the IGU. The purpose of
IGU proposal is to improve methodology of target identification and delineation,
which, in turn, improves the effect of mineral resource assessment. The IGU theory
creates a new platform on which new approach to mineral target identification can
be constructed. A critical question to ask would be what is the relation between IGU
and mineral targets?

Theoretically, an IGU is a necessary condition for presence of mineralization of
interest. The concept of IGU provides a precursor to the identification of miner-
alization or deposits. However, presence of an IGU does not necessarily serve as
sufficient conditions to the presence of mineralization or deposit. Presence of an
IGU is a necessary condition of presence of mineral target. In general, an IGU is
much broader in areal or volumetric extents than a mineral target. Mineral targets
are defined in the IGU areas where additional necessary and even sufficient con-
ditions are observable or inferable from maps or data collected from various sensing
or engineering technologies. Instead of using an inter-grid sampling scheme, the
framework of IGU provides a more practical and useful approach for extraction of
sufficient conditions for identification of mineralization events through recon-
struction of geological processes that resulted in the occurrence of mineralization.

For mineral resources appraisal, the concept of IGU establishes a theoretical base
for definitions of necessary and sufficient conditions of mineralization or deposit. It
has radically changed the conventional methodology for estimation of mineral
potentials. The relationships of IGU, target, occurrence, and deposit are depicted as
follows:

Deposit ⊆Mineral Target⊆ IGU ⊆Working Area

Clearly, an IGU is not a mineral target, but a mineral target must be enclosed in
an existing IGU. Similarly, a mineral target is not a deposit, but a deposit must be
localized inside an existing mineral target. Therefore, identification and delineation
of IGUs is a necessary step for definition of mineral targets. This new approach will
play a revolutionary role in improvement of mineral resources assessment.

21.6 Economic Truncation and Translation

Mineral deposit is not a purely geological concept when it is linked to resources and
reserves. The effects of economic truncation and translation on mineral deposits
have been recognized several decades ago, and a thorough discussion of these has
been given by Harris (1984). These phenomena reflect an important fact that
mineral resources generally are a dynamic function of relevant economic and
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technologic constraints, including price of product and costs associated with various
production phases, such as mining, milling, smelting, as well as refining. Available
data on mineral deposits generally are truncated by a cost surface which is defined
in terms of physical features of the deposits and technological states. In other
words, the collection of mineral deposits reported reflects only the truncated frac-
tion of the entire population of mineral deposits. Thus, use of these data directly and
unavoidably results in biased estimates of mineral resources, as the characteristics
of the resource distribution derived from the partial data set only are a distorted
representation of deposits as they occur in nature.

Translation refers to the fact that commonly reported deposit grades and ton-
nages are for ore reserves and that these tonnages and grades generally differ from
those for the total mineralized material for the deposit as a geologic phenomenon.
For deposit types having great lateral or vertical gradation in mineralization, eco-
nomic rents may lead to the selection of a cutoff grade that leaves part of the deposit
in the ground. When this is the case, reported ore tonnage is smaller than deposit
tonnage and average grade is higher than deposit average grade.

The importance of translation as a distortion varies with the mineral commodity
and the maturity of the exploration activity. In general, the greater variation of the
grade within a deposit (intra deposit grade variance), the stronger the translation
effect, and vice versa. For those deposit types having sharp boundaries or a uniform
grade distribution, the translation effect may be negligible. For some deposit types,
it is also true that the longer the deposit has been mined, the greater the reserve
additions and the more representative the revised ore tonnage and grade data are of
the geologic deposit.

The truncation and translation effects are related to some degree when produc-
tion costs are strongly influenced by ore tonnage and ore average grade, provided
that intra deposit grade variation and the spatial distribution of grades permit the
effective use of cutoff-average grade relations to maximize the net present value of
economic rents. However, translation occurs mainly in mine development and
subsequent mining, while truncation reflects both exploration and mining. Con-
version of resources to reserves involves using cutoffs for grades that define
boundaries of ore economic portions in the deposits. This procedure involves both
translation and truncation.

In order to resolve these difficulties, Harris (1984) suggested a possible remedy:
treating the truncation effect requires first identifying the truncation relationship,
and second the explicit consideration of this relationship in the estimation of
parameters, one of which is the correlation of deposit tonnage with grade. Although
several attempts have been made to mitigate the difficulty in practical studies by
employing more sophisticated mathematical methods in mineral endowment esti-
mation, the problem remains to be explored further, as estimation of the cost
relation is still based on the truncated data. Thus, the cost relation must be
reconstructed from a truncated surface before estimation is carried out.

The importance of truncation and translation effects on a quantitative estimate of
mineral resources depends to some degree upon the means of estimation and upon
the objective of the estimation. For example, when estimation is to be done using
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analogue or control regions and the objective is to estimate the magnitude of
resources for price, cost, and technology similar to those of the analogue regions,
the effect of truncation and translation on the estimate may be minor. But, when the
objective is to estimate the magnitude of resources for improved exploration and
production technology, the effect of truncation and translation upon the estimate
may be very significant.

21.7 Information Synthesis

The geologist’s view of an ore deposit may differ from that of the economist.
Economists tend to consider an ore deposit as being a continuous geologic phe-
nomenon that is discretized by applying a set of economic regularities, while
geologists tend to perceive a deposit to be a discrete geologic phenomenon with
anomalous concentration of one or more valuable elements (Agterberg 1981).
Physical mechanisms of ore genesis suggest that the continuity of ore concentration
is meaningful mainly in a relative sense. A high magnitude of element concen-
tration in host rocks often contrasts sharply with concentrations in surrounding wall
rocks. This perspective may be partially illustrated by the DeWijs’ scheme of
element enrichment in a deposit, which was extended by Brinck (1972) to
describe element concentrations within the crust. Another well-known hypothesis is
Skinner’s bimodal proposition of element distribution which asserts that a gap
exists between the grades of mineralized rock and the grades of common crustal
material (Skinner 1976).

21.7.1 Spatial Continuity

Although the continuity of the statistical distribution of grades seems to differ
conceptually from that of spatial and temporal distributions, they are in fact closely
related. For example, if the proposition is accepted that the grades of an element are
continuously distributed in space and time, the continuity of the statistical distri-
bution of these grades can be automatically invoked in certain environments, and
vice versa. This assertion may be explained by the requirement that samples must
be taken in a uniform and regular manner from the population of interest.

Metallogenic and tectonic studies depict elements to be concentrated in geologic
terrains of different scales, such as ore shoot, ore body, ore district, ore belt, ore
province, etc. (Laznicka 1983). This hierarchical structure of ore formation seems to
indicate that continuity exists within each of these scales, while discreteness of ore
concentrations can be seen between these different scales. For instance, an ore
district may be viewed as a continuously anomalous region within an ore belt, but
the individual deposits included in that same district are discrete geological
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phenomena. This perspective carries strong implications as to sampling procedures
and the organization of data for the estimation of mineral potentials.

Thus, a specific mineral exploration project focused upon the ore deposits of
certain valuable elements formed and confined in a particular dimensional scale
requires an appropriate sampling scheme of that same scale. For example, a new ore
body developed within a deposit may be considered as mineral potential at the
deposit scale, while a new ore deposit discovered in a district is regarded as mineral
potential at a district scale. When estimation is aimed at predicting the mineral
potentials at the district scale, the sampling scheme must accommodate the geo-
logical and mineral continuity at the corresponding hierarchical level. The match in
scale is a prerequisite in mineral resource estimations.

21.7.2 Information Enhancement

Although in one sense considerable progress is apparent in the use of quantitative
techniques for mineral exploration and resource estimation since the early work in
the 1950s and 1960s (Allais 1957; Harris 1965), much less success has been made
in creating estimates that are or have been used in mineral exploration and mineral
policy decisions. Even though quantitative estimation of local/drilling targets may
require the detailed quantitative characterization of favorable geological, geo-
chemical, and geophysical information, many explorationists still favor subjective
and qualitative methods for the integration of geodata. Concurrent with these
applications, mathematical methods were designed and demonstrated, but few were
adopted. Perhaps, this is a natural evolution of the science of quantitative mineral
exploration in terms of data integration, because geologists in general have been
slow to adopt quantitative techniques. However, this reluctance is at least partly
related to ineffective integration of geodata and insufficient extraction of geoscience
information by quantitative models. Mineral resources cannot be satisfactorily
estimated until more geoscience information is related by improved methods to
mineral occurrence. Major difficulties that have hindered further development have
been far from fully attacked, and some of them are even completely ignored.

A common practice in quantitative mineral exploration is to collect all relevant
geoscience data available in the study region, including numerical observations,
digitized maps, and remotely sensed images. These data are then compiled, digi-
tized, resorted, and formatted in a readily manageable data base. Each record is
usually stored as a row, while each geologic attribute occupies a column. In
standard statistical terms, each record in a data base is called a sample and each
attribute is referred to as a variable. A sample in mineral exploration can be a spatial
point or a one-, two-, or three-dimensional block. Most data in regional mineral
exploration are interpreted in two dimensional areas.

Sampling schemes are considered to be an important factor in data interpretation
and target identification. A viable sampling scheme should be able to cope with the
hierarchical structures of mineralization or ore concentration. Mineralized
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geological bodies in different hierarchical scales correspond to different domains in
space and time, which are generally defined by particular tectonic settings and
geological formations. Statistically, samples should be randomly taken in the
population of mineralized and non-mineralized geological blocks of the same scale.
Furthermore, spatial characterization of geological features is another criterion for
reasonable representation of the resource variability. A reliable sampling scheme
should also result in a sample distribution which portrays closely the ‘true’ popu-
lation distribution of geological and mineralized bodies. Our experience has shown
that quantities measured on the basis of equal area cells might lead to distorted
probability distributions.

The original data may include geological, geochemical, geophysical, as well as
remote sensing information in diverse modes. For example, geological data can be
hydrothermal alteration, faults, and lithology, which are typically considered as
non-numerical attributes. Geochemical data can be collected from a rock outcrop,
stream sample survey, or a soil grid survey. Magnetics data can be obtained from an
airborne geophysical survey. It is readily seen that all these types of geodata are
diverse not only in terms of sampling methods, but also the presentation of
quantities. Different sampling schemes create different data densities, inconsistent
spatial locations, disconnectivity, as well as uneven precisions. Different quantity
presentations may give rise to even more serious problems in data integration. The
most difficult problem is dealing with the correlation of different variables, which is
the most critical step in geological information synthesis, especially when some
data are non-numerical. The first step in overcoming these difficulties is the
quantification and unification of different data sets.

The quantification of non-numerical attributes refers to assignment of a
numerical value to each sample location; of course, the numerical value must
convey explicit geological information. For example, a binary assignment gives 1
or 0 to the attributes to represent presence or absence. When each data set is
‘quantitative’, the next step is to enhance geological information of each individual
data set before they are compared, correlated, and integrated. As a matter of fact,
enhancement of information from original and individual data is the most critical
step towards a successful information synthesis for mineral target selection.
Unfortunately, geologists traditionally tend to place too much emphasis on the
original data and denigrate the importance and necessity of data filtering, cleaning,
and enhancing. Conversely, some geomathematicians devote too much attention to
processing of data and give too little regard to fundamental characteristics of the
original data and the useful information of the data. Original data carry the most
genuine information, but they may be ‘contaminated’ or masked by noise and even
distorted due to inadequate sampling or analytical methods.

Filtering and enhancing of useful information is important to remove noise and
reveal signals, such as separation of soil geochemical anomalies from background
values. Furthermore, one data set may carry information on several geological
aspects. Some of these signals are not the major interests and their presence
sometimes masks or distracts from the information useful in identifying mineral
targets. These signal components are unwanted, even though they are not noise, and
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should be filtered out, or at least suppressed. However, many filtering, enhancing,
and other data processing techniques can easily introduce artifacts or false signa-
tures. For instance, a magnetic anomaly map generated from a short-wavelength
filter can exhibit many high-amplitude, single-grid-point anomalies, which are
known as the aliasing effect in the geophysical literature. Another example is
interpolation which has been commonly used in data interpretation and quantitative
mapping. All interpolation algorithms, e.g., minimum curvature and kriging, which
can be considered as low pass filters, are notorious in that they tend to produce
overly smoothed surfaces and quite often cause a loss of important detailed features.
It is our opinion that some applications of quantitative analysis in mineral explo-
ration have either failed to extract the important geoscience information or have
created too many artifacts relative to signals; these effects are believed to be among
the major reasons underlying the reluctance of geologists to replace qualitative
judgment by quantitative analysis.

The above discussion suggests that filtering and enhancing is necessary for
geological data interpretation and integration, but care is warranted in the use of
enhancing techniques. Also, enhancement of a geological attribute includes iden-
tification and description of spatial structural characteristics, which constitute useful
information about spatial auto-correlation of the attribute. More specifically, the
objective of information enhancement is to maximize the signal relative to noise.
By analogy, the best picture of an object taken by a camera requires a correct focus
on the object; either too short or too long of a focus will blur the picture. Moreover,
one should keep in mind that any enhancement technique cannot create information
that is not present; instead, it is only able to reveal important features of the
information carried by the attribute. But, without enhancement, some important
features may not be identified nor employed in subsequent analyses. Since the
amount of information in each attribute is limited, enhancement also is limited.
A minimum level is necessary, for an insufficient removal of noise fails to reveal the
signals to be extracted and used in subsequent analyses. Generally, the tendency of
analysts is to ignore or inadequately remove noise and to over-enhance the signals.
Of course, intense enhancement of data that contain noise leads to enhancement of
noise as well as the signal and to false patterns and inter-relations with other
information.

21.7.3 Data Integration

Synthesis of geoscience information includes the quantification of geological
observations, maps, and other geological images; extraction of quantitative vari-
ables; statistical preprocessing; filtering and enhancement; estimation of statistical
relations among variables; and the combination of different data sets (layers).
Clearly, most of the components require some amount of computation which can be
performed more efficiently by using a computer. There is an obvious advantage of
using a computer when many variations of the same type of analysis are required
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(Green 1991) or when important information includes the computer interaction of
several large sets of geodata. This additional information helps to reduce uncer-
tainties and ambiguities in geological interpretation and mineral potential estima-
tion. Furthermore, some effective and sophisticated statistical techniques which
generally prohibit manual calculations can be readily implemented on a computer.

Mineral exploration generally deals with diverse geological data in various
chemical and physical forms. Appropriate information synthesis should reflect the
types of information contained in each data set and their geological implications.
For example, geochemical information is generally different than geophysical data.
Even the same type of data, e.g., geochemical, may require different interpretation
when it is obtained through different sampling techniques. For instance, soil geo-
chemical samples are processed in different ways from stream samples. Geophys-
ical data are rich in depth information and are capable of locating blind targets, but
the extraction of such information requires appropriate processing and analysis. It is
important to note that any data set has its limitations in the diagnosis of geologic
favorability for mineralization, and interpretation and information synthesis must
recognize these limits. Because of vast differences in geoscience content, precisions
of measurement, and scales of reference among diverse geologic data, integration of
these data directly cannot constitute their optimum use in mineral exploration
unless the data are appropriately preprocessed and unified. Unfortunately,
these problems are far less than adequately treated in traditional exploration
applications.

Geoscience attributes are usually processed, correlated, and integrated to pro-
duce some estimates which characterize the favorability or probability of mineral
occurrence. A more comprehensive approach treats each of the various kinds of
geoscience information as a field of a particular type, e.g., geochemical fields,
magnetic fields, etc. (Harris and Pan 1990, 1991). Mineralization may also be
viewed as an ore field. The notion of field enriches useful information about three
dimensional characteristics of geological bodies. Such a field is generally more
expressive of meaningful geoscience information relevant to mineral resources than
are ‘man-made’ variables, e.g., measurements quantified with regard to an artificial
reference, such as a grid.

A major objective of information synthesis is to maximize the extraction of
relevant geoscience information in terms of mineral potentials. Geological mea-
surements in mineral exploration are commonly multivariate in terms of either
several variables (fields) measured at same sample locations, or different variables
measured in different sample locations but in the same study region. In the latter
case, synthesis may require an appropriate interpolation of the data before they can
be jointly analyzed. When strong correlations exist among the variables, multi-
variate techniques are necessary to capture the joint information from multiple
associations as well as the marginal contributions from individual attributes.
A multivariate exploration system sometimes can be decomposed into several less
significantly correlated sub systems with smaller dimensions. This partitioning may
reduce the complexity of modeling and possibly permit more robust estimates at the
expense of decreasing the degrees of freedom in the system.

428 G. Pan



Optimum combination of different geological data sets (layers) has been a
central task in data integration and information synthesis. Agterberg (1989) gives a
comprehensive review on some major integration methods developed in recent
years. Two major types of models notable in literature include favorability analyses
and probability methods. Pan and Harris (1992) propose a weighted canonical
correlation method for the estimation of a favorability function. These methods are
most suitable for combining continuous geological attributes. Agterberg (1992)
provides probabilistic techniques for combining indicator patterns in weights of
evidence modeling. Both types of models, however, are deficient in some regards.
Favorability methods often carry ambiguities in predicting mineral potentials,
whereas evidence combination techniques are subject to strong constraints on the
independency of different attributes. Moreover, as an information synthesis method,
weight of evidence is simplistic. Another useful combination approach is color
(RGB) image composition (Sabins 1987). This type of technique also bears some
serious limitations, since most current image processing software systems are only
capable of combining a very limited number of ‘layers’. Therefore, there is a need
for development of more effective combination methods.

Geologic information about mineral occurrence may be roughly grouped into
two categories: marginal information contributed from individual variables or fields
and joint information contributed from the cross correlations between different
variables or fields. The first category of information has been extensively quantified
and interpreted in most of the traditional studies on mineral exploration. The second
category, however, has been inadequately treated due to complexities and ambi-
guities. Information from the inter-dependencies of variables can be an important
factor in improving the definition of exploration targets, if single exploration
variables are ambiguous, noisy, and/or uncertain as to mineral occurrence. Thus, an
effective synthesis technique must be able to efficiently quantify and extract the
cross-correlation information.

Intuitively, there should exist a combination of variables in multivariate mineral
exploration that is sufficient to capture the majority of useful information and at the
same time to minimize the effort of manipulation. It is probably incorrect to think
that more variables are always preferred. On the contrary, a large set of data almost
always contains redundant information which, if not appropriately eliminated, can
result in unstable solutions and create noisy estimates. Therefore, another important
problem in information synthesis is to select and refine variable sets such that
redundant and trivial variables are excluded from consideration.

21.7.4 Target Delineation

Mineralization is considered as an anomalous geologic event, because the element
is either present in anomalous grades, rare minerals, or in anomalous quantities. The
purpose of mineral exploration is to locate economic mineral deposits in such
anomalous regions based on direct and most often indirect information (chemical,
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physical, structural, etc.) and ore genetic theories. Since the direct information, e.g.,
the concentration of the metal of interest, is usually meager in the early stages of
exploration, indirect information (e.g., geological, geophysical, geochemical,
remote sensing, etc.) is commonly employed to identify mineral exploration targets.
However, the mineralized anomalies, which are distinctive from the surrounding
areas in terms of the accumulated metal(s), are typically fuzzy or ambiguous in
terms of indirect information. Therefore, ambiguities of information raise an
intricate question, i.e., how to ‘best’ define targets in terms of the maximum
inclusion of mineralized rock and exclusion of non-mineralized rock.

Information synthesis produces either a set of processed (enhanced, quantified,
integrated) geological, geochemical, geophysical fields, or a single synthesized
index characterizing the favorability/probability of mineral occurrence. Based upon
the derived grids, maps, or images, all of which are commonly referred to as
‘layers’, mineral exploration targets can be delineated by overlaying or combining
the different layers. Since the synthesized results, however, are generally continu-
ous, some threshold values are necessary to define the boundaries of targets. The
traditional approaches to determine the boundaries are generally subjective and tend
to introduce too many uncertainties. Obviously, a precise definition of a target is an
important exploration problem to be solved.

Delineation of potential mineral targets has been a central task especially in the
earlier phases of a mineral exploration program. Target areas have been identified
by either subjective or objective analysis. Subjective methods provide opportunity
for the maximum use of genetic theories of ore deposits and connect genetic
knowledge and geological observations either intuitively by expert geologists or
formally by a computer system (Harris and Carrigan 1981; Finch and McCammon
1987; McCammon 1990; Koch and Papacharalampos 1988). Subjective methods
have been generally formulated as follows: (i) formulate genetic models, (ii) relate
geological observations to genetic processes, and (iii) estimate subjective proba-
bilities of mineral occurrence. Objective (mathematical) methods attempt to max-
imally use various existing mineral occurrence data and quantified geological
variables (Botbol et al. 1978; Chung and Agterberg 1980; Agterberg 1988;
McCammon et al. 1983; Singer and Kouda 1988). An objective approach generally
consists of three major steps: (i) quantification of geological variables, (ii) estima-
tion of mathematical models, and (iii) extrapolation of the estimated models to
identify target areas.

Ore genesis models are crucial in mineral exploration and resource evaluation.
Since genetic models of ore deposits are usually constructed on the basis of man’s
past experience, imagination, and logical inference, they have a natural connection
to subjective probability analyses and expert systems, giving such an approach
great potential for prediction. However, in practice this approach also is subject to
some limitations. First, expert systems are costly to build and to validate; second,
the full potential of such systems requires the construction and incorporation of
extensive data bases. Without such data bases, estimates may be associated with
large uncertainties. Furthermore, genetic models change as knowledge is acquired
and geologists often disagree on at least some points of a genetic model; this creates
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uncertainty about the identification of mineral targets. An obvious advantage of
objective methods is the production of relatively robust estimates of mineral
potentials by extensively using geological, geochemical, and geophysical data.
However, these methods also are deficient in some regards. Without using genetic
theories, geoscience information content of the variables may be low and may have
poor predicting power, i.e., the estimates often ‘at best’ reproduce what an expert
geologist had recognized.

A useful procedure as a link between the two types of model is outlined as
follows. First, based upon genetic theories, identify one or more critical genetic
factors which are considered as necessary conditions for ore formation. A mineral
deposit is believed to be absent if these genetic factors do not exist. Second, identify
a set of recognition criteria that offer ‘almost sure’ existential evidence for critical
genetic factors. Third, estimate the favorabilities or probabilities of occurrence of
these recognition criteria based upon multiple geodata sets. Fourth, generate a
synthesized favorability or probability measure for the occurrence of critical genetic
factor(s) based upon the probabilities estimated in the third step. Finally, potential
exploration targets are delineated from the synthesized favorability or probability
measure through optimum discretization (Pan and Harris 1990). These targets have
been referred to as intrinsic geological units with respect to the chosen critical
genetic factor(s) (Pan and Harris 1993). These targets are so-called chiefly because
they are not delineated directly in terms of mineral deposits, but in terms of the
critical genetic factor that is a necessary condition for formation of the mineral
deposits.

Upon the completion of target delineation, a decision needs to be made as to
which targets should receive high priority to be drilled, as different targets vary in
the degrees of favorability of mineral occurrence. This need requires the ranking of
the targets in the sequence of drilling plans. Rank estimates may be derived directly
from the synthesized fields or index. When a reasonable amount of known infor-
mation on the metal(s) of interest is available in the study region, the rank esti-
mation can be substantially improved by using a functional relation between the
synthesized index and the quantity of metal. Of course, estimation of metal
quantities is a difficult task, if not impossible. Such a function for estimation of
metal quantities is valid only in a sense of pseudo terms, meaning that the results
are meaningful only in a statistical sense. Verification for the results is necessary in
later stages of exploration and estimation.

21.8 Prediction with Dynamic Control Samples

Most conventional resource analyses are constructed on the basis of extrapolation
of some mathematical relations established in control areas into unknown areas
(Pan and Harris 2000). Control areas are commonly employed in geodata inte-
gration and for the estimation of mineral resources of a relatively unexplored
region. As such estimation is predicated upon the principle of analogy, the
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properties of the estimates are heavily reflective of (1) how good of a geological
analogue the control area is of the unexplored region and (2) the economic refer-
ence for the estimated resources. When analogue and desired resource estimate is
for economic and technologic conditions similar to those that induced the explo-
ration and resource development of the control area, resource estimates produced by
a mathematical model estimated on a control area may be unbiased. However, when
economic or technologic references for the estimates differ or when the control area
is not a good geologic analogue, resource estimates are biased and even totally
wrong.

Two different approaches to improvement of estimation by mathematical models
estimated on control areas are: (1) use only control areas that are exhaustively
explored and (2) extend the mathematical model to include exploration variables
(such as those defined in Pan and Harris (1991). Both of these solutions present
difficulties however: (1) except for very small regions, there are few regions large
enough to make good control areas that are exhaustively explored and (2) infor-
mation on exploration activities generally is not available for regions large enough
to make good control areas. When exploration variables are not explicitly included
in the model, identification of an appropriate control area presents a difficult
problem, for it must represent an unbiased sample of deposit occurrence and
nonoccurrence for the relevant geologic environment. As noted by Chung et al.
(1992), to compute unbiased estimates of the probability for deposit occurrence
conditional upon a set of geologic attributes, it is necessary to know not only the
distribution of various attributes in and near mineral deposits, but also the distri-
bution of the same attributes away from mineral deposits (Cox 1990; Agterberg
2015).

Given the issues presented above, it is necessary to solve the dilemma in the
selection of control areas and even method of extrapolations of these control areas
into unknown regions. The nature of control areas so far is static, meaning that the
control areas are fixed when a mathematical model established from these control
areas is extended into unexplored regions. Clearly, this static model is hardly
adequate for prediction of a large region with complex variability of geological
conditions and mineralization characteristics. In other words, the mathematical
model built on a basis of samples collected from a control area is only appropriate
when the extrapolated areas have geological conditions identical to those in the
control areas. It is deemed invalid when the geological conditions in the estimated
areas differ from those in the control areas. Hence, a new concept is proposed here:
dynamic control areas, which are characterized as self-improvement of the math-
ematical models through information gains of extrapolated areas away from the
initial control areas. The methodology of dynamic control areas and extrapolation
of mathematical models are implemented in three steps as follows:

(1) Select the best explored areas in the working region as the initial control area,
from which control samples are collected. On the basis of this sample data, a
mathematical model is established through data enhancement, combination of
different datasets, and techniques of information synthesis. This mathematical
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model is then used as the initial model for extrapolation and prediction of
unknown areas in the working region.

(2) Update the mathematical model when the model is used for prediction of an
unknown unit based on an expanded control sample through addition of new
information of exploration variables and target variables (if any) in the pre-
dicted unit. The new mathematical model will be more appropriate to the
estimation of unknown units. The decision of model update is predicated upon
availability of new known target variable information and variability of geo-
logical and mineralization conditions from the initial control areas.

(3) Tests are performed with the updated model with respect to its effect in pre-
diction of known units in the initial control areas and the unknown unit. The
updated model would be accepted if the test results are satisfied; otherwise, the
models will be reconstructed. Quantification of variability of geological and
mineralization conditions in the unknown units plays a key role in the pre-
dicting power of the updated mathematical models.

The model update above is in nature an iterative process, which improves pre-
dictability of the model in the unknown units. The initial control sample is only
used for establishment of the initial mathematical model, which is then updated and
optimized as it is extended into the predicted areas through incorporation of new
information on the variability of geological environments.
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