
An Improved Affine Equivalence
Algorithm for Random Permutations

Itai Dinur(B)

Department of Computer Science, Ben-Gurion University, Beersheba, Israel
dinuri@cs.bgu.ac.il

Abstract. In this paper we study the affine equivalence problem, where
given two functions F ,G : {0, 1}n → {0, 1}n, the goal is to determine
whether there exist invertible affine transformations A1, A2 over GF (2)n

such that G = A2◦F ◦A1. Algorithms for this problem have several well-
known applications in the design and analysis of Sboxes, cryptanalysis
of white-box ciphers and breaking a generalized Even-Mansour scheme.

We describe a new algorithm for the affine equivalence problem and
focus on the variant where F ,G are permutations over n-bit words, as
it has the widest applicability. The complexity of our algorithm is about
n32n bit operations with very high probability whenever F (or G) is
a random permutation. This improves upon the best known algorithms
for this problem (published by Biryukov et al. at EUROCRYPT 2003),
where the first algorithm has time complexity of n322n and the second
has time complexity of about n323n/2 and roughly the same memory
complexity.

Our algorithm is based on a new structure (called a rank table) which
is used to analyze particular algebraic properties of a function that
remain invariant under invertible affine transformations. Besides its stan-
dard application in our new algorithm, the rank table is of independent
interest and we discuss several of its additional potential applications.

Keywords: Affine equivalence problem · Block cipher
Even-Mansour cipher · Cryptanalysis · Rank table

1 Introduction

In the affine equivalence problem, the input consists of two functions F ,G and
the goal is to determine whether they are affine equivalent, and if so, output
the equivalence relations. More precisely, if there exist invertible affine transfor-
mations (over some field) A1, A2 such that G = A2 ◦ F ◦ A1, output A1, A2.
Otherwise, assert that F ,G are not affine equivalent.

Variants of the affine equivalence problem have been studied in several
branches of mathematics and are relevant to both asymmetric and symmet-
ric cryptography. In the context of asymmetric cryptography, the problem was

The author was supported in part by the Israeli Science Foundation through grant
No. 573/16.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10820, pp. 413–442, 2018.
https://doi.org/10.1007/978-3-319-78381-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78381-9_16&domain=pdf

414 I. Dinur

first formalized by Patarin [17] and referred to as isomorphism of polynomials.
In this setting F ,G are typically of low algebraic degree (mainly quadratic) over
some field.

The focus of this work is on the affine equivalence variant in which F ,G map
between n-bit words and the affine transformations A1, A2 are over GF (2)n. This
variant is mostly relevant in several contexts of symmetric-key cryptography. In
particular, it is relevant to the classification and analysis of Sboxes (see [6,14]) as
affine equivalent Sboxes share differential, linear and several algebraic properties
(refer to [7] for recent results on this subject). Moreover, algorithms for the affine
equivalence problem were applied in [3] to generate equivalent representations
of AES and other block ciphers. These algorithms also have cryptanalytic appli-
cations and were used to break white-box ciphers (e.g., in [15]). Additionally,
solving the affine equivalence problem can be viewed as breaking a generaliza-
tion of the Even-Mansour scheme [11], which has received substantial attention
from the cryptographic community in recent years. The original scheme builds
a block cipher from a public permutation F using two n-bit keys k1, k2 and its
encryption function is defined as E(p) = F (p + k1) + k2 (where addition is over
GF (2)n). The generalized Even-Mansour scheme replaces the key additions with
secret affine mappings and breaking it reduces to solving the affine equivalence
problem, as originally described in [3].

The best known algorithms for the affine equivalence problem were presented
by Biryukov et al. at EUROCRYPT 2003 [3]. The main algorithm described
in [3] has complexity of about n322n bit operations, while a secondary algorithm
has time complexity of about n323n/2, but also uses about the same amount of
memory.1 Besides its high memory consumption, another disadvantage of the
secondary algorithm of [3] is that it cannot be used to prove that F and G are
not affine equivalent.

In this paper we devise a new algorithm for the affine equivalence problem
whose complexity is about n32n bit operations with very high probability when-
ever F (or G) is chosen uniformly at random from the set of all permutations on
n-bit words. Our algorithm is also applicable without any modification to arbi-
trary functions (rather than permutations) and seems to perform similarly on
random functions. However we focus on permutations as almost all applications
actually require solving the affine equivalence problem for permutations. Since
our algorithm can be used to prove that F and G are not affine equivalent, it
does not share the disadvantage of the secondary algorithm of [3].

As a consequence of our improved algorithm, we solve within several minutes
affine equivalence problem instances of size up to n = 28 on a single core.
Optimizing our implementation and exploiting parallelism would most likely
allow solving instances of size at least n = 40 using an academic budget. Such
instances are out of reach of all previous algorithms for the problem.

1 Biryukov et al. also described a more efficient algorithm of complexity n32n for the
linear equivalence problem, which is a restricted variant of the affine equivalence
problem.

An Improved Affine Equivalence Algorithm for Random Permutations 415

Technically, the main algorithm devised in [3] for the affine equivalence prob-
lem is a guess-and-determine algorithm (which is related to the “to and fro”
algorithm of [18], devised to solve the problem of isomorphism of polynomi-
als) whereas the secondary algorithm is based on collision search (it generalizes
Daemen’s attack on the original Even-Mansour cipher [8]). On the other hand,
algorithms that use algebraic techniques (such as [5]) are mainly known for the
asymmetric variant, in which F ,G are functions of low degree, and it is not clear
how to adapt them to arbitrary functions.

In contrast to previous algorithms, our approach involves analyzing algebraic
properties of F ,G which are of high algebraic degree. More specifically, we are
interested in the polynomial representation (algebraic normal form or ANF) of
each of the n output bits of F (and G) as a Boolean function in the n input
bits. In fact, we are mainly interested in “truncated” polynomials that include
only monomials of degree at least d (in particular, we choose d = n − 2). Each
such polynomial can be viewed a vector in a vector space (with the standard
basis of all monomials of degree at least d = n − 2). Therefore we can define
the rank of the set of n truncated polynomials for each F ,G as the rank of the
matrix formed by arranging these polynomials as row vectors. In other words,
we associate a rank value (which is an integer between 0 and n) to F (and to
G) by computing the rank of its n truncated polynomials (derived from its n
output bits) as vectors. We first show that if F ,G are affine equivalent, their
associated ranks are equal.2

To proceed, we analyze F ,G independently. We derive from F several func-
tions, each one defined by restricting its 2n inputs to an affine subspace of dimen-
sion n−1. Since each such derived function (restricted to an affine subspace) has
an associated rank, we assign to each possible (n − 1)-dimensional subspace a
corresponding rank. As there are 2n+1 possible affine subspaces (such a subspace
can be characterized using its orthogonal subspace by a single linear expression
over n variables and a free coefficient), we obtain 2n+1 rank values for F . These
values are collected in the rank table of F , where a rank table entry r stores
the set of all affine subspaces (more precisely, their compact representations as
linear expressions) assigned to rank r.3

The main idea of the algorithm is to compute the rank tables of both F and
G and then use these tables (and additional more complex structures derived
from them) to recover the (unknown) affine transformation A1, assuming that
G = A2 ◦ F ◦ A1. In essence, the rank tables allow us to recover matchings
between (n − 1)-dimensional affine subspaces that are defined by A1: an affine
subspace S in matched with S′ if A1 transforms S to the affine subspace S′.
Each such matching between S and S′ reveals information about A1 in the form
of linear equations. Hence we aim to use the rank tables to recover sufficiently
many such matchings and compute A1 using linear algebra. Once A1 is derived,

2 The choice of d = n − 2 seems arbitrary at this stage. We only note that choosing
a larger or smaller value for d typically results in a rank value which is constant for
almost all functions, providing no information about them.

3 The formal definition of a rank table is slightly different.

416 I. Dinur

computing A2 is trivial. The main property of the rank table that we prove and
exploit to recover the matchings is that if S in matched with S′, then S appears
in the rank table of G in the same entry r as S′ appears in the rank table of F .

Since the number of (n−1)-dimensional affine subspaces is 2n+1, each contain-
ing 2n−1 elements, a naive approach to computing the rank table (which works
independently on each subspace) has complexity of at least 2n+1 · 2n−1 = 22n.
However, using symbolic computation of polynomials, we show how to reduce this
complexity to about n32n bit operations. While this computational step is easy
to analyze, this is not the case for the overall algorithm’s performance. Indeed,
its success probability and complexity depend on the monomials of degree at
least n − 2 of F and G. In particular, if all n output bits of F and G are func-
tions of degree n − 3 or lower, they do not contain any such monomials. As a
result, all affine subspaces for F and G are assigned rank zero and the rank
tables of these functions contain no useful information, leading to failure of the
algorithm.4

When F (or G) is chosen uniformly at random from the set of all possible
n-bit permutations (or n-bit functions in general), the case that its algebraic
degree is less than n − 2 is extremely unlikely for n ≥ 8. Nevertheless, rigorous
analysis of the algorithm seems challenging as its performance depends on subtle
algebraic properties of random permutations. To deal with this situation, we
make a heuristic assumption about the distribution of high degree monomials
in random permutations which enables us to use well-known results regarding
the rank distribution of random Boolean matrices. Consequently, we derive the
distribution of the sizes of the rank table entries for a random permutation. This
distribution and additional properties enable us to show that asymptotically the
algorithm succeeds with probability close to 1 in complexity of about n32n bit
operations. This heuristic analysis is backed up by thousands of experiments on
various problem instances of different sizes. Rigorously analyzing the algorithm
and extending it to succeed on all functions (or permutations) with probability
1 in the same complexity remain open problems.

The properties of the rank table and the algorithm for computing it are of
independent interest. In particular, we propose methods to build experimental
distinguishers for block ciphers based on the rank table and a method to effi-
ciently detect high-order differential distinguishers based on the algorithm for its
computation. Furthermore, our techniques are relevant to decomposition attacks
on the white-box ASASA block cipher instances proposed by Biryukov et al. [2].
In this application, we adapt the algorithm for computing the rank table in
order to improve the complexity of the integral attack on ASASA published
in [10] from 23n/2 to about 2n (where n is the block size of the instance).

The rest of the paper is organized as follows. In Sect. 2 we describe some
preliminaries and give an overview of the new affine equivalence algorithm in
Sect. 3. In Sect. 4 we prove the basic property of rank equality for affine equiv-
alent functions, while in Sect. 5 we define and analyze the matching between

4 In case the algorithm fails, one can try to apply it to F−1 and G−1 which may be
of higher algebraic degree.

An Improved Affine Equivalence Algorithm for Random Permutations 417

(n − 1)-dimensional affine subspaces that we use to recover A1. In Sect. 6 we
define the rank table and additional objects used in our algorithm, and describe
the relation between these objects for affine equivalent functions. In Sect. 7 we
analyze properties of rank tables for random permutations under our heuristic
assumption. Then, we describe and analyze the new affine equivalence algorithm
in Sect. 8. Next, in Sect. 9, we describe applications of the new algorithm and
the rank table structure. Finally, we conclude the paper in Sect. 10.

2 Preliminaries

For a finite set R, denote by |R| its size. Given a vector u = (u[1], . . . , u[n]) ∈
GF (2)n, let wt(u) denote its Hamming weight. Throughout this paper, addition
between vectors u1, u2 ∈ GF (2)n is performed bit-wise over GF (2)n.

Multivariate Polynomials. Any Boolean function F : {0, 1}n → {0, 1} can be
represented as a multivariate polynomial whose algebraic normal form (ANF) is
unique and given as F (x[1], . . . , x[n]) =

∑

u=(u[1],...,u[n])∈{0,1}n

αuMu, where αu ∈

{0, 1} is the coefficient of the monomial Mu =
∏n

i=1 x[i]u[i], and the sum is
over GF (2). The algebraic degree of the function F is defined as deg(F) =
max{wt(u) | αu �= 0}.

In several cases it will be more convenient to directly manipulate the repre-
sentation of F as a multivariate polynomial P (x[1], . . . , x[n]) =

∑
u∈{0,1}n αuMu.

Note that unlike F , the polynomial P is not treated as a function but rather
as a symbolic object. P (x[1], . . . , x[n]) can be viewed as a vector in the vector
space spanned by the set of all monomials {Mu | u ∈ {0, 1}n}.

Given a multivariate polynomial P (x[1], . . . , x[n]) =
∑

u∈{0,1}n αuMu and a
positive integer d, define P(≥d) by taking all the monomials of P of degree at
least d, namely, P(≥d)(x[1], . . . , x[n]) =

∑

u∈{0,1}n∧wt(u)≥d

αuMu. Note that P(≥d)

can be represented using at most
∑n

i=d

(
n
i

)
non-zero coefficients.

Given a function F : {0, 1}n → {0, 1} represented by a polynomial
P (x[1], . . . , x[n]), define F(≥d) : {0, 1}n → {0, 1} as the function represented
by P(≥d).

Vectorial Functions and Polynomials. Given a vectorial Boolean function
F : {0, 1}n → {0, 1}m, let F (i) : {0, 1}n → {0, 1} denote the Boolean function of
its i’th output bit.

We say that a sequence of m polynomials P = {P (i)(x[1], . . . , x[n])}m
i=1 rep-

resents F if for each i ∈ {1, 2, . . . ,m}, the i’th polynomial P (i) represents F (i).
Given a positive integer d, denote P (≥d) = {P

(i)
(≥d)(x[1], . . . , x[n])}m

i=1. The
vectorial function F (≥d) : {0, 1}n → {0, 1}m is defined analogously.

The algebraic degree deg(P) of P is defined as the maximal degree of its m
polynomials. The algebraic degree deg(F) is defined analogously.

418 I. Dinur

As each P (i) can be viewed as a vector in a vector space, we define the
symbolic rank of P as the rank of the m vectors {P (i)}m

i=1. We denote the
symbolic rank of P as SR(P). Note that SR(P) ∈ Zm+1.

Affine Transformations and Affine Equivalence. An affine transformation
A : {0, 1}m → {0, 1}n over GF (2)m is defined using a Boolean matrix Ln×m and
a word a ∈ {0, 1}n as A(x) = L(x) + a (L(x) is simply matrix multiplication).
The transformation is invertible if m = n and L is an invertible matrix. If a = 0,
then the A is called a linear transformation (such functions are a subclass of
affine functions).

Two functions F : {0, 1}n → {0, 1}m, G : {0, 1}n → {0, 1}m are affine
equivalent is there exist two invertible affine transformations A1 : {0, 1}n →
{0, 1}n and A2 : {0, 1}m → {0, 1}m such that G = A2 ◦ F ◦ A1. It is easy to
show that the affine equivalence relation partitions the set of all functions into
(affine) equivalence classes. We denote F ≡ G if F is affine equivalent to G.

Symbolic Composition. Given P = {P (i)(x[1], . . . , x[n])}m
i=1, and an affine

function A1 : {0, 1}n′ → {0, 1}n, the composition P ◦ A1 is a sequence of m
polynomials in n′ variables. For i ∈ {1, 2, . . . ,m}, the i’th polynomial in this
composition is P (i) ◦ A1. It can be computed by substituting each variable x[j]
in P (i) with the (affine) symbolic representation of the j’th output bit of A1

(and simplifying the outcome to obtain the ANF).
For example, given P (x[1], x[2], x[3]) = x[1]x[2] + x[1]x[3] + x[2] + 1 and

A1 : {0, 1}2 → {0, 1}3 defined by the relations x[1] = y[1] + y[2] + 1, x[2] =
y[2], x[3] = y[1] + y[2], then

P ◦ A1 = (y[1] + y[2] + 1)(y[2]) + (y[1] + y[2] + 1)(y[1] + y[2]) + y[2] + 1 =

(y[1]y[2] + y[2] + y[2]) + (y[1] + y[1]y[2] + y[1]y[2] + y[2] + y[1] + y[2]) + y[2] + 1 =

y[1]y[2] + y[2] + 1.

Thus, we compose each monomial Mu with coefficient 1 in P with A1 to obtain a
polynomial expression, add all the expressions and simplify the result. Formally,
if we denote P ’s Mu coefficient by αu, then

P ◦ A1 =
∑

u∈{0,1}n

αu · (Mu ◦ A1).

Note that composition with an affine function does not increase the algebraic
degree of the composed polynomial, namely deg(P ◦ A1) ≤ deg(P).

Analogously, given an affine function A2 : {0, 1}m → {0, 1}m′
, the composi-

tion A2 ◦ P is a sequence of m′ polynomials in n variables. It can be computed
by substituting each variable x[j] in the (affine) symbolic representation of A2

with P (j). Equivalently, if A2(x) = L(x) + a, then A2 ◦ P can be computed by
symbolic matrix multiplication (and addition of a) as L(P)+ a. In particular, if
m′ = 1 and a = 0, then A2 reduces to a vector v = (v[1], v[2], . . . , v[m]) ∈ {0, 1}m

and v(P) =
∑m

i=1 v[i]P (i) is a symbolic inner product.

An Improved Affine Equivalence Algorithm for Random Permutations 419

By rules of composition, ifF is represented byP , thenP ◦A1 representsF ◦A1

(which is a standard composition of functions) and A2 ◦ P represents A2 ◦ F .

Half-Space Masks and Coefficients. Let A : {0, 1}n−1 → {0, 1}n be an affine
transformation such that A(x) = L(x) + a for a matrix Ln×n−1 with linearly
independent columns. Then the (affine) range of A is an (n − 1)-dimensional
affine subspace spanned by the columns of L with the addition of a. The subspace
orthogonal to the range of A is of dimension 1 and hence spanned by a single
non-zero vector h ∈ {0, 1}n. Namely, a vector v ∈ {0, 1}n is in the range of A if
and only if h(v + a) = 0, i.e., v satisfies the linear equation h(v) + h(a) = 0.

Since h partitions the space of {0, 1}n into two halves, we call h the half-space
mask (HSM) of A and call the bit h(a) the half-space free coefficient (HSC) of A.

We call the linear subspace spanned by the columns of L the linear range of
A. A vector v ∈ {0, 1}n is in the linear range of A if and only if h(v) = 0.

Canonical Affine Transformations. Given non-zero h ∈ {0, 1}n and c ∈
{0, 1}, there exist many affine transformations whose HSM and HSC are equal
to h, c, respectively. We will use the fact (stated formally below) that all affine
transformations with an identical affine range are related by composition on the
right with an invertible affine transformation.

Fact 1. The affine transformations A1 : {0, 1}n−1 → {0, 1}n and A2 : {0, 1}n−1

→ {0, 1}n have the same affine range if and only if there exists an invertible
affine transformation A′ : {0, 1}n−1 → {0, 1}n−1 such that A1 = A2 ◦ A′.

Given A1, A2 the matrix A′ above can be computed using basic linear algebra.
We now define the canonical affine transformation C|h,c : {0, 1}n−1 → {0, 1}n

with respect to h, c. Let � denote the index of the first non-zero bit of h =
(h[1], . . . , h[n]). Write C|h,c(x) = L(x) + a. We define a = c · e� (where e� is the
�’th unit vector) and define L[i] (the i’th column of L) using h and the unit
vectors as follows:

L[i] =

{
ei if i < �

ei+1 + h[i + 1]e� otherwise (� ≤ i ≤ n − 1)

Thus, on input (y[1], . . . , y[n− 1]), the transformation C|h,c is defined by the
symbolic form

(x[1], x[2], . . . , x[n]) = (y[1], . . . , y[� − 1],
n−1∑

i=�

h[i + 1]y[i] + c, y[�], . . . , y[n − 1]).

The motivation behind the definition of C|h,c is that it allows very simple symbolic
composition when applied on the right: its main action is to replace the variable
x[�] with the affine combination that is specified by the coefficients of h and by c.
Other variables are just renamed: variables with index i < � remain with the same
index, while for each variable with index i > �, its index it reduced by 1.

420 I. Dinur

Remark 1. Note that we have to show that the definition of C|h,c is valid. First,
the n − 1 columns of L are clearly linearly independent. It remains to prove
that h, c are indeed the HSM and HSC of C|h,c. For this purpose, it suffices
to show that for each column L[i], the vector L[i] + a satisfies the equation
h(L[i] + a) + c = 0. Since h(a) = h(c · e�) = c · h(e�) = c (as h� = 1), it remains
to show that h(L[i]) = 0. Indeed, if 0 ≤ i < �, then h(L[i]) = hi = 0 (as �
is the index of the first non-zero bit of h). Otherwise, � ≤ i ≤ n − 1, then
h(L[i]) = h[i + 1] + h[i + 1]h[�] = 0 (as h[�] = 1).

3 Overview of the New Affine Equivalence Algorithm

We demonstrate the new algorithm using an example. Although it is oversim-
plified, this example is sufficient to convey the main ideas of our algorithm.

Definition of Functions. We define the function F : {0, 1}3 → {0, 1}3 using
its symbolic representation P = {P (i)(x[1], x[2], x[3])}3i=1,

P (1)(x[1], x[2], x[3]) =x[1]x[2] + x[1]x[3] + x[2] + 1

P (2)(x[1], x[2], x[3]) =x[1]x[2] + x[1] + x[2]

P (3)(x[1], x[2], x[3]) =x[1]x[3] + x[3].

We define G : {0, 1}3 → {0, 1}3 using 2 affine transformations as G =
A2 ◦F ◦A1, where A2 is simply the identity and A1 is defined using the relations

x[1] = y[1] + y[3] + 1, x[2] = y[1] + y[2], x[3] = y[2].

Composing A2 ◦ P ◦ A1 and simplifying the resultant ANFs, gives the symbolic
representation of G as Q = {Q(i)(y[1], y[2], y[3])}3i=1, where

Q(1)(y[1], y[2], y[3]) =y[1]y[3] + y[1] + y[2] + 1

Q(2)(y[1], y[2], y[3]) =y[1]y[2] + y[1]y[3] + y[2]y[3] + y[3] + 1

Q(3)(y[1], y[2], y[3]) =y[1]y[2] + y[2]y[3].

The input to our affine equivalence algorithm is F ,G defined above and its
goal is to recover the (presumably) unknown affine transformation A1. The first
step of the algorithm is to interpolate F ,G and obtain P ,Q, respectively.

Rank Tables and Histograms. The most basic property that we prove in The-
orem 1 is that since F and G are affine equivalent, the symbolic ranks of P and
Q (as vectors) are equal. Indeed, it is easy to verify that both P and Q have
symbolic rank of 3. More significantly, Theorem 1 is stronger and asserts that
SR(P (≥d)) = SR(Q(≥d)) for every d ≥ 1. Indeed, if we take d = 2, we getP (≥2) =
{x[1]x[2] + x[1]x[3], x[1]x[2], x[1]x[3]}, which has symbolic rank 2. This is also the
symbolic rank ofQ(≥2) = {y[1]y[3], y[1]y[2]+y[1]y[3]+y[2]y[3], y[1]y[2]+y[2]y[3]}.

An Improved Affine Equivalence Algorithm for Random Permutations 421

We would like to use this property to recover A1. Let us examine the 2-
dimensional affine subspace defined by the 3-bit HSM h′ = 100 (whose bits are
h[1] = 1, h[2] = 0, h[3] = 0) and the single bit HSC c = 0. We calculate the
symbolic form of (F ◦ C|h′,0)(≥1) by evaluating (P ◦ C|h′,0)(≥1) (i.e., plugging
x[1] = 0 into P (≥1)) and obtain {x[2], x[2], x[3]} which has symbolic rank 2.
Similarly, for c = 1 we calculate (P ◦ C|h′,1)(≥1) (i.e., plug x[1] = 1 into P (≥1))
and obtain {x[3], 0, 0} which has symbolic rank 1. Hence, we attach the symbolic
rank pair (2, 1) to h′ = 100. We do the same for all 7 non-zero h′ ∈ {0, 1}3. The
result is a table whose entries are pairs of ranks of the form (maxR,minR) ∈
Z4 ·Z4 (where maxR ≥ minR), such that entry (maxR,minR) stores the set of
HSMs that are associated with this pair of ranks.

(3, 2) : {010, 011, 111, 110}
(2, 2) : {001}
(2, 1) : {100, 101}

This table is called the rank table of F (with respect to the degree d = 1 as
we only considered monomials of degree at least 1). The set of HSMs in an entry
(maxR,minR) of the rank table is called a rank group (e.g., the rank group
with index (2, 1) is {100, 101}). Similarly, we compute the rank table of G with
respect to d = 1.

(3, 2) : {100, 001, 110, 011}
(2, 2) : {010}
(2, 1) : {101, 111}

Although the rank tables are different, the size of each rank group
(maxR,minR) of F ,G is identical. We define the rank histogram of F (with
respect to d) as a mapping from each (maxR,minR) value to the correspond-
ing rank group size (e.g., the histogram entry for F with index (2, 1) has value
|{100, 101}| = 2). As we show in Lemma 9, that rank histograms of affine equiv-
alent functions (such as F ,G) are identical.

To explain this, we look at the HSM h = 101 in the rank group of G =
A2 ◦ F ◦ A1 with index (2, 1) and note that it partitions the space into halves
{000, 101, 010, 111} and {001, 011, 100, 110} (according to whether x[1] + x[3] =
0 or x[1] + x[3] = 1). After applying A1, these half-spaces are mapped into
{100, 101, 110, 111} and {000, 001, 010, 011}. This is exactly the partition defined
by h′ = 100, which is in the rank group of F with the same index (2, 1). In terms
of canonical affine transformations, C|h′,c and A1◦C|h,0 have the same half-space
range of {100, 101, 110, 111} (for c = 1 in this case) and we define a mapping
h 	→A1 h′ to capture this. In Lemma 3 we show that this mapping is a bijection
as A1 is invertible.

Exploiting Matchings. The central property of the mapping 	→A1 is proved
in Lemma 6 which asserts that it preserves affine equivalence. Namely, if F ≡ G

422 I. Dinur

and h 	→A1 h′, then F ◦ C|h′,c ≡ G ◦ C|h,0 (for some c ∈ {0, 1}). By flipping the
half-space ranges and applying the same argument, we also obtain F ◦C|h′,c+1 ≡
G ◦ C|h,1. Combined with Theorem 1 (which states that symbolic rank is an
invariant of affine equivalent functions) we obtain that for any d ≥ 1, r0 �
SR((F ◦ C|h′,c)(≥d)) = SR((G ◦ C|h,0)(≥d)) and r1 � SR((F ◦ C|h′,c+1)(≥d)) =
SR((G ◦ C|h,1)(≥d)). Since the ordered rank pairs for h′, h in F ,G are equal to
(maxR,minR) (for maxR = max{r0, r1},minR = min{r0, r1}), they belong
to rank groups with the same index (maxR,minR) in the rank tables of F ,G,
respectively. The fact that 	→A1 is a bijection leads to Lemma 9 (which assets
that the rank histograms of F ,G are identical).

The main goal of our affine equivalence algorithm is to recover matchings
h 	→A1 h′ for several pairsh, h′.This is useful, as inLemma5we showthat each such
matching gives n linear equations on the unknown matrix L of A1(x) = L(x) + a.
Furthermore, the constant c associated with h 	→A1 h′ (which determines whether
F ◦ C|h′,0 ≡ G ◦ C|h,0 or F ◦ C|h′,1 ≡ G ◦ C|h,0) gives a linear equation on a (once
again, by Lemma 5). In total, we need to find about n matchings h 	→A1 h′ along
with their associated constants to completely recover A1.

Going back to the example, the rank group with index (2, 2) for G is {010},
while the rank group with the same index for F is {001}. Therefore, after com-
puting the rank tables we know that

010 	→A1 001. (1)

Remark 2. We matched 010 	→A1 001 in the rank group (maxR,minR) = (2, 2)
and since maxR = minR we cannot derive the constant c associated with this
matching (hence we cannot derive a linear equation on a). Such constants can
only be derived for matchings h 	→(A1) h′ in rank groups where maxR > minR,
as in such cases we know whether F ◦C|h′,0 ≡ G ◦C|h,0 or F ◦C|h′,1 ≡ G ◦C|h,0

according to the equality SR((F ◦ C|h′,c)(≥d)) = SR((G ◦ C|h,0)(≥d)). More pre-
cisely, if maxR > minR, then either SR((F ◦ C|h′,0)(≥d)) = SR((G ◦ C|h,0)(≥d))
or SR((F ◦ C|h′,1)(≥d)) = SR((G ◦ C|h,0)(≥d)), but not both. In this sense, it is
more useful to recover matchings for HSMs in rank groups (maxR,minR) such
that maxR > minR.

By applying similar arguments to the rank group (2, 1), we know that either
101 	→A1 100 or 101 	→A1 101 (and similarly 111 	→A1 100 or 111 	→A1 101).
Since we have very few possibilities, we can guess which matchings hold, derive
A1 and test our guess. Unfortunately, for larger n we expect the rank groups to
be much bigger and it would be inefficient to exhaustively match HSMs for F ,G
only based on their ranks. Thus, to narrow down the number of possibilities and
eventually uniquely match sufficiently many pairs h, h′ such that h 	→A1 h′, we
need to attach more data to each HSM for F ,G.

HSM Rank Histograms. The main observation that allows attaching more
data to each HSM is given in Lemma 4 which shows that the mapping 	→A1 is
additive.

An Improved Affine Equivalence Algorithm for Random Permutations 423

Consider the two rank groups with index (3, 2) for F ,G. They are of size 4
and their HSMs cannot be uniquely matched. We first focus on G and exam-
ine the rank group (3, 2) which is {100, 001, 110, 011}. We take h1 = 011 and
compute its HSM rank histogram with respect to the rank group (2, 1) (which
is {101, 111}). This is done by computing the (maxR,minR) rank pairs for
the set defined by adding all elements of rank group (2, 1) to 011, namely
{011 + 101, 011 + 111} = {110, 100}. Looking for 110 and 100 in the rank table
of G, both HSMs have ranks (3, 2). Thus, the HSM rank histogram of h1 = 011
with respect to rank group (2, 1) has a single non-zero entry (3, 2) with the value
of 2. We write this HSM rank histogram in short as [(3, 2) : 2].

We now consider the match of h1 = 011 under A1 which is h′
1 = 110 (namely,

h1 	→(A1) h′
1). Similarly to h1, we compute the HSM rank histogram of h′

1 with
respect to the rank group (2, 1) for F (which is {100, 101}) and obtain the same
HSM rank histogram [(3, 2) : 2]. This is a particular case of Lemma 10, which
shows that matching HSMs for F ,G have identical HSM rank histograms (with
respect to a fixed rank group). Lemma 10 is derived using Lemma 4 which
asserts that the mapping 	→A1 is additive: if h1 	→(A1) h′

1 and h2 	→(A1) h′
2, then

(h1 + h2) 	→(A1) (h′
1 + h′

2).
Fixing h1 = 011 for G and its match h′

1 = 110 under A1, let hi
2, h

′i
2 for

i ∈ {1, 2} vary over the 2 elements of the rank groups with index (2, 1) in G,F ,
respectively. Then, as h1 	→(A1) h′

1 and hi
2 	→(A1) h′i

2 for i ∈ {1, 2}, we get
(h1 + hi

2) 	→(A1) (h′
1 + h′i

2). By the aforementioned Theorem 1 and Lemma 6
(equating ranks for matching HSMs) we conclude that indeed the HSM rank
histograms of 011 and 110 with respect to rank group (2, 1) are identical (which
is a special case of Lemma 10).

HSM Rank Histogram Multi-Sets. Since we do not know in advance that
h1 	→(A1) h′

1, we have to compute the HSM rank histograms (with respect to
rank group (2, 1)) for all HSMs in rank group (3, 2). The outcome is the HSM
rank histogram multi-set of rank group (3, 2) with respect to rank group (2, 1).
It is computed by considering all the HSMs in the rank group (3, 2), namely
{100, 001, 110, 011} for G and {010, 011, 111, 110} for F . Lemma 11 (whose proof
is based on Lemma 10) asserts that these HSM rank histogram multi-sets are
identical as F ,G are affine equivalent.

We hope that these multi-sets contain unique HSM rank histograms (with
multiplicity 1), which would allow us to derive more matching between HSMs.
Unfortunately, the resultant multi-set (for both F and G) is {[(3, 2) : 2], [(3, 2) :
2], [(3, 2) : 2], [(3, 2) : 2]}. It contains 4 identical elements and does not give
us any new information about A1. If the multiplicity of the element [(3, 2) : 2]
(calculated above for h1, h

′
1) in this multi-set would have been 1, we could have

derived the relation h1 	→(A1) h′
1.

Remark 3. Generally, when n is very small (as in our case), the direct application
of the algorithm is more likely to fail to completely recover A1. As we show later
in this paper, for n ≥ 8 the fraction of instances for which this occurs is very
small (and tends to 0 as n grows). In some cases a failure to retrieve A1 occurs

424 I. Dinur

since the affine mappings A1, A2 are not uniquely defined. In particular, if there
are several solutions for A1, then we cannot hope to obtain unique matchings
that completely define A1, but we can recover all possible solutions to the affine
equivalence problem by enumerating several possibilities for the matchings.

In conclusion, we attached to each HSM in rank group (3, 2) for F ,G its
HSM rank histogram with respect to rank group (2, 1) and in general such data
may allow us to derive additional matchings h 	→(A1) h′. Once we obtain about
n matchings, we can recover A1 by solving a system of linear equations.

4 A Basic Property of Affine Equivalent Functions

Before proving the main result of this section, we state two useful lemmas (the
first is proved in the extended version of this paper [9]).

Lemma 1. Let P = {P (i)(x[1], . . . , x[n])}m
i=1, let A1 : {0, 1}n′ → {0, 1}n, A2 :

{0, 1}m → {0, 1}m′
be affine functions, and d be a positive integer. Then,

1. (P (≥d) ◦ A1)(≥d) = (P ◦ A1)(≥d)

2. (A2◦(P (≥d)))(≥d) = (A2◦P)(≥d) and if A2 is a linear function, A2◦(P (≥d)) =
(A2 ◦ P)(≥d).

Essentially, the lemma states that removing all monomials of degree less than
d from P can be done before or after composing it with an affine function and
the outcomes are identical.

Note that a potentially simplified first part of the lemma which equates
P (≥d) ◦ A1 and (P ◦ A1)(≥d) is generally incorrect, as the first expression may
contain monomials of degree less than d. For example, if d = 2 and we compose
the affine transformation defined by x[1] = y[1] + y[2] and x[2] = y[2] with
the polynomial x[1]x[2], then we get the polynomial y[1]y[2] + y[2] which has a
monomial of degree 1.

Lemma 2. Let P = {P (i)(x[1], . . . , x[n])}m
i=1, and let A1 : {0, 1}n → {0, 1}n be

an invertible affine function. Then, deg(P) = deg(P ◦ A1).

Proof. We show that for i ∈ {1, 2, . . . ,m}, deg(P (i)) = deg(P (i) ◦ A1). Observe
that deg(P (i)) ≥ deg(P (i) ◦ A1) as composition with an affine function cannot
increase the algebraic degree of a polynomial. By the same argument and by the
invertibility of A1, we also obtain deg(P (i) ◦ A1) ≥ deg(P (i) ◦ A1 ◦ (A1)−1) =
deg(P (i)). �

Theorem 1. Let F : {0, 1}n → {0, 1}m, G : {0, 1}n → {0, 1}m be two affine
equivalent functions, represented by P ,Q, respectively. Then, for every positive
integer d, SR(P (≥d)) = SR(Q(≥d)).

An Improved Affine Equivalence Algorithm for Random Permutations 425

Proof. At a high level, the fact that P and Q have the same symbolic rank
follows since rank is preserved by composition with invertible affine transfor-
mations. Moreover, this rank equality is preserved after truncating low degree
monomials since they cannot affect the high degree monomials when composing
with invertible affine transformations. The formal proof is below.

Write G = A2 ◦F ◦A1, implying that Q = A2 ◦P ◦A1. Denote P ′ = P ◦A1

and observe that

SR(P ′
(≥d)) = SR((A2 ◦ (P ′

(≥d)))(≥d)) = SR((A2 ◦ P ′)(≥d)) = SR(Q(≥d)),

where the first equality holds since rank is preserved by invertible linear
transformations5 and the second equality is due to the second part of Lemma 1.

It remains to show that SR(P ′
(≥d)) = SR(P (≥d)), or SR((P ◦ A1)(≥d)) =

SR(P (≥d)). We first show that SR(P (≥d)) ≥ SR((P ◦ A1)(≥d)).
If P (≥d) has full rank of m then the claim is trivial. Otherwise, let v ∈ {0, 1}m

be a non-zero vector in the kernel of P (≥d), namely v(P (≥d)) = 0. Then,

v((P ◦ A1)(≥d)) = (v((P ◦ A1)(≥d)))(≥d) = (v(P (≥d)) ◦ A1)(≥d) = 0,

where the first equality follows from the second part of Lemma 1 and the second
equality follows from the first part of this lemma. This implies that v is also in
the kernel of (P ◦ A1)(≥d), as required.

To prove that SR(P (≥d)) ≤ SR((P ◦A1)(≥d)), observe that if v is a non-zero
vector in the kernel of (P ◦ A1)(≥d), then by the equality above we have 0 =
v((P ◦A1)(≥d)) = (v(P (≥d))◦A1)(≥d). This implies that deg(v(P (≥d))◦A1) < d
and since A1 is invertible, by Lemma 2, deg(v(P (≥d))) = deg(v(P (≥d))◦A1) < d.
This gives v(P (≥d)) = 0, as the polynomial does not contain monomials of degree
less than d. Hence, v is in the kernel of P (≥d) which completes the proof. �

5 The Half-Space Mask Bijection and Its Properties

Definition 1. Let A : {0, 1}n → {0, 1}n be an invertible affine transformation.
Define a mapping between HSMs using A as follows: h ∈ {0, 1}n is mapped to
h′ if there exists c ∈ {0, 1} such that the affine ranges of A ◦ C|h,0 and C|h′,c are
equal. We write h 	→(A) h′ and say that h and h′ match (under A). The bit c is
called the associated constant of h 	→(A) h′.

Lemma 3. Let A : {0, 1}n → {0, 1}n be an invertible affine transformation.
The mapping 	→(A) is a bijection and its inverse is given by 	→(A−1).

Proof. The proof follows from the invertibility of A. Given that h 	→(A) h′,
there exists c ∈ {0, 1} such that the affine ranges of A ◦ C|h,0 and C|h′,c are
equal. According to Fact 1, this implies that there exists an invertible affine
transformation A′ : {0, 1}n−1 → {0, 1}n−1 such that A ◦ C|h,0 = C|h′,c ◦ A′.

5 The affine transformation A2 also adds a constant, but it does contribute to the rank
as d > 0.

426 I. Dinur

Consequently, C|h,0 ◦ (A′)−1 = A−1 ◦ C|h′,c and the affine ranges of C|h,0 and
A−1 ◦ C|h′,c are equal (again, according to Fact 1). This implies that the affine
ranges of A−1 ◦ C|h′,0 and C|h,c are equal (flipping the HSC of both sides if
c = 1), namely h′ 	→(A−1) h. �

A property of 	→(A) which will be very useful is that it is additive. This is
established by the lemma below (proved in the extended version of this paper [9]).

Lemma 4. Let A : {0, 1}n → {0, 1}n be an invertible affine transformation. Let
h1, h

′
1, h2, h

′
2 ∈ {0, 1}n be HSMs where h1 �= h2 and h1 	→(A) h′

1, h2 	→(A) h′
2

with associated constants c1, c2, respectively. Then (h1 +h2) 	→(A) (h′
1 +h′

2) with
the associated constant c1 + c2.

The following lemma (proved in the extended version of this paper [9]) shows
that the bijection reveals information about the presumably unknown transfor-
mation A.

Lemma 5. Let A : {0, 1}n → {0, 1}n be an invertible affine transformation
such that A(x) = L(x)+a. Let h, h′ ∈ {0, 1}n be HSMs such that h 	→(A) h′ with
associated constant c. Then, A satisfies the following constraints.

1. For each i ∈ {1, 2, . . . , n}, the i’th column of L, denoted by L[i], satisfies the
equation h′(L[i]) = h[i], where h[i] is the i’th bit of h.

2. The vector a satisfies the equation h′(a) = c.

The following lemma asserts that affine equivalence is preserved under com-
position with matching HSMs.

Lemma 6. Let F : {0, 1}n → {0, 1}m, G : {0, 1}n → {0, 1}m be two affine
equivalent functions such that G = A2 ◦ F ◦ A1. Let h, h′ ∈ {0, 1}n be HSMs
such that h 	→(A1) h′ with associated constant c. Then, F ◦ C|h′,c ≡ G ◦ C|h,0

and F ◦ C|h′,c+1 ≡ G ◦ C|h,1.

Proof. Since h 	→(A1) h′ with associated constant c, the affine ranges of A1 ◦
C|h,0 and C|h′,c are equal. According to Fact 1, there exists an invertible affine
transformation A′

1 : {0, 1}n−1 → {0, 1}n−1 such that A1 ◦ C|h,0 = C|h′,c ◦ A′
1.

We obtain, A2 ◦ F ◦ C|h′,c ◦ A′
1 = A2 ◦ F ◦ A1 ◦ C|h,0 = G ◦ C|h,0, implying

that F ◦ C|h′,c and G ◦ C|h,0 are affine equivalent.
The claim that F ◦ C|h′,c+1 and G ◦ C|h,1 are affine equivalent follows by

considering the complimentary half-space and observing that the affine ranges
of A1 ◦ C|h,1 and C|h′,c+1 are equal. The remainder of the proof is similar. �

Definition 2. Let F : {0, 1}n → {0, 1}m be a function represented by P , let d
be a positive integer and let h ∈ {0, 1}n be a HSM. Let r0 = SR((P ◦C|h,0)(≥d)),
r1 = SR((P ◦ C|h,1)(≥d)), maxR = max{r0, r1} and minR = min{r0, r1}.

1. The HSM rank of h (with respect F , d) is the ordered pair of integers
(maxR,minR), denoted as RF ,d,h,

An Improved Affine Equivalence Algorithm for Random Permutations 427

2. The attached constant of h is the value c ∈ {0, 1} such that maxR = SR((P ◦
C|h,c)(≥d)) (if maxR = minR, the attached constant is undefined).

The lemma below states that the HSM ranks of matching HSMs are equal
for affine equivalent functions.

Lemma 7. Let F : {0, 1}n → {0, 1}m, G : {0, 1}n → {0, 1}m be two affine
equivalent functions and let d be a positive integer. Assume that G = A2◦F ◦A1.
Let h, h′ ∈ {0, 1}n be HSMs such that h 	→(A1) h′. Then RG,d,h = RF ,d,h′ .

Proof. Let c ∈ {0, 1} be the associated constant of h 	→(A1) h′. According to
Lemma 6, F ◦ C|h′,c ≡ G ◦ C|h,0 and F ◦ C|h′,c+1 ≡ G ◦ C|h,1.

Assume that F ,G are represented by P ,Q, respectively. Denote r′
0 =

SR((F ◦ C|h′,c)(≥d)), r′
1 = SR((F ◦ C|h′,c+1)(≥d)), r0 = SR((G ◦ C|h,0)(≥d)),

r1 = SR((G ◦ C|h,1)(≥d)).
By the above affine equivalences and Theorem 1, we have r0 = r′

0 and r1 = r′
1.

Hence max(r0, r1) = max(r′
0, r

′
1) and min(r0, r1) = min(r′

0, r
′
1) and the lemma

follows. �

6 Rank Tables, Rank Histograms and their Properties

Definition 3. Given a function F : {0, 1}n → {0, 1}m and a positive integer d,
define the following mappings.

1. The rank table of F with respect to d is a mapping TF ,d, whose keys (indexes)
are integer pairs (maxR,minR) ∈ Zm+1 × Zm+1 such that maxR ≥ minR.
It is defined as

TF ,d(maxR,minR) = {h ∈ {0, 1}n | RF ,d,h = (maxR,minR)}.

Moreover, along with each such HSM h, the table stores its attached constant
c ∈ {0, 1} (if defined).
An entry in the rank table TF ,d(maxR,minR) (containing all HSMs with this
rank) is called a rank group.

2. The rank histogram of F with respect to d is a mapping HF ,d : Zm+1 ×
Zm+1 → Z such that HF ,d(maxR,minR) = |TF ,d(maxR,minR)|.

To simplify our notation, in the following we refer to a HSM
rank (maxR,minR) ∈ Zm+1 × Zm+1 such that maxR ≥ minR using a single
symbol r.

The lemma below states that if F ≡ G, then each HSM with rank r for G
is matched in the rank group with the same HSM rank r for F .

Lemma 8. Let F : {0, 1}n → {0, 1}m, G : {0, 1}n → {0, 1}m be two affine
equivalent functions and let d be a positive integer. Assume that G = A2 ◦F ◦A1

and let r ∈ Zm+1 ×Zm+1. Then, for each h ∈ TG,d(r), there exists h′ ∈ TF ,d(r)
such that h 	→(A1) h′.

428 I. Dinur

Proof. By Lemma 7, given h ∈ TG,d(r), its match h′ under A1 satisfies RF ,d,h′ =
RG,d,h = r hence h′ ∈ TF ,d(r) as claimed. �

Lemma 9. Let F : {0, 1}n → {0, 1}m, G : {0, 1}n → {0, 1}m be two affine
equivalent functions and let d be a positive integer. Then the rank histograms of
F and G with respect to d are equal, namely HF ,d = HG,d.

Proof. Assume that G = A2 ◦ F ◦ A1. Given a histogram entry with index r,
for each h ∈ TG,d(r) let h′ be its match h 	→(A1) h′. Then, by Lemma 8, h′ ∈
TF ,d(r). Since h 	→(A1) h′ is a bijection, this shows that HG,d(r) = |TG,d(r)| ≤
|TF ,d(r)| = HF ,d(r). On the other hand, as HG,d(r) ≤ HF ,d(r) holds for all
histogram entries r and the sum of entries in both histograms is 2n − 1, this
implies that HF ,d = HG,d. �

Definition 4. Given a function F : {0, 1}n → {0, 1}m, a positive integer d, a
HSM h1 ∈ {0, 1}n and r ∈ Zm+1 ×Zm+1, we define the HSM rank histogram of h1

with respect to (or relative to) the rank group r and denote it by HGF ,d,h1,r . As the
standard histogram, it is a mapping HGF ,d,h1,r : Zm+1 × Zm+1 → Z, where

HGF ,d,h1,r (r
′) = |{h1 + h2 | h2 ∈ {0, 1}n ∧ h1 �= h2 ∧ RF ,d,h2 = r ∧ RF ,d,h1+h2 = r′}|.

Note that unlike the (standard) rank histogram, the HSM rank histogram is
defined for a specific HSM with respect to a rank group. We further remark that
the HSM rank histogram of h1 can also be defined with respect to its own the
rank group (this is assured by the condition h1 �= h2).

The following lemma equates HSM rank histograms for matching HSMs in
affine equivalent functions.

Lemma 10. Let F : {0, 1}n → {0, 1}m, G : {0, 1}n → {0, 1}m be two affine
equivalent functions and let d be a positive integer. Assume that G = A2◦F ◦A1.
Let h1, h

′
1 ∈ {0, 1}n be such that h1 	→(A1) h′

1. Then, for every r ∈ Zm+1×Zm+1,
HGG,d,h1,r = HGF ,d,h′

1,r .

Proof. The proof follows from the fact that the mapping 	→(A1) preserves HSM
ranks for affine equivalent functions (Lemma 7), and by exploiting its additive
property (Lemma 4).

Fix a HSM rank histogram entry r′ ∈ Zm+1 × Zm+1. Define the following
two sets:

D1 = {h1 + h2 | h2 ∈ {0, 1}n ∧ h1 �= h2 ∧ RG,d,h2 = r ∧ RG,d,h1+h2 = r′}

and

D2 = {h′
1 + h′

2 | h′
2 ∈ {0, 1}n ∧ h′

1 �= h′
2 ∧ RF ,d,h′

2
= r ∧ RF ,d,h′

1+h′
2

= r′}.

To prove the lemma, we need to show that |D1| = |D2|. Let h1 + h2 ∈ D1

and denote by ĥ ∈ {0, 1}n the vector such that h1 + h2 	→(A1) ĥ. We show that
ĥ ∈ D2.

An Improved Affine Equivalence Algorithm for Random Permutations 429

Since h1 + h2 	→(A1) ĥ, by Lemma 7, RF ,d,ĥ = RG,d,h1+h2 = r′. Next, write
ĥ = h′

1 + (h′
1 + ĥ). Since h1 	→(A1) h′

1 and h1 + h2 	→(A1) ĥ, by Lemma 4,
h2 	→(A1) h′

1 + ĥ, and by Lemma 7, RF ,d,h′
1+ĥ = RG,d,h2 = r, giving ĥ ∈ D2.

Since 	→(A1) is a bijection this implies that |D2| ≥ |D1|.
As |D2| ≥ |D1| holds for all HSM histogram entries r′ and the sum of HSM

histogram entries in both HGG,d,h1,r and HGF ,d,h′
1,r is equal to size of the rank

group6 r (which is equal to HF ,d(r) = HG,d(r)), the equality |D1| = |D2|
holds. �

Definition 5. Given a function F : {0, 1}n → {0, 1}m, a positive integer d,
HSMs ranks r, r′ ∈ Zm+1 × Zm+1, we define the HSM rank histogram multi-set
of rank group r with respect to rank group r′ as

HMF ,d,r ,r ′ = {HGF ,d,h,r ′ | RF ,d,h = r}.

The HSM rank histogram multi-set collects all the HSM histograms for HSMs
in rank group r with respect to the rank group r′. Note that it is possible to
have r = r′.

The following lemma equates HSM rank histogram multi-set in affine equiv-
alent functions.

Lemma 11. Let F : {0, 1}n → {0, 1}m, G : {0, 1}n → {0, 1}m be two
affine equivalent functions and let d be a positive integer. Then, for every
r, r′ ∈ Zm+1 × Zm+1, HMF ,d,r ,r ′ = HMG,d,r ,r ′ .

Proof. Fix r, r′ ∈ Zm+1 × Zm+1. We define a mapping between the elements
(HSM histograms) of the multi-sets HMG,d,r ,r ′ and HMF ,d,r ,r ′ . Naturally, the
mapping is based on the bijection 	→(A1).

Assume that G = A2 ◦F ◦A1. Let h ∈ {0, 1}n be such that RG,d,h = r which
implies that HGG,d,h,r ′ ∈ HMG,d,r ,r ′ . Let h′ ∈ {0, 1}n be the HSM such that
h 	→(A1) h′. By Lemma 10, HGG,d,h,r ′ = HGF ,d,h′,r ′ . Furthermore, by Lemma 7
we have RF ,d,h′ = RG,d,h = r, hence HGG,d,h,r ′ = HGF ,d,h′,r ′ ∈ HMF ,d,r ,r ′ .
Since 	→(A1) is a bijection, we obtain HMG,d,r ,r ′ ⊆ HMF ,d,r ,r ′ as multi-sets.

On the other hand, the number of elements (HSM histograms) in both multi-
sets is equal to the size of the rank group r (which is equal to HF ,d(r) =
HG,d(r)), hence HMG,d,r ,r ′ = HMF ,d,r ,r ′ . �

Definition 6. Let F : {0, 1}n → {0, 1}m, let d be a positive integer and let
r, r′ ∈ Zm+1 × Zm+1. A HSM h ∈ {0, 1} such that RF ,d,h = r is called unique
(with respect to F , d, r′) if HGF ,d,h,r ′ ∈ HMF ,d,r ,r ′ has multiplicity 1 in this
multi-set.

The following theorem establishes the importance of unique HSMs in recov-
ering matchings between HSMs for affine equivalent functions.

6 Unless the HSM rank of h1 is r, in which case the sum of HSM histogram entries is
HF ,d(r) − 1.

430 I. Dinur

Theorem 2. Let F : {0, 1}n → {0, 1}m, G : {0, 1}n → {0, 1}m be two affine
equivalent functions and let d be a positive integer. Then for every r, r′ ∈ Zm+1×
Zm+1, if h ∈ {0, 1}n (such that RG,d,h = r) is unique with respect to G, d, r′,
then the following statements hold:

1. There exists h′ ∈ {0, 1}n such that RF ,d,h′ = r and h′ is unique with respect
to F , d, r′.

2. HGG,d,h,r ′ = HGF ,d,h′,r ′ .
3. Assume that G = A2 ◦ F ◦ A1. Then, h 	→(A1) h′. Moreover, if the attached

constants of h, h′ are defined and equal to c, c′, respectively, then the associated
constant of h 	→(A1) h′ is c + c′.

Proof. By Lemma 11, we have equality of the multi-sets HMF ,d,r ,r ′ =
HMG,d,r ,r ′ which immediately implies the first two statements. Denote by
h′′ ∈ {0, 1}n the HSM such that h 	→(A1) h′′. To complete the proof of the
third statement we show that h′′ = h′.

By Lemma 7, we have RF ,d,h′′ = RG,d,h = r. Hence HGF ,d,h′′,r ∈ HMF ,d,r ,r ′

(and also HGF ,d,h′,r ∈ HMF ,d,r ,r ′ from the first statement). Since h′ is unique
with respect to F , d, r′, then HGF ,d,h′,r ′ has multiplicity 1 in HMF ,d,r ,r ′ . Thus if
we show that HGF ,d,h′,r ′ = HGF ,d,h′′,r , then h′′ = h′ must hold.

According to Lemma 10, HGG,d,h,r = HGF ,d,h′′,r and by the second state-
ment we obtain HGF ,d,h′,r ′ = HGG,d,h,r ′ = HGF ,d,h′′,r as required.

Finally, we examine the attached constants c, c′ of h, h′, respectively (assum-
ing they are defined). If c = c′, then the affine ranges of A1 ◦C|h,0 and C|h′,0 are
equal implying that the associated constant of h 	→(A1) h′ is 0 = c+c′. Otherwise
c = c′ + 1 and the affine ranges of A1 ◦ C|h,0 and C|h′,1 are equal implying that
the associated constant of h 	→(A1) h′ is 1 = c + c′. �

7 Analysis of the Distribution of Rank Histogram Entries
for Random Permutations

In this section we analyze the distribution of entries of the rank histogram HF ,d

for a random permutation F : {0, 1}n → {0, 1}n. The analysis is performed for
d = n−2,which is the value thatwe use in our algorithmas explained in detail next.

Assume that F is represented by P = {P (i)(x[1], . . . , x[n])}n
i=1. For a given

h ∈ {0, 1}n, we consider SR((P ◦C|h,0)(≥n−2)) and SR((P ◦C|h,1)(≥n−2)). For c ∈
{0, 1}, every one of the n polynomials of (P ◦C|h,c)(≥n−2) has n−1 variables (the
number of variables in P is reduced by 1 after composition with C|h,c). Hence,
the number of possible non-zero monomial coefficients in each such polynomial
is

(
n−1
n−1

)
+

(
n−1
n−2

)
= 1+n−1 = n. Therefore, (P ◦C|h,c)(≥n−2) can be represented

by an n × n Boolean matrix and we are interested in its rank.
Choosing d = n−1 would leave at most one non-zero monomial which almost

always would be present in (P ◦C|h,c)(≥n−1). Hence, essentially all HSMs would
fall into a single rank group and the affine equivalence algorithm would not be

An Improved Affine Equivalence Algorithm for Random Permutations 431

able to distinguish and match them. On the other hand, choosing d ≤ n−3 would
leave Ω(n2) non-zero monomials and (P ◦ C|h,c)(≥r) would almost always have
full rank, leading once again to a single rank group. We conclude that d = n − 1
is indeed the optimal choice.

Our analysis is based on the following heuristic assumption.

Assumption 1. For a random permutation F : {0, 1}n → {0, 1}n represented
by P , for every h ∈ {0, 1}n and c ∈ {0, 1}, the entries of the n × n Boolean
matrix (P ◦ C|h,c)(≥n−2) are uniform independent random variables.

The n × n Boolean matrix (P ◦ C|h,c)(≥n−2) is indeed uniform for a random
function F (rather than a random permutation), given any h ∈ {0, 1}n and
c ∈ {0, 1}. However, even for a random function the Boolean matrices obtained
for different h, c values are correlated. Nevertheless, these correlations (and the
fact that F is a permutation) do not seem to have a noticeable influence on our
algorithm in practice (as we demonstrate in Sect. 8.5 and the extended version
of this paper [9]).

The rank of random matrices is a well-studied problem. For large n and a
non-negative integer r ≤ n, we denote the probability that a random Boolean
n × n matrix has rank r by βr. We can lower bound βr by considering the event
where we first select r linearly independent rows to form a subspace of size 2r

(which occurs with constant probability) and then select the remaining n − r

rows within this subspace (which occurs with probability 2−(r−n)2). This gives
a lower bound of Ω(2−(r−n)2) on βr. The exact formula is given by the theorem
below, taken and adapted from [13].

Theorem 3 ([13], p. 126, adapted). For n → ∞, the probability that a
random Boolean n × n matrix has rank r is

βr = 2−(r−n)2 · α ·
n−r∏

i=1

(1 − 1/2i)−2, (2)

where α =
∏∞

i=1(1 − 1/2i) ≈ 0.2888.

Since α ≤ α ·
∏n−r

i=1 (1 − 1/2i)−2 < 1/α, the initial probability estimation of
≈ 2−(r−n)2 is correct up to a small constant. We also note that (2) is a good
estimation even for relatively small values of n (e.g., n ≥ 8).
Let

pmaxR,minR =

{
2βmaxRβminR if minR < maxR

βmaxRβminR otherwise (minR = maxR),
(3)

where

βmaxRβminR = α2 · 2−(maxR−n)2−(minR−n)2 ·
n−maxR∏

i=1

(1− 1/2i)−2 ·
n−minR∏

i=1

(1− 1/2i)−2.

432 I. Dinur

Then, based on Assumption 1 and Theorem 3, for every (maxR,minR) ∈
Zm+1 × Zm+1 such that maxR ≥ minR, given h ∈ {0, 1}n, we have
Pr[RF ,n−2,h = (maxR,minR)] ≈ pmaxR,minR. Hence, according to Assump-
tion 1, the entries of HF ,n−2 are distributed multinomially, with parameter 2n

(the number of HSMs7) and probabilities given by pmaxR,minR. In particular,
each individual histogram entry HF ,n−2(maxR,minR) is distributed binomi-
ally with parameter 2n and probability pmaxR,minR.

Experimental results that support this conclusion are given in the extended
version of this paper [9].

Asymptotic Analysis of Specific Histogram Entries. For large n, the
binomial variable HF ,n−2(maxR,minR) is with high probability very close to
its expectation, which is about

2n · pmaxR,minR.

If we ignore constant multiplicative factors, we can approximate this expec-
tation by

2n · 2−(maxR−n)2−(minR−n)2 , (4)

as pmaxR,minR ≈ 2−(maxR−n)2−(minR−n)2 .
We now approximate (up to constant multiplicative factors) the expected

values of two specific histogram entries which will be useful for our algorithm.
Denote γn = �(n/2)1/2�, and let r1 = (n + 1 − γn, n − γn) and r2 = (n, n − γn).
Define the random variables S1 = HF ,d(r1) and S2 = HF ,d(r2). Below, we
estimate their expected values according to (4).

Write γn = �(n/2)1/2� = (n/2)1/2 − k, where 0 ≤ k < 1. Hence, with very
high probability we have S2 = HF ,d(r2) = HF ,d(n, n − γn) ≈ 2n · pn,n−γn

≈
2n · 2−(γn)

2
= 2n · 2−((n/2)1/2−k)2 = 2n · 2−n/2+2k(n/2)1/2−k2

= 2n/2+O(n1/2).
Therefore, S2 is close to 2n/2.

Similarly S1 = HF ,d(r1) = HF ,d(n + 1 − γn, n − γn) ≈ 2n · pn+1−γn,n−γn
≈

2n · 2−(γn−1)2−(γn)
2

= 2n · 2−2(γn)
2+2γn−1 = 2n · 2−n+(4k+2)(n/2)1/2−2k2−2k−1 =

2Θ(n1/2). Hence S1 is sub-exponential in n.

8 Details of the New Affine Equivalence Algorithm

In this section we describe and analyze our new affine equivalence algorithm. We
start with a description of the auxiliary algorithms it uses.

7 More accurately, the parameter is 2n − 1 as HSMs are non-zero.

An Improved Affine Equivalence Algorithm for Random Permutations 433

8.1 The Rank Table and Histogram Algorithm

For F : {0, 1}n → {0, 1}n represented by P = {P (i)(x[1], . . . , x[n])}n
i=1, the

following algorithm computes the rank histogram HF ,d and rank table TF ,d for
d = n − 2. The algorithm is given as input P≥(n−2).

1. For each non-zero HSM h ∈ {0, 1}n:
(a) Compute RF ,n−2,h = (maxR,minR) as follows. Compute

(P (≥n−2)◦C|h,0)(≥n−2) = (P ◦C|h,0)(≥n−2) and calculate its symbolic
rank r0 using Gaussian elimination. Similarly, compute (P (≥n−2) ◦
C|h,1)(≥n−2) = (P ◦ C|h,1)(≥n−2) and its symbolic rank r1. Let
maxR = max{r0, r1} and minR = min{r0, r1}.

(b) Insert h into TF ,n−2(maxR,minR), along with the value of the
attached constant c ∈ {0, 1} such that maxR = SR((F ◦
C|h,c)(≥n−2)) (if maxR > minR). In addition, increment entry
HF ,n−2(maxR,minR).

Note that (P (≥n−2) ◦C|h,0)(≥n−2) = (P ◦C|h,0)(≥n−2) holds according to the
first part of Lemma 1.

The time complexity of the algorithm depends on how a polynomial is rep-
resented. Here, we represent it using a bit array that specifies the values of its
monomial coefficients.

We first analyze the complexity of computing the composition (P (≥n−2) ◦
C|h,c)(≥n−2) in Step 1.(a), which is performed for each non-zero h ∈ {0, 1}n

and c ∈ {0, 1}. Each of the n polynomials of P (≥n−2) contains at most
(
n
n

)
+(

n
n−1

)
+

(
n

n−2

)
< n2 non-zero monomials. As described in Sect. 2, computing the

composition P (≥n−2) ◦ C|h,c requires substituting one of the n variables with a
linear combination of the remaining n−1 variables (while renaming the variables
of the monomials).

In total, for each polynomial of P (≥n−2)◦C|h,c, we compose its n2 monomials
with a linear combination of size n, which requires n2 · n = n3 bit operations.
However, as we are only interested in monomials of degree at least n − 2, the
outcome (P (≥n−2) ◦ C|h,0)(≥n−2) is a polynomial of at most

(
n−1
n−1

)
+

(
n−1
n−2

)
=

1 + n − 1 = n monomials, and the average complexity can be easily reduced to
n2 using low-level optimization techniques.8

In conclusion, the average complexity of computing the n polynomials of
(P (≥n−2) ◦C|h,0)(≥n−2) is n ·n2 = n3 and the total time spent on composition is
n3 ·2n bit operations (up to multiplicative constant factors). Similarly, Gaussian
elimination requires n3 bit operations, hence the total time complexity of the
algorithm is n3 · 2n bit operations.

8 For example, we can exploit the fact that the composition (P (≥n−2) ◦C|h,c)(≥n−2) is
computed for each h ∈ {0, 1}n and c ∈ {0, 1}, and the effect of flipping a bit in h on
the outcome can be precomputed. Consequently, we iterate over h ∈ {0, 1}n using a
Gray code.

434 I. Dinur

8.2 The Unique HSM Algorithm

The following algorithm computes the HSM rank histogram multi-set
HMF ,n−2,r ,r ′ and uses it to compute a set of unique HSMs, denoted by UF .
This set contains triplets of the form (h, c,HGF ,n−2,h,r ′), where h ∈ TF ,n−2(r)
is unique with respect to F , n − 2, r′ and c ∈ {0, 1} is its attached constant.
Note that for the attached constant to be defined, we must have maxR > minR,
where (maxR,minR) = r.

The algorithm is given as input the rank table TF ,n−2 and rank group
indexes r, r′.

1. For each h ∈ TF ,n−2(r), compute HGF ,n−2,h,r ′ as follows:
(a) for each h′ ∈ TF ,n−2(r′):

i. Compute h + h′, find its rank r′′ = RF ,n−2,h+h′ in TF ,n−2 and
increment HGF ,n−2,h,r ′(r′′).

(b) Insert HGF ,n−2,h,r ′ along with h and its attached constant c into the
multi-set HMF ,n−2,r ,r ′ .

2. For each unique HSM h in HMF ,n−2,r ,r ′ , add the triplet
(h, c,HGF ,n−2,h,r ′) to UF .

The time complexity of the algorithm is the product of sizes of the rank
groups |TF ,n−2(r)| · |TF ,n−2(r′)| = HF ,n−2(r) · HF ,n−2(r′).

Since the goal of the affine equivalence algorithm will be to find n linearly
independent unique HSMs, it is useful to estimate their number. In the extended
version of this paper [9] we lower bound the expected number of unique HSMs
in HMF ,n−2,r ,r ′ asymptotically (ignoring constant factors) based on Assump-
tion 1, given that F is a random permutation. More specifically, we obtain the
lower bound of S − S2/

√
S′, where S = HF ,n−2(r), and S′ = HF ,n−2(r′).

8.3 The Affine Transformation A1 Recovery Algorithm

Assume that we have affine equivalent functions F and G such that G = A2 ◦
F ◦ A1 and A1(x) = L(x) + a.

The following algorithm recovers A1 using sets of unique HSMs UF and UG ,
computed with the previous algorithm of Sect. 8.2 (where its invocations for F
and G use the same parameters values of r, r′). Since F and G are affine equiva-
lent, the HSM rank histograms of the HSMs in these sets have to match according
to Theorem 2. Each equal HSM histogram pair reveals the matching h 	→A1 h′

and its associated constant is revealed by adding the attached constants of h, h′

(which are defined in case maxR > minR, where (maxR,minR) = r), again by
Theorem 2.

Each matching h 	→A1 h′ and its associated constant give linear equations
on the columns of L and on a (respectively) according to Lemma 5. Assuming
that UF and UG contain n linearly independent unique HSMs, A1 is recovered
by linear algebra.

An Improved Affine Equivalence Algorithm for Random Permutations 435

1. Allocate n+1 linear equation systems {Ei}n+1
i=1 , each of dimension n×n:

the first n equation systems are on the columns L[i] of L and the final
equation system En+1 is on a.

2. Locate n linearly independent HSMs in UG . For each such HSM h:
(a) Recover the triplet (h, c,HGG,n−2,h,r ′) from UG .
(b) Search UF for a triplet (h′, c′,HGF ,n−2,h′,r ′) such that

HGF ,n−2,h′,r ′ = HGG,n−2,h,r ′ . If no match exists, return “Not
Equivalent”.

(c) Based on Lemma 5, for i = 1, 2, . . . , n add equation h′(L[i]) = h[i]
to Ei.

(d) Based on Lemma 5, add equation h′(a) = c + c′ to En+1.
3. Solve each one of {Ei}n+1

i=1 , recover A1 and return its matrix L and vector
a.

The complexity of the algorithm is about n ·n3 = n4 bit operations, which is
polynomial in n. Since we solve the same linear equation (with coefficients given
by the h′ vectors) n + 1 times with different constants, the complexity can be
reduced to n3 by inverting the matrix which defines the linear equations.

8.4 The New Affine Equivalence Algorithm

We describe the new affine equivalence algorithm below. Let r1 = (n+1−γn, n−
γn) and r2 = (n, n − γn) for γn = �(n/2)1/2�, as defined in Sect. 7.

1. Given F : {0, 1}n → {0, 1}n, G : {0, 1}n → {0, 1}n, compute their
corresponding ANF representations P≥(n−2) and Q≥(n−2).

2. Run the algorithm of Section 8.1 to compute the rank table TF ,n−2 and
rank histogram HF ,n−2 for F using P≥(n−2), and similarly compute
TG,n−2 and HG,n−2 forG. If HF ,n−2 �= HG,n−2, return “Not Equivalent”.

3. Run the unique HSM algorithm of Section 8.2 for F on inputs TF ,n−2

and r1, r2 defined above, and obtain the set UF . Similarly, obtain the
set for UG by running this algorithm on inputs TG,n−2 and r1, r2.
If |UF | �= |UG |, return “Not Equivalent”. Otherwise, if UF does not
contain n linearly independent HSMs, return “Fail”.

4. Run the affine transformation recovery algorithm of Section 8.3 on inputs
UF and UG . If it returns “Not Equivalent”, return the same output.
Otherwise, it returns a candidate for A1.

5. Recover a candidate for A2 = L2(x)+a2 by evaluating inputs v ∈ {0, 1}n

to F ◦ A1 and G: each input v gives n linear equations on L2 and a2.
Hence, after a bit more than n evaluations, we expect the linear equation
system to have a single solution which gives a candidate for A2.

6. Test the candidates A1, A2 by equating the evaluations of G and A2 ◦
F ◦ A1 on all 2n possible inputs. If G(v) �= A2 ◦ F ◦ A1(v) for some
v ∈ {0, 1}n, return “Not Equivalent”. Otherwise, return A1, A2.

The correctness of the algorithm follows from the correctness of the sub-
procedures is executes and from the results obtained so far. In particular,

436 I. Dinur

Step 2 is correct according to Lemma 9, while the correctness of Step 3 is based
on Theorem 2. The correctness of the final step is trivial.

Step 3 is the most complex to analyze in terms of success probability and
complexity (which is the product HF ,n−2(r1) · HF ,n−2(r2)). We first focus on
the time complexity analysis of the other steps.

The complexities of steps 4, 5 are at most polynomial in n and can be
neglected. Step 1 interpolates the 2n ANF coefficients for each of the n output
bits of F ,G. Each such interpolation can be performed in n2n bit operations
using the Moebius transform [12]. Hence this step requires n22n bit operations
and 2n function evaluations in total. The complexity of Step 2 was shown to be
n32n bit operations, while the complexity of Step 6 is 2n function evaluations.

In total, the time complexity of the algorithm is at most n32n bit operations
and 2n function evaluations, assuming that the complexity of Step 3 does not
dominate the algorithm (as we show below).

The memory complexity is 2n words of n bits, but it can be significantly
reduced in some cases as described in Sect. 8.6.

Asymptotic Analysis of the Unique HSM Algorithm. As in Sect. 7,
denote S1 = HF ,d(r1) and S2 = HF ,d(r2) and recall that their expected values
are 2Θ(n1/2) and 2n/2+O(n1/2), respectively.

The expected asymptotic complexity of the unique HSM algorithm is there-
fore at most

S1 · S2 = 2n/2+O(n1/2) � 2n.

Hence, the complexity of Step 3 is negligible compared to the complexity of the
remaining steps of the affine equivalence algorithm described above.

According to the analysis of the unique HSM algorithm given in the extended
version of this paper [9], the asymptotic lower bound on the expected number
of unique HSMs in HMF ,n−2,r ,r ′ is

S1 − (S1)2/
√

S2 > 2Θ(n1/2) − 2Θ(n1/2)/2n/4+O(n1/4) = 2Θ(n1/2) � n.

Out of these unique HSMs, n are very likely to be linearly independent. This shows
that asymptotically the algorithm succeeds with overwhelming probability.

We remark that there are many possible ways to select the rank group indexes
r1 and r2 that give similar results.

8.5 Experimental Results

In practice we do not pre-fix the rank groups of F ,G for which we run the
unique HSM algorithm. Instead, we select a reference rank group r′ such that
|TF ,n−2(r′)| ≈ 2n/2 (as r2 defined above). We then iterate over the rank groups
r from the smallest to the largest, while collecting unique HSMs using repeated
executions of the unique HSM algorithm with inputs r, r′ . We stop once we col-
lect n linearly independent unique HSMs. This practical variant is more flexible
and succeeds given that the variant above succeeds.

An Improved Affine Equivalence Algorithm for Random Permutations 437

We implemented the algorithm and tested it for various values of 8 ≤ n ≤
28. In each trial we first selected the permutation F uniformly at random. We
then chose invertible affine mappings A1, A2 uniformly at random and defined
G = A2 ◦F ◦ A1. After calculating these inputs, we executed the algorithm and
verified that it correctly recovered A1, A2.

Following this initial verification, our goal was to collect statistics that sup-
port the asymptotic complexity analysis of the unique HSM algorithm above.
For this purpose, we selected the permutation F at random and calculated the
success rate and complexity of Step 3, which executes the unique HSM algo-
rithm on F (after running steps 1, 2). If Step 3 succeeds to return n linearly
independent unique HSMs with a certain complexity for F , then it would suc-
ceed with identical complexity on any linearly equivalent G, hence analyzing a
single permutation is sufficient for the purpose of gathering statistics.

Our results for n ∈ {8, 12, 16, 20, 24, 28} are summarized in Table 1. This table
shows that all the trials for the various choices of n were successful. In terms of
complexity, for n = 8, the unique HSM algorithm had to iterate over 210.5 > 28

HSMs on average in order to find 8 unique linearly independent HSMs. This
relatively high complexity is due to the fact that our asymptotic analysis ignores
constants whose effect is more pronounced for smaller values of n. Nevertheless,
the complexity of the algorithm for n = 8 in terms of bit operations remains
roughly 83 · 28, as the unique HSM algorithm does not perform linear algebra.

For n ≥ 12, the average complexity of the unique HSM algorithm is below
2n, and this gap increases as n grows (as predicted by the asymptotic analysis).
Note that the complexity drops in two cases (between n = 16 and n = 20
and between n = 24 and n = 28) since for larger n we have more non-empty
rank groups of various sizes and hence more flexibility in the algorithm (which
happens to be quite substantial for n = 20 and n = 28). Finally, we note that
we did not optimize the index r′ of the reference rank group and better options
that improve the complexities are likely to exist. However, since the unique HSM
algorithm does not dominate the overall complexity, such improvements would
have negligible effect.

In addition to the experiments on random permutations, we also performed
simulations on random functions and obtained similar results.

8.6 Additional Variants of the New Affine Equivalence Algorithm

We describe several variants of the affine equivalence algorithm.

Using Rank Group Sums. The first additional variant we describe uses the
rank tables of F ,G to directly recover several matchings in the initial stage of
the algorithm. It is based on the observation that for each non-empty rank group
r, the HSM obtained by summing of all HSMs in TG,n−2(r) has to match (under
	→(A1)) the HSM obtained by summing of all HSMs in TF ,n−2(r) due to the addi-
tive property of the HSM bijection. Simple analysis (based on Assumption 1 and
backed up by experimental results) shows that the number of non-empty rank

438 I. Dinur

Table 1. Experimental results for the unique HSM algorithm

n Number of trials Number of successful trials Average complexity

8 1000 1000 1486 ≈ 210.5

12 1000 1000 3229 ≈ 211.7

16 1000 1000 25599 ≈ 214.6

20 1000 1000 15154 ≈ 213.9

24 1000 1000 126777 ≈ 217

28 100 100 40834 ≈ 215.3

groups for a random permutation F is at least n/4 with very high probability.
Hence we can initially recover at least n/4 matchings using this approach. There
are several ways to recover the remaining matchings by exploiting the fact that
we have essentially reduced the size of the problem from 2n to at most 23n/4.
We can also continue in a similar way, further exploiting additive properties of
the bijection: we take a uniquely matched HSM pair h, h′. For G, we compute
the HSM rank table for h with respect to some rank group r′ by adding it to all
HSMs in this group. We do the same for F by computing the HSM rank table of
h′ with respect to r′. As in the initial observation, the sum of HSMs in each non-
empty rank group of these smaller tables for F ,G match under 	→(A1), revealing
additional matchings. We repeat this process for several uniquely matched HSM
pairs (computing additional HSM rank tables) until we identify the required n
linearly independent matchings.

Reducing the Memory Complexity. The memory complexity of the algo-
rithm is about 2n words of n bits. If the functions F ,G are given as truth
tables, then the memory complexity cannot be reduced by much. However, if we
are given access to F ,G via oracles (e.g., they are implemented by block ciphers
with a fixed key), then we can significantly reduce the memory complexity with
no substantial effect on the time complexity.

First, instead of using the Moebius transform in Step 1 in order to interpolate
all the coefficients of F ,G, we simply interpolate each of the relevant ≈ n2

coefficients of degree at least n − 2 independently, increasing the complexity of
Step 1 by a factor of about n. Next, in Step 2 we do not store the entire rank
table, but only the relevant rank groups with indexes r1 and r2. As a result, we
now have to recompute the ranks of S1 · S2 HSMs in Step 3, but this requires
much lower complexity than 2n.

Overall, the memory complexity of this low-memory variant is dominated by
the size of largest rank group stored in memory S2, which is bit more than 2n/2.
Finally, by a different choice of rank groups of indexes r1 and r2, it is possible
reduce the memory to be sub-exponential in n.

An Improved Affine Equivalence Algorithm for Random Permutations 439

Multiple Solutions to the Affine Equivalence Problem. Consider the
case where there are two or more solutions of the form (A(i)

1 , A
(i)
2) to an instance

of the affine equivalence problem F ,G. This may occur (for example) if F is
self-affine equivalent, namely, there exist (A1, A2) (that are not both identities)
such that F = A2 ◦ F ◦ A1. We note that this case is extremely unlikely if F
is chosen uniformly at random for n ≥ 8, but it may occur for specific choices
(e.g., the AES Sbox is self-affine equivalent).

In case of multiple solutions, a straightforward application of the affine equiv-
alence algorithm would fail, as a HSM h would most likely match a different h′(i)

for each solution A
(i)
1 , namely h 	→

A
(i)
1

h′(i). Consequently, we would not be able
to find sufficiently many unique HSMs in Step 4. However, we can tweak the algo-
rithm to deal with this case by working on each match h 	→

A
(i)
1

h′(i) separately.
More specifically, according to Lemma 6 we know that F ◦ C|h′(i),c ≡ G ◦ C|h,0

and we can apply the algorithm recursively on these functions.

Affine Equivalences Among a Set of Functions. We consider a generaliza-
tion of the affine equivalence problem that was described in [3]. Given a set of K
functions {Fi}K

i=1, our goal is to partition them into groups of affine equivalent
functions. The naive approach is to run the affine equivalence algorithm on each
pair of functions, which results in complexity of K2 · n32n.

We can improve this complexity by noticing that up to Step 4 of the affine
equivalence algorithm the functions F ,G are analyzed independently. In par-
ticular, we can compute the rank histogram HFi ,n−2 for each function Fi inde-
pendently (as done in Step 2) in time n32n, and then sort the functions and
classify them according to their rank histograms.9 This reduces the time com-
plexity to about K · n32n + Õ(K2) (where Õ hides a small polynomial factor in
n), improving upon the time complexity of K · n322n + Õ(K2), obtained in [3].

9 Applications

We describe applications of the affine equivalence algorithm and then focus on
additional applications of the new objects and algorithms defined in this paper.

9.1 Applications of the New Affine Equivalence Algorithm

Algorithms for the affine equivalence problem are useful in several contexts such
as classification of Sboxes [6,14], producing equivalent representations of block
ciphers [3] and attacking white-box ciphers [15]. In all of these contexts, if the
goal is to apply the algorithm a few times to functions with a small domain size
n, then the main algorithm of Biryukov et al. [3] is already practical and there
is little to be gained by using our algorithm.

9 We can also attach more data to each function by computing HSM histogram multi-
sets between groups HMFi ,n−2,r ,r ′ .

440 I. Dinur

On the other hand, our algorithm may provide an advantage if the goal is to
solve the affine equivalence problem on functions with a larger domain sizes (e.g.,
the domain size of the CAST Sbox [1] is n = 32). Furthermore, our algorithm
may be beneficial if we need to solve the affine equivalence problem for many
functions with domain size n ≥ 8. For example, if we want to classify a large set of
8-bit Sboxes produced based on some design criteria, we can use the variant that
searches for affine equivalences among a set of functions (described in Sect. 8.6).

An additional application (which is also described in [3]) is cryptanalysis of
a generalization of the Even-Mansour scheme. The original scheme [11] builds
a block cipher using a public permutation F : {0, 1}n → {0, 1}n and a pair of
n-bit keys k1, k2 by defining the encryption function on a plaintext p ∈ {0, 1}n as
E(p) = F (p+k1)+k2. Breaking the scheme may be considered as a special case of
solving the affine equivalence problem where the linear matrices are identities.
Thus, in the generalized scheme, arbitrary affine transformations A1, A2 are
used as the key and the encryption function is defined as E(p) = A2 ◦ F ◦
A1(p). Clearly, breaking the generalized Even-Mansour scheme reduces to solving
the affine equivalence problem. The currently best know attack on this scheme
(given in [3]) requires about 23n/2 time and memory. It uses a birthday paradox
based approach that generalizes Daemen’s attack on the original Even-Mansour
cipher [8]. Hence, we improve the complexity of the best known attack on the
generalized Even-Mansour cipher from about 23n/2 to 2n.

9.2 Additional Applications

We describe additional applications of the rank table and histogram objects
defined in this paper, and the algorithm used to compute them.

Application to Decomposition of the ASASA Construction. The
ASASA construction is an SP-network that consists of three secret affine layers
(A) interleaved with two secret Sbox layers (S). At ASIACRYPT 2014, Biryukov
et al. [2] proposed several concrete ASASA block cipher designs as candidates
for white-box cryptography, whose security was based on the alleged difficulty of
recovering their internal components. These designs were subsequently broken
in [16] and [10].

Of particular interest is the integral attack of [10]. While the full details of
this attack are out of the scope of this paper, we focus on its heaviest computa-
tional step that consists of summing over about 2n affine subspaces of dimension
slightly less than n (where n is the block size of the scheme). This step was per-
formed in [10] in complexity of about 23n/2. We can improve the complexity of
this step (and the complexity of the full attack) to about 2n by using a symbolic
algorithm which is similar to the one used for computing the rank table.

Application to Distinguishers on Sboxes and Block Ciphers. In [4]
Biryukov and Perrin considered the problem of reverse-engineering Sboxes and
proposed techniques to check whether a given Sbox was selected at random or

An Improved Affine Equivalence Algorithm for Random Permutations 441

was designed according to some unknown criteria. These techniques are based on
the linear approximation table (LAT) and difference distribution table (DDT)
of the Sbox. Here, we provide another method based on the distribution of
entries in the rank histogram of the Sbox. More specifically, an Sbox would be
considered suspicious if its rank histogram entry sizes differ significantly from
their expected values according to the distribution derived in Sect. 7 (supported
by the experimental results of the extended version of this paper [9]).

An advantage of our proposal is that the LAT and DDT require about 22n

time and memory to compute and store, whereas the rank histogram can be
computed in time of about 2n. Hence, our proposal can be used to analyze larger
Sboxes. We can also use additional properties of HSM rank histogram multi-sets
(such as the number of unique HSMs) as possible distinguishing techniques.

In a related application, the rank table (and additional structures defined in
this paper) can be used to experimentally construct distinguishers on block ciphers
with a small block size (e.g., 32 bits). This is done be selecting a few keys for the
block cipher at random and detecting consistent deviations from random among
the resultant permutations. In particular, if there is a linear combination of the
output bits that is a low-degree function of some (n − 1)-dimensional input sub-
space, then we can detect it in time complexity of about 2n. Since there are 2n+1

possible (n − 1)-dimensional affine subspaces and 2n linear combinations of out-
put bits, we search over a space of 22n+1 possible distinguishers in about 2n time.
This can be viewed as an improvement over known experimental methods [19] that
search a much smaller space containing about n2 potential high-order differential
distinguishers in similar complexity (these methods only consider the input and
output bits, but not their linear combinations). Finally, the technique can also be
used on block ciphers with larger block sizes by considering linear subspaces of the
input domain and output range.

10 Conclusions and Open Problems

In this paper we described an improved algorithm for the affine equivalence
problem, focusing on randomly chosen permutations. The main open problem is
to further improve the algorithm’s complexity and applicability. An additional
future work item is to find more applications for the rank table and related
structures defined in this paper.

References

1. Adams, C.M.: Constructing symmetric ciphers using the CAST design procedure.
Des. Codes Cryptogr. 12(3), 283–316 (1997)

2. Biryukov, A., Bouillaguet, C., Khovratovich, D.: Cryptographic schemes based on
the ASASA structure: black-box, white-box, and public-key (extended abstract).
In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 63–84.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 4

https://doi.org/10.1007/978-3-662-45611-8_4

442 I. Dinur

3. Biryukov, A., De Cannière, C., Braeken, A., Preneel, B.: A toolbox for cryptanal-
ysis: linear and affine equivalence algorithms. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 33–50. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-39200-9 3

4. Biryukov, A., Perrin, L.: On reverse-engineering S-boxes with hidden design criteria
or structure. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 116–140. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 6

5. Bouillaguet, C., Fouque, P.-A., Véber, A.: Graph-theoretic algorithms for the “Iso-
morphism of Polynomials” problem. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 211–227. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 13

6. Brinkmann, M., Leander, G.: On the classification of APN functions up to dimen-
sion five. Des. Codes Cryptogr. 49(1–3), 273–288 (2008)

7. Canteaut, A., Roué, J.: On the behaviors of affine equivalent sboxes regarding
differential and linear attacks. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 45–74. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46800-5 3

8. Daemen, J.: Limitations of the Even-Mansour construction. In: Imai, H., Rivest,
R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 495–498.
Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57332-1 46

9. Dinur, I.: An improved affine equivalence algorithm for random permutations.
IACR Cryptology ePrint Archive 2018, p. 115 (2018)

10. Dinur, I., Dunkelman, O., Kranz, T., Leander, G.: Decomposing the asasa block
cipher construction. IACR Cryptology ePrint Archive 2015, p. 507 (2015)

11. Even, S., Mansour, Y.: A construction of a cipher from a single pseudorandom
permutation. J. Cryptol. 10(3), 151–162 (1997)

12. Joux, A.: Algorithmic Cryptanalysis. Chapman & Hall, London (2009)
13. Kolchin, V.F.: Random Graphs. Cambridge University Press, Cambridge (1999)
14. Leander, G., Poschmann, A.: On the classification of 4 bit S-boxes. In: Carlet, C.,

Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 159–176. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73074-3 13

15. Michiels, W., Gorissen, P., Hollmann, H.D.L.: Cryptanalysis of a generic class of
white-box implementations. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC
2008. LNCS, vol. 5381, pp. 414–428. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04159-4 27

16. Minaud, B., Derbez, P., Fouque, P.-A., Karpman, P.: Key-recovery attacks on
ASASA. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453,
pp. 3–27. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-
3 1

17. Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP):
two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). https://doi.org/10.
1007/3-540-68339-9 4

18. Patarin, J., Goubin, L., Courtois, N.: Improved algorithms for isomorphisms of
polynomials. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 184–
200. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054126

19. Wang, Q., Liu, Z., Varıcı, K., Sasaki, Y., Rijmen, V., Todo, Y.: Cryptanalysis
of reduced-round SIMON32 and SIMON48. In: Meier, W., Mukhopadhyay, D.
(eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 143–160. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13039-2 9

https://doi.org/10.1007/3-540-39200-9_3
https://doi.org/10.1007/3-540-39200-9_3
https://doi.org/10.1007/978-3-662-47989-6_6
https://doi.org/10.1007/978-3-662-47989-6_6
https://doi.org/10.1007/978-3-642-38348-9_13
https://doi.org/10.1007/978-3-642-38348-9_13
https://doi.org/10.1007/978-3-662-46800-5_3
https://doi.org/10.1007/978-3-662-46800-5_3
https://doi.org/10.1007/3-540-57332-1_46
https://doi.org/10.1007/978-3-540-73074-3_13
https://doi.org/10.1007/978-3-642-04159-4_27
https://doi.org/10.1007/978-3-642-04159-4_27
https://doi.org/10.1007/978-3-662-48800-3_1
https://doi.org/10.1007/978-3-662-48800-3_1
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/BFb0054126
https://doi.org/10.1007/978-3-319-13039-2_9

	An Improved Affine Equivalence Algorithm for Random Permutations
	1 Introduction
	2 Preliminaries
	3 Overview of the New Affine Equivalence Algorithm
	4 A Basic Property of Affine Equivalent Functions
	5 The Half-Space Mask Bijection and Its Properties
	6 Rank Tables, Rank Histograms and their Properties
	7 Analysis of the Distribution of Rank Histogram Entries for Random Permutations
	8 Details of the New Affine Equivalence Algorithm
	8.1 The Rank Table and Histogram Algorithm
	8.2 The Unique HSM Algorithm
	8.3 The Affine Transformation A1 Recovery Algorithm
	8.4 The New Affine Equivalence Algorithm
	8.5 Experimental Results
	8.6 Additional Variants of the New Affine Equivalence Algorithm

	9 Applications
	9.1 Applications of the New Affine Equivalence Algorithm
	9.2 Additional Applications

	10 Conclusions and Open Problems
	References

