
Chapter 1
Kriging, Splines, Conditional
Simulation, Bayesian Inversion
and Ensemble Kalman Filtering

Olivier Dubrule

Abstract This chapter discusses, from a theoretical point of view, how the geo-
statistical approach relates to other commonly-used models for inversion or data
assimilation in the petroleum industry. The formal relationship between point
Kriging and splines or radial basis functions is first presented. The generalizations
of Kriging to the estimation of average values or values affected by measurement
errors are also addressed. Two algorithms are often used for conditional simulation:
the “rough plus smooth” approach consists of adding a smooth correction to a
non-conditional simulation, whilst sequential Gaussian simulation allows the
point-by-point construction of the realizations. As with Kriging, conditional sim-
ulation can be applied to average values or to data affected by measurement errors.
Geostatistical inversion generates high-resolution realizations of vertical impedance
traces constrained by seismic amplitudes. If the relationship between impedance
and amplitude data is linearized, geostatistical inversion is a particular case of
Bayesian inversion. Because of the non-linearity of production data vis-à-vis the
variables of the earth model, their assimilation is harder than that of seismic data.
Ensemble Kalman filtering, if considered from a geostatistical viewpoint, consists
of using a large number—or ensemble—of realizations to calculate empirical
covariances between the dynamic data and the parameters of the geostatistical
model. These covariances are then used in the equations for interpolating the
mismatch between simulated and new production data using a coKriging-like
formalism. Interestingly, most of these techniques can be expressed using the same
generic equation by which an initial model not honouring some newly arrived data
is made conditional to these data by adding a (co-)Kriged interpolation of the data
mismatches to the initial model. In spite of their similar equations, Bayesian
inversion, geostatistics and ensemble Kalman filtering have a different approach to
the inference of the covariance models used by these equations.
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1.1 Introduction

Fifty years ago, when geostatistics was pioneered by Matheron (1971), its main
applications were Kriging and the change of support for mining applications. At the
time, geostatistics was presented as a new discipline, without much reference to its
relationships with other mathematical interpolation and modeling techniques. This
has now changed as the relationships between geostatistics and such techniques as
splines, regularization, Bayesian inversion, or ensemble Kalman filtering have
become clearer. This convergence is fascinating and has led to many significant
developments allowing the integration of multi-disciplinary data into 3-D geosta-
tistical earth models.

This chapter discusses approaches for generating 2-D or 3-D subsurface models
constrained by geological (wells), seismic or dynamic data. In spite of the wealth of
data available, the uncertainty on the 3-D earth model remains high in most cases.
Approaches that are designed to generate one unique “deterministic” model often
pick the smoothest one. This is not realistic in situations where the Earth Model is
used for flow simulation, as the results are biased if the model heterogeneities are
not representative of that of the actual reservoir. More generally, non-linear oper-
ations, such as the application of cut-offs, may give biased results when applied to
deterministic smooth models such as those produced by Kriging.

The multi-realization approach is now routinely applied to subsurface parameters
inversion. Looking at the mean provides much less information than looking at a
movie of realizations. …By construction, each of the realizations captures the
essential random fluctuations of the actual field from which the data were extracted
(Tarantola 2005). This is a fundamental change. The traditional inversion approach
could be formulated as “How to find an estimate of the spatial parameters which is
as close as possible to the first guess values of these parameters and which provides,
through forward modeling, an output which is as close as possible to the available
data” (modified from Evensen 2007). These first guess values are usually a smooth
(Kriging-like) spatial model of these parameters. Now the question has changed to
“Find the probability density function (pdf) of 3-D models constrained by all the
existing data, and provide techniques for sampling realizations from this pdf”.

This chapter, written from a geostatistical perspective, discusses the convergence
between the existing techniques.

Deterministic approaches such as Kriging, splines, regularization- or
energy-based methods generate a single model of the subsurface, which usually
minimizes or maximizes an optimisation criterion. These approaches are closely
related and their formal relationships are discussed.

Geostatistical simulation is then revisited, and two key simulation algorithms are
discussed; The first one is sequential Gaussian simulation and the second one is the
“rough plus smooth” combination of an unconditional simulation plus a smooth
correction term. These two algorithms have helped bridge the gap between geo-
statistics and inversion.
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Two successful approaches are then discussed for integrating seismic and
dynamic data into the earth model. Rather than using an approach merely based on
statistical correlations between data and model parameters, it is assumed that there
exists a deterministic relationship (or forward model) between model parameters
and data, possibly including a random error.

The first approach, geostatistical inversion, produces reservoir-scale models of
acoustic or elastic parameters constrained by single- or multi-offset seismic
amplitude data. The value of using sequential Gaussian simulation to calculate
seismically-constrained realizations is discussed. In situations where the forward
model is linear, geostatistical inversion can be formulated as a particular case of
Bayesian seismic inversion.

The second approach, ensemble Kalman filtering, consists of sequentially
updating an “ensemble” of geostatistical realizations using dynamic data as they are
acquired in time. The key idea here is to statistically derive the covariance terms of
the equation used in Bayesian inversion from an ensemble of realizations rather
than from a theoretical covariance model. The formal relationship between
ensemble Kalman filtering and co-Kriging is discussed.

Most of the above techniques can be shown to use the same kind of formalism,
where the mismatch between newly arrived data and the current model is inter-
polated and used to update this model.

One of the conclusions of this chapter is that the equations of Bayes, geostatistics
or ensemble Kalman filtering are closely related. However, this relationship is
mostly formal as the three techniques differ in their approach to the covariances
used in the equations. Geostatisticians first fit a model to the data, whilst Bayesians
start from a model based on general “prior” information. Only later in the process
do they introduce the well data. And ensemble Kalman filtering directly uses the
experimental covariances calculated from the realizations of the ensemble.

The topic of joint inversion of seismic and dynamic data is not discussed here, in
spite of the interesting on-going developments in 4-D seismic data inversion. This
is because the objective of this chapter is to address formal relationships between
the different formalisms rather than discuss specific applications.

1.2 Deterministic Aspects of Geostatistics

1.2.1 Simple Stationary Kriging

The basic model used by geostatistics is that of stationary random functions of order
2: a spatial property z xð Þ at location x is represented by a random function Z xð Þ,
which is assumed to follow a trend m xð Þ and a stationary covariance C hð Þ
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mðxÞ=E Z xð Þð Þ ð1:1aÞ

C hð Þ=E Z xð ÞZ x+hð Þð Þ−E Z xð Þð ÞE Z x+hð Þð Þ ð1:1bÞ

At each unsampled location x, the value of Z xð Þ is estimated by a linear com-
bination Zk xð Þ of the values Zi =Z xið Þ at the n data points xið Þi=1, ..., n. Kriging is the
best linear unbiased estimator, in the sense that it is unbiased and that it minimizes
the estimation variance. If the trend m xð Þ is known at each location x, the simple
Kriging (Chilès and Delfiner 2012, p. 151) system of equations is obtained

Zk xð Þ−m xð Þ= ∑
n

i=1
λi Zi −m xið Þð Þ ð1:2aÞ

with ∑
n

i=1
λiC xi − xj
� �

=C x− xj
� �

for j∈ 1, . . . , nð Þ ð1:2bÞ

1.2.2 Kriging with Intrinsic Random Functions of Order k

Matheron (1973) generalized the above model to that of Intrinsic Random Func-
tions of Order k (IRF-k), where the definition of the variogram as a generalized
covariance of order zero and of generalized covariances of order k leads to a model
based on the stationarity of generalized increments of order k.

With k-IRFs, the model only considers linear combinations of Z xð Þ that filter
polynomials of order k (such polynomials being likely to represent a trend). Simple
Kriging is not applicable any more. For instance, if k = 1 in two dimensions, and if
K hð Þ designates the generalized covariance of order k (GC-k), the kriging system
becomes

ZkðxÞ= ∑
n

i=1
λiZi ð1:3aÞ

with ∑
n

i=1
λiK xi − xj
� �

+ μ0 + μ1xj1 + μ2xj2 =K x− xj
� �

for j∈ 1, . . . , nð Þ

and ∑
n

i=1
λi =1 ∑

n

i=1
λixi1 = x1 ∑

n

i=1
λixi2 = x2

ð1:3bÞ

where the coordinates of each point x of the plane are written as x= x1, x2ð Þ.
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1.2.3 Kriging Extensions

The goal here is not to discuss the details of Kriging, as there are plenty of excellent
textbooks for this (Chilès and Delfiner 2012, p. 150). However, two features of
Kriging deserve to be discussed, as they facilitate the understanding of the rela-
tionship between Kriging, splines and Bayesian approaches.

1.2.3.1 Generalization of Kriging to the Interpolation
of Average Values

Kriging is a linear interpolator. The data used by Kriging do not have to be point
values, but they can be any linear function of the parameters of interest; Hansen
et al. (2006) call these “volume support data”. In particular, Kriging can be used to
estimate the average value of a parameter ZðvxÞ at a location x by a linear com-
bination volume of support data ZðvxiÞ (Chilès and Delfiner 2012, p. 198)

Zk vxð Þ= ∑
n

i=1
λiZðvxiÞ ð1:4Þ

This property of Kriging, extensively used in mining applications, is of signif-
icant interest in the context of linear inversion of volume support data (Hansen et al.
2006). The Kriging equations associated with Eq. 1.4 are not given here, as they are
a bit heavy, but conceptually simple thanks to the linear property of Kriging.

1.2.3.2 Error CoKriging

Error coKriging (Dubrule 2003) is a generalization of Kriging to the situation where
measurements Yi of the parameter Zi at data points xi are affected by an unbiased
random error

Yi = Zi + εi withE εið Þ=0 andVar εið Þ=Cεi ð1:5Þ

In this situation, error coKriging allows the estimation of Z xð Þ at any unsampled
location x from a linear combination of values Yi (the random measurement error
attached to each data can be zero or not) (Dubrule 2003; Hansen et al. 2006; Chilès
and Delfiner 2012, p. 216)

Zk xð Þ= ∑
n

i=1
λiYi ð1:6Þ
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1.2.3.3 Dual Kriging

If a global neighborhood is used, that is if all the available data are used to estimate
Z xð Þ at every single location x, the Kriging equations (Eq. 1.3) can be inverted to
obtain the dual Kriging system (for interpolation in the case of Kriging and
smoothing in the case of error coKriging). For example, in two dimensions for a
k-IRF of order 1

zk xð Þ= zk x1, x2ð Þ= a0 + a1x1 + a2x2 + ∑
n

i=1
biK x− xið Þ ð1:7Þ

where the conditions on the coefficients ða0, a1, a2, b1, . . . , bnÞ are different for
Kriging and error coKriging (Dubrule 1983)

Kriging: ∑
n

i=1
bi = ∑

n

i=1
bixi1 = ∑

n

i=1
bixi2 = 0 and zk xi1, xi2ð Þ= zi ð1:8Þ

Error coKriging: ∑
n

i=1
bi = ∑

n

i=1
bixi1 = ∑

n

i=1
bixi2 = 0 and zk xi1, xi2ð Þ+ biCεi = yi

ð1:9Þ

1.2.4 Kriging and Splines

1.2.4.1 Interpolating Splines

Splines are a popular method for deterministic interpolation and approximation
(Micula and Micula 1999). In 2-D, interpolating splines calculate a function
honouring the data and minimizing an energy functional. Harmonic splines mini-
mize the stretching energy of a membrane while biharmonic splines minimize the
bending energy of an elastic plate. The biharmonic spline function can be written
using a similar expression as Eq. 1.7 (Duchon 1975), but with a specific model for
the generalized covariance function

K x− xið Þ= x1 − xi1ð Þ2 + x2 − xi2ð Þ2
� �

Log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 − xi1ð Þ2 + x2 − xi2ð Þ2

q� �
ð1:10Þ

Splines and Kriging are a particular case of a more general class of interpolators,
called radial basis functions (Billings et al. 2002a, b). With splines, the polynomial
in Eq. 1.7 belongs to the kernel of the operator T that is minimized by the spline
function (T is the gradient for harmonic splines and the laplacian for biharmonic
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splines), whilst the function K hð Þ is the Green function associated with the operator
T 0T , where T 0 is the transposed operator of T (Matheron 1981a)

T 0TK hð Þ= δ ð1:11Þ

where δ is the Dirac Function. Choosing the energy functional minimized by
splines is equivalent to fixing the degree of the trend function and the generalized
covariance model for Kriging. For harmonic splines, these are respectively a con-
stant and the De Wijs variogram in Logh (Chilès and Delfiner 2012, p. 94).

The consequence of Eq. 1.11 on the spectral density of the generalized
covariance K hð Þ is straightforward. For example, the spectral densities associated
with the harmonic and biharmonic splines are power laws, representing fractal
models. Szeliski and Terzopoulos (1989) and Micula and Micula (1999) discuss
this relationship between Splines and fractals.

1.2.4.2 Smoothing Splines

Smoothing splines are used in situations where measurements at data points are
affected by a random error (Eq. 1.5). In two dimensions, they compute a function
f x1, x2ð Þ minimizing the sum of a spline energy functional plus a weighted distance
to the n data

Tfk k2 + θ ∑
n

i=1

f xi1, xi2ð Þ− yið Þ2
Cεi

ð1:12Þ

The smoothing biharmonic spline function has the same expression as that of
Kriging and error coKriging (Eq. 1.7) but with the following relationships

∑
n

i=1
bi = ∑

n

i=1
bixi1 = ∑

n

i=1
bixi2 = 0 and f x1i, xi2ð Þ+ bi

Cεi

θ
= yi ð1:13Þ

Smoothing biharmonic splines are identical to error Cokriging as long as the
generalized covariance used by error Cokriging is the function θK x− xið Þ, where
K x− xið Þ is given by Eq. 1.10 (Matheron 1981a; Dubrule 2003). This is a general
relationship between smoothing splines and coKriging, which are formally equiv-
alent if the generalized covariance K hð Þ is that satisfying Eq. 1.11, with the
coefficient of K hð Þ equal to the smoothing parameter θ of Eq. 1.12.
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1.2.4.3 Kriging and Regularization—The Discrete Case

The discrete case is the situation where interpolation is performed at the nodes of a
regular grid and each data point is located at one of the nodes of this grid. If p is the
total number of grid nodes, the number n of data points is such that n< p.

In the discrete case, Matheron (1981b) also demonstrated the equivalence
between splines and Kriging, and between smoothing splines and error coKriging.
Both the Kriged and spline values zu minimize

∑
p

u, v=1
zuBuvzv + ∑

n

i=1

zi − yið Þ2
Cεi

ð1:14Þ

where the u and v indices designate all the p grid points where the interpolation
takes place, whilst i indices designate the n data points. The minimization of
Eq. 1.14 is performed according to the unknown values zu at all grid nodes (in-
cluding those unknown values zi where a data point with measured value yi is
present). The first term of Eq. 1.14 can be interpreted as a quadratic energy function
traditionally used in inverse problems. In the regularization context, the choice of
this quadratic form is driven by smoothing considerations, often using Briggs’ finite
difference Laplacian (or spline) “roughening” operator (Briggs 1974; Bolondi et al.
1976). Seen from the geostatistical perspective, Buv is the inverse of the covariance
matrix in the stationary case and a pseudo-inverse of the generalized covariance
matrix in the k-IRF case (Matheron 1981b). Equation 1.14 confirms the clear
relationship between the inverse of the (generalized) covariance and the spline
differential operator.

Kriging can thus be formalized in the frame of energy-based estimation tech-
niques such as splines. This comes from the relationship between the inverse of the
covariance function and the roughening filter implicit in the quadratic regularization
term. It will be shown below that the regularization term can also be regarded, in the
Bayesian inversion context, as an expression of the prior knowledge about the
variable under study.

1.2.5 Kriging and Bayesian Inversion

1.2.5.1 Bayesian Linear Inversion

Here it may be useful to recall the general expression of the posterior mean and
covariance in the case of Bayesian linear inversion of a multigaussian function.
A very good reference for this is Tarantola (2005).

In the discrete case, consider a stationary multigaussian random vector z of
dimension p containing the grid values zu over a two or three-dimensional regular
grid of size p. Assume also that a vector y contains the n data yi. It is assumed again
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that the data are affected by an error vector ε of dimension n, and also that these
data are a linear function of the p values of z over the grid

y=Fz+ ε ð1:15Þ

where the vector ε has mean zero and covariance matrix Cε and F is a matrix of
dimension n× p. In the multigaussian case, thanks to the Bayes formula relating the
posterior pdf fpost zð Þ to the prior pdf fprio zð Þ and the likelihood function g y zjð Þ, the
prior mean vector m (dimension p) and covariance matrix C (dimension p× p) of z
are updated using the information brought by the data vector y

fpost zð Þ∝fprio zð Þg y ̸zð Þ∝ exp z−mð Þ′C − 1 z−mð Þ
h i

× exp y−Fzð Þ′C − 1
ε y−Fzð Þ

h i
ð1:16Þ

fpost zð Þ is a multigaussian function with the mean vector

mpost =m+C F′ FCF′ +Cε

� �− 1
y−F mð Þ ð1:17Þ

and the covariance matrix

Cpost =C−CF′ FCF′ +Cε

� �− 1
FC ð1:18Þ

1.2.5.2 Kriging and Bayesian Inversion

Equation 1.17 can also be written

mpost =m+Λ y−Fmð Þ= ðI −ΛFÞm+Λy ð1:19Þ

with

Λ=C F′ FCF′ +Cε

� �− 1 ð1:20Þ

In can be checked that Λ is also the p× n matrix giving at each line u the n
simple Kriging (or error coKriging) weights associated with the Kriging of the
value zu at node u. Comparing the first part of Eq. 1.19 with Eq. 1.2 shows that, in
the multigaussian case, mpost is equal to simple Kriging and that the matrix Cpost

contains the variances and covariances of simple Kriging at each node u of the
regular grid.
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1.2.6 Energy-Based Versus Probabilistic Estimates

The minimization of Eq. 1.14 leads to either Kriging or splines if the (inverse of)
the covariance (Kriging) and the differential operator (splines) are properly chosen.
Minimizing the expression in Eq. 1.14 is equivalent to maximizing

exp − ∑
p

u, v=1
zuBuvzv + ∑

n

i=1

zi − yið Þ2
Cεi

 ! !
ð1:21Þ

This is also the expression (up to a multiplicative constant) of the conditional
multivariate distribution in the multigaussian case, as given by Bayes theorem
(Eq. 1.16), in the case where m=0, where the matrix Cε is diagonal and where the
data are point values. The first term represents the prior pdf and the second the
likelihood function. Kriging which is equal to the mean of the posterior pdf, also
maximizes this pdf in the multigaussian case.

Expression (1.21) relates the world of energy functionals (such as splines) with
that of probability functions (such as Kriging). More generally regularization and
maximum a posteriori Bayesian estimates are identical if the prior covariance used
in Bayesian inversion is properly chosen. The equivalence between an energy
function and a probability distribution is also used in statistical mechanics, as the
probability of a particular configuration is inversely related to its energy. Suppose
that the vector z minimizes an energy functional E zð Þ. Using the results of Geman
and Geman (1984), Szeliski and Terzopoulos (1989) associate a probability to this
energy through the Boltzmann (or Gibbs) distribution p zð Þ defined as

p zð Þ= 1
Z
exp −

E zð Þ
T

� �
ð1:22Þ

where Z and T are positive constants. If Bayes’ theorem is applied to the above
prior pdf p zð Þ and the posterior pdf is maximized, the formalism of splines is
obtained.

1.2.7 Conclusion on Kriging

Three different ways of calculating a Kriging interpolator have been discussed

• using the basic approach where Kriging is calculated at each location as a linear
combination of the data (Eq. 1.2)

• using Eq. 1.7, where the expression of dual Kriging, or more generally of radial
basis functions, is used
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• minimizing Eq. 1.14 in the discrete case, where Kriging values are calculated on
a discrete grid by a minimization incorporating a regularization and a distance to
the data term.

Kriging, although derived using a probabilistic formalism, is still a deterministic
technique, in the sense that one unique or “best” model is produced, In most cases,
Kriging provides a representation that is very smooth. As a result the application of
non- linear operators to Kriged models will provide biased results (Dubrule 2003).
This is one of the reasons for the success of conditional simulation.

1.3 Stochastic Aspects of Geostatistics:
Conditional Simulation

With conditional simulation, the approach is stochastic. A large number of realiza-
tions are generated, which match the data (if the simulation is conditional) and share
the first (mean) and second order (stationary covariance or generalized covariance)
moments of the modeled random function. The main benefit of conditional simulation
is that it produces realizations that behave away from the well data the same way as
the well data themselves (Dubrule 2003). This is not true with Kriging, which pro-
duces a model that is smoother away from the wells than it is at the wells.

Conditional simulation can also be regarded as a technique for generating
realizations of the conditional multigaussian pdf fully characterized by Eqs. 1.17
and 1.18. In other words, the realizations “vibrate” around their Kriging mean with
a variance at each location equal to the Kriging variance.

A number of conditional simulation algorithms have been developed (Chilès and
Delfiner 2012, p. 478). Among them, two are routinely used in the petroleum
industry and are particularly interesting in relation with the inversion of seismic and
production data.

1.3.1 Method 1: “Smooth Plus Rough” or
“Rough Plus Smooth” Algorithm

Z xð Þ can be simply written as the sum of Kriging plus the Kriging error

Z xð Þ= Zk xð Þ+ Z xð Þ−Zk xð Þð Þ ð1:23Þ

The “smooth plus rough” (Oliver 1996) simulation method writes a conditional
simulation Zcs xð Þ as the sum of Kriging plus a simulation of the Kriging error.
A non-conditional simulation Zncs xð Þ of Z xð Þ is generated first, which honors the
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mean and the covariance of Z xð Þ, then the conditional simulation Zcs xð Þ is calcu-
lated as

Zcs xð Þ= Zk xð Þ+ Zncs xð Þ−Zncsk xð Þð Þ ð1:24Þ

where Zncsk xð Þ designates Kriging of Zncs xð Þ using as data the values Zncs xið Þ of the
non-conditional simulation at the conditioning data locations. Thus to the smooth
term Zk xð Þ is added the rough term Zncs xð Þ− Zncsk xð Þð Þ. Chilès and Delfiner (2012,
p. 495) show that Zcs xð Þ honors the data and has the same (generalized) covariance
as Zncs xð Þ (and hence as Z xð Þ).

Equation 1.24 can also be expressed in the form of a “rough plus smooth”
equation

Zcs xð Þ= Zncs xð Þ+ Zk xð Þ−Zncsk xð Þð Þ ð1:25Þ

Using Eq. 1.17, Eq. 1.25 can be written in the discrete case, assuming that the
data are average values of the gridded values and are affected by a measurement
error. At location u of the discrete grid

zucs = zuncs +CF′ FCF′ +Cε

� �− 1
y−Fzuncsð Þ ð1:26Þ

Equation 1.26 shows that conditional simulation is obtained by adding to a
non-conditional simulation a Kriging of the mismatch y − Fzuncsð Þ between the
data and the unconditional simulation at the data location. This formalism will
appear to be quite general and will facilitate the understanding of the relationship
between conditional simulation and Kalman Filtering.

1.3.2 Method 2: Sequential Gaussian Simulation (SGS)

SGS (Deutsch and Journel 1998) is probably the most popular and flexible con-
ditional simulation technique used in applications. SGS works under the multi-
gaussian assumption and sequentially draws random locations within the simulated
grid. At each new random location, the value is first Kriged from the previously
simulated values and the well data. Then, a random value is sampled from the
Gaussian pdf with mean equal to the Kriged value and variance equal to the Kriging
variance (SGS uses the property that, in the multivariate normal case, univariate
conditional distributions are also Gaussian). Then the sampled value is merged with
the rest of the dataset, and a new random location is chosen within the simulated
grid. The grid points where a data point is present are treated the same way as grid
points with no data if the error ε affecting the data is different from zero. If all the
data are exact, then the grid nodes with data points are left unchanged. The result is
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a Gaussian realization constrained by the data values and satisfying the input
statistics (mean and covariance function).

The main difference between “rough plus smooth” and SGS is that SGS works
sequentially, grid point by grid point. The sequential nature of SGS is well suited to
the geostatistical inversion of seismic data. Indeed, at each grid node, the sequential
approach can make sure that the sampled value is compatible with both the pre-
viously generated points and the seismic data at the same location, thus combining
the advantage of single trace inversion with that of spatial coupling. This will be
discussed in Sect. 1.4.

1.3.3 Spectrum and Conditional Simulation

Since the frequency spectrum is the Fourier transform of the covariance (Chilès and
Delfiner 2012, p. 66), the spectrum of a conditional simulation is the same as that of
the data. Conditional simulation addresses the following statement from Claerbout
(2002) about seismic data interpolation: Of all the assumptions we could make to fill
empty bins, one that people usually find easiest to agree with is that the spectrum
should be the same in the empty-bin regions as where bins are filled.

Claerbout (2002) also defines the Prediction Error Filter (PEF) as the linear
operator T that transforms the data into a white noise. In other words, T 0T is the
inverse of the covariance. Based on Eq. 1.11, this also means that T is the spline
operator associated with the covariance of the data. Claerbout (2002) shows that
unconditional simulations can be generated by applying T − 1 to a white noise. This
is the same technique as that used by Oliver (1988) and Oliver (1995) who applies
what he calls the square root of the covariance function to a white noise.

1.4 Geostatistical Inversion of Seismic Data

1.4.1 Deterministic Seismic Inversion

Until the mid-nineties or so, most seismic inversion studies were deterministic, in
the sense that they generated a single “best” model, usually at the same resolution
as the seismic data. Often, regularization-based or Bayesian methods were used,
which led to the generation of one “maximum posterior” or “optimal for a given
norm (often L2)” 3-D acoustic impedance model (Tarantola 2005).

If the seismic inversion problem is linearized as with Fatti et al.’s (1994) model,
the reflection coefficient r θð Þ at seismic time t for a seismic block of offset θ can be
written
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r θð Þ= a1 θð Þ ∂LogIp tð Þ
∂t

+ a2 θð Þ ∂LogIs tð Þ
∂t

ð1:27aÞ

and y θð Þ=w θð Þ*r θð Þ+ ε θð Þ ð1:27bÞ

where Ip tð Þ and Is tð Þ are the compressive and shear impedances at time t, a1 θð Þ and
a2 θð Þ are offset-related parameters, w θð Þ is the seismic wavelet for offset θ and ε θð Þ
is noise. This model is linear in the logarithm of Ip tð Þ and Is tð Þ. Thus, as long as the
logarithms of impedances are inverted, the seismic amplitudes can we written as in
Eq. 1.15 as a linear function of the logarithms of impedances, and the posterior
mean obtained by multigaussian Bayesian seismic inversion (Eqs. 1.17 and 1.18) is
identical to Kriging. The solution can also be regarded as a regularization-based
solution, where the norm controlling the smoothness is derived from the inverse of
the covariance.

At the time when only deterministic inversion was used, geostatisticians often
treated seismic data as “soft” information, making use only of statistical correlations
between seismic and reservoir parameters in order to constrain the earth models.
This “soft” approach to seismic data allowed the development of some interesting
interpolation techniques such as external drift or collocated coKriging (Dubrule
2003). However it also led to reservoir models not fully compatible with the seismic
data as, if a seismic forward model such as that of Eq. 1.27 was applied to them, the
actual seismic data was not recovered.

The above approaches proved sufficient until the late eighties or so, as seismic
data were used at rather large scale. Thanks to the development of 3-D earth
modeling at the reservoir scale in the early nineties, it became necessary to work
with models at higher resolution than seismic data, and hence to quantify the
uncertainty attached to these models. Then the availability of 4D seismic data also
called for new technology to better constrain the earth models. Geostatistical
inversion, described below, was developed with these issues in mind.

1.4.2 Geostatistical Inversion (GI)

The original GI algorithm (Bortoli et al. 1992; Haas and Dubrule 1994) used SGS
to simulate high-resolution acoustic impedance traces constrained by seismic data.
SGS starts by picking a random cell within a regular two-dimensional grid. At this
cell, a large number of possible acoustic impedance vertical traces are generated by
SGS, then the trace that best matches the actual seismic trace at this location is
selected. Then SGS moves to another random location of the two-dimensional grid,
etc. until the whole model is filled with high-resolution impedance traces. Ini-
tially SGS appeared to be well suited to this application, as it allowed the use of any
kind of forward model—linear or not—relating the acoustic impedance trace gen-
erated by SGS to the seismic amplitude trace at the same location. The acoustic
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impedance vertical traces simulated by SGS typically have higher frequency con-
tent than the seismic amplitudes, which makes them non-unique. This uncertainty
can be quantified by generating multiple conditional simulations. Unfortunately the
use of SGS proved to take too much computer time for large seismic datasets.

By revisiting the above GI algorithm in a Bayesian framework and in the linear
context of Fatti’s model (Eq. 1.27), authors such as Buland and Omre (2003) or
Escobar et al. (2006) not only clarified the GI formalism but also provided a
straightforward conditional simulation algorithm based on Eqs. 1.17 and 1.18
which was more efficient then SGS for sampling acoustic impedance traces com-
patible with seismic amplitudes. Whilst Bayesian inversion provided an expression
of the posterior mean and covariance of the impedances multiGaussian pdf, GI
allowed the sampling of reservoir-scale impedance realizations from this pdf.

As convincingly shown by Francis (2006a, b) or Escobar et al. (2006), cut-off
operations such as those used to translate acoustic impedance into facies can be
applied to GI realizations, thus avoiding statistical bias if these cut-offs were applied
to Kriging.

1.5 Kalman Filtering and Ensemble Kalman Filtering

1.5.1 Kalman Filtering (KF)

Suppose that a Gaussian random vector Zt− 1 has evolved until time t− 1ð Þ and that
Zt− 1 is an unbiased estimate of the unknown true state vector zt− 1 at time t− 1ð Þ

Zt− 1 = zt− 1 +Rt− 1 withE Rt− 1ð Þ=0 andVar Zt− 1ð Þ=Var Rt− 1ð Þ=Ct− 1 ð1:28Þ

If the model error is neglected, the forward model relating the true state vector at
time t− 1ð Þ with the state vector at time t is assumed to be a linear function Lt

z1 = Ltzt− 1 ð1:29Þ

At time step t, the unknown true state of the system has evolved according to
Eq. 1.29 and a vector dt of n new data may also be available. Assume that these
data are linear functions of the state vector zt, and can be expressed as in Eq. 1.15

dt =Ftzt + εt ð1:30Þ

where the error vector εt has mean zero and covariance matrix Cεt .
KF (Kalman 1960) aims to combine the information provided about zt by the

forward model Lt applied to the estimate Zt− 1 (Eq. 1.29) with the information
provided by the data dt (Eq. 1.30). Bayes can be used for this, LtZt− 1 playing the
role of the prior distribution. It is easy to verify that the covariance of the random
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vector LtZt− 1 is Ct =LtCt− 1L
0
t. Hence, under Gaussian assumptions the best esti-

mate is (from Eq. 1.19)

Zt = LtZt− 1 +Λt dt −FtLtZt− 1ð Þ ð1:31Þ

where the kriging weights matrix Λt (as in Eq. 1.20) is now called the Kalman gain

Λt =CtF′

t FtCtF′

t +Cεt

� �− 1 ð1:32Þ

Zt− 1 as defined in Eq. 1.28 can represent any kind of unbiased estimate based on
all the information available at time t− 1ð Þ. Kriging and conditional simulation are
both unbiased estimates of zt, only their variance is different and is of course
minimum if Zt− 1 is Kriging and larger if Zt− 1 is simulation. Chilès and Delfiner
(2012) (p. 497) show that the variance of the difference between a random function
and its conditional simulation is twice the Kriging variance. In case Zt− 1 is sim-
ulation, Eq. 1.31 looks like the “rough plus smooth” method (Eq. 1.26) with LtZt− 1

playing the role of the non conditional simulation. Equation 1.31 makes the esti-
mate LtZt− 1 conditional to the new data dt by adding an interpolation of the
mismatch between FtLtZt− 1 and the data.

In standard geostatistical applications, the observations are often spatial and
hence assimilated simultaneously, while KF processes information sequentially,
time step after time step. Tarantola (2005) (in Appendix 6.18) shows that, if in a
linear least-squares problem the dataset can be divided into subsets with zero
covariance between them, then solving one global inverse problem is equivalent to
solving a series of smaller problems using the posterior state and covariance matrix
of each partial problem as prior information for the next. Oliver et al. (2008) also
show (in Chap. 11) that, under the same assumptions as Tarantola (2005), the step
by step computation of KF provides (in the multigaussian case) the same result as
would be obtained by integrating all the data in one single step. In the case where Lt
is the identity function, these two results also imply that simple Kriging would
provide the same result if data were incorporated sequentially into the Kriging
system, or in one single batch (under the assumptions that each batch of data has
zero covariance with the others).

1.5.2 Constraining Reservoir Models by Production Data

Fluid flow models are strongly non-linear, and linear approximations such as those
already discussed for seismic modeling or KF cannot be used.

A distinction must be made between “history-matching”, where a single reser-
voir model is modified until the flow simulation matches the production data, and
“constraining reservoir models by production data”, where reservoir model
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realizations compatible with production data are generated. Here the discussion
focuses on the second objective rather than the first one. Some techniques to
address this objective are based on rigorous approaches such as Markov-Chain
Monte Carlo (MCMC) or Genetic Algorithms (GA) (Oliver et al. 2008). But these
are very time-consuming and often unpractical. Ensemble Kalman filtering appears
to be a more practical approach for incorporating production data into the reservoir
model.

1.5.3 Ensemble Kalman Filtering (EnKF)
Versus Conditional Simulation

EnKF (Evensen 2007; Oliver et al. 2008) starts with an ensemble of initial real-
izations that are not constrained by production data. Typically the state vector zt at
time t contains permeabilities, porosities, saturations, pressures, and thermody-
namic variables at the simulator grid nodes followed by a vector of predicted
production data at each well i at time t.

The following notation is used for a given state vector zt

zt = z1ut, z
2
ut , . . . z

k
ut , q

1*
it , . . . .q

l*
it

� � ð1:33Þ

It is assumed that there are k gridded variables in zt, that the simulator grid is
composed of p cells u, and that there are n wells i each with l new production data at
time t. The total size of the state vector zt is kp+ nl. The predicted data vector d*t is
the vector of size nl

d*t = q1*1t , . . . .q
1*
nt , q

2*
1t , . . . .q

2*
nt , . . . , q

l*
1t, . . . .q

l*
nt

� � ð1:34Þ

The relation between state vector and predicted data is

d*t =Pzt withP= ðOnlxkp, InlxnlÞ ð1:35Þ

P is a nl× kp+ nlð Þ matrix. The function ft, which represents the flow simulator,
is non-linear. If the model errors are neglected

zt = ft zt− 1ð Þ ð1:36Þ

does not modify the rock properties (unless they are affected by changes in pressure
and saturation), but replaces the pressure, saturation, and simulated data with new
values at time t.
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The problem is now to calculate the best estimate of the state vector zt com-
bining the information provided by the flow simulation forward model ft zt− 1ð Þ and
that provided by the new data dt.

If ft is a linear function, this is the standard KF domain of application and
Eq. 1.31 applies, Lt playing the role of ft. But now ft is non-linear. It would still be
convenient to update the state vector through a generalization of Eq. 1.31

zt = ft zt− 1ð Þ+Λt dt −Pft zt− 1ð Þð Þ ð1:37Þ

where the Kalman gain Λt is obtained using Eq. 1.32. Assuming that there is no
error associated with the data, Eq. 1.32 can be simplified into

Λt =CtP′ PCtP′
� �− 1 ð1:38Þ

Equation 1.38 requires the knowledge of the covariance Ct of ft zt− 1ð Þ, in other
words the covariance of the image of the state vector after application of the flow
simulation model ft. ft is non-linear and this covariance cannot be simply calculated
—as in the linear case—from the covariance at the previous step. EnKF addresses
this issue by statistically deriving this covariance using the information from the
multiple realizations, typically about a hundred of them. This is the key idea behind
EnKF.

There are of course a number of issues resulting from the fact that the covari-
ances are calculated from a finite number of realizations of the ensemble. The first
one is spurious correlation, because the ensemble members are not independent
except in the starting ensemble. The second one is that if the number of realizations
in the ensemble is not large enough, then the covariances are poorly estimated.
Standard geostatistics addresses this by fitting mathematical models to the experi-
mental covariances, in order to smooth the spurious correlations.

1.5.4 Ensemble Kalman Filtering and Its Relationship
with CoKriging

In Eq. 1.37, focus now on the rock properties in the state vector. ft zt− 1ð Þ leaves the
rock properties unchanged, as only the time-dependent state vectors in the simulator
grid are calculated by one time-step of the flow simulator, whilst Λt dt −Pft zt− 1ð Þð Þ
is a linear combination of the differences between observed and predicted pro-
duction data at each well. Thus EnKF interpolates between the wells by calculating
a linear combination of these differences across the field, then adds these interpo-
lated difference to the rock properties model. Is it possible to reformulate EnKF as a
well by well geostatistical approach?

The term Λt in Eq. 1.37 is the Kalman gain as given by Eq. 1.38. In the case
where there is no error affecting the data, Eqs. 1.37 and 1.38 can be written
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zt − ft zt− 1ð Þ=CtP′ PCtP′
� �− 1

dt −Pft zt− 1ð Þð Þ ð1:39Þ

The left-hand side is the update calculated by EnKF for the property of interest
as the time step evolves from t− 1ð Þ to t. The Kalman gain coefficients of the
right-hand side are nothing else than the simple coKriging weights (see for instance
Chilès and Delfiner 2012, p. 303).

Thus, each estimate of a 3-D spatial parameter such as porosity or permeability
at time t− 1ð Þ is updated at time t by a linear combination of all the inconsistencies
generated by this parameter at the data points. Since, in the case of flow simulations,
many parameters are involved in the production profiles prediction, all the indi-
vidual parameters’ 3-D models must be corrected in a consistent way, which is why
multivariate coKriging—and not univariate Kriging applies here.

1.6 Beyond the Formal Relationship Between Geostatistics
and Bayes

1.6.1 Two Identical Formalisms but Different Assumptions

The above developments show that techniques such as conditional simulation,
Bayesian inversion, geostatistical inversion and ensemble Kalman filtering follow a
similar mathematical formalism.

However, their philosophy of application differs in the way the covariance is
approached. This can be understood by looking again as Bayes rule as presented in
Eq. 1.16

fpost zð Þ∝fprio zð Þg y ̸zð Þ ð1:40Þ

With geostatistics, the experimental (generalized) covariance calculated on the
data y is fitted by a model which becomes the covariance of the unconditional
distribution fprio zð Þ. Then the data y are used a second time through the simulation
conditioning process of Eq. 1.26.

With Bayes, the covariance model associated with fprio zð Þ is a prior based on
local or analog knowledge, but not on the data themselves (Tarantola 2005). This
prior is transformed into a posterior covariance through the conditioning process of
Eq. 1.40.

With geostatistics, the aim of conditional simulation is to generate realizations
that match the data and satisfy the input covariance; the SGS and rough plus smooth
algorithms work only if the data themselves satisfy this input covariance. But the
random function Zcs xð Þ of Eqs. 1.24 and 1.25 is not an ergodic or even a stationary
random function; its variance at each location x is equal to the Kriging variance and
changes with x, as it is zero at the data points. In other words, the covariance of the
random function Z xð Þ is different from that of Zcs xð Þ conditionally to the data
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(Chilès and Delfiner 2012, p. 497). But the covariance calculated on a single
conditional realization does not “see” any difference between the grid cells asso-
ciated with data points and those not associated with data points. It is only as the
realizations change, leaving the data unchanged, that the covariance across real-
izations appears non-stationary and hence non-ergodic.

On the other hand, Bayes combines a prior covariance—usually different from
that of the data—with a data-based likelihood, resulting into a posterior pdf that sits
somewhere between the prior and the likelihood. Bayes updates prior covariances
based on new data whilst conditional simulation anchors the realizations against the
hard data (Escobar, personal communication).

1.6.2 Model Falsifiability

Tarantola (2006) challenges the geostatistical and Bayes formalisms if models are
to be falsifiable or have a scientific meaning: I suggest that the setting, in principle,
for an inverse problem should be as follows: use all available prior information to
sequentially create models of the system, potentially an infinite number of them. For
each model, solve the forward modeling problem, compare the predictions to the
actual observations and use some criterion to decide if the fit is acceptable or
unacceptable, given the uncertainties in the observations and, perhaps, in the
physical theory being used. The unacceptable models have been falsified, and must
be dropped. The collection of all the models that have not been falsified represent
the solution of the inverse problem. Thus, Tarantola (2006) offers to keep all the
prior realizations that are compatible with the data. Thus the data are used to
validate or reject the prior realizations, rather than update the prior pdf into the
posterior.

1.6.3 Looking Ahead: Machine Learning and Falsifiability

The fast growth in machine learning algorithms (Goodfellow et al. 2016) is chal-
lenging the geostatistical and Bayesian formalisms in situations where data are
plenty. Thanks to this large number of data, the approach used to falsify a con-
volutional neural network model (for instance) relating input parameters to data is
often to test whether the convolutional model works as well on a training (or
calibration) dataset as on a test dataset not used for training. The prior model itself
is completely data-driven, which contradicts Tarantola (2006) but the validation
step is along the lines of his above recommendations! This topic is likely to gen-
erate interesting discussions in the future.
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1.7 Conclusion

The objective of this chapter was to discuss the convergence observed over the last
fifty years between geostatistics and other modelling and inversion techniques.

A formal convergence exists between the main techniques used to constrain
reservoir models by multi-disciplinary data. Kriging, splines, conditional simula-
tion, geostatistical inversion and ensemble Kalman filtering can be interpreted using
either the geostatistical formalism or Bayes.

Most of these techniques amount to the same approach where an initial model is
updated by using a linear combination of the mismatches between the new data and
their prediction from the initial model (Eqs. 1.19, 1.26, 1.31 and 1.39).

However the methods above have a different philosophy towards the inference
of the covariances used in these calculations. Bayes uses the data to update a prior
pdf which is independent of the data. Geostatistics generate realizations of condi-
tional simulations that reproduce the modeled covariance—or the spectrum—of the
data. EnKF does not model a covariance but directly uses the empirical covariances
derived from the ensemble realizations and their flow simulations.
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