
Full Indifferentiable Security of the Xor
of Two or More Random Permutations

Using the χ2 Method

Srimanta Bhattacharya(B) and Mridul Nandi

Indian Statistical Institute, Kolkata, India
mail.srimanta@gmail.com, mridul.nandi@gmail.com

Abstract. The construction XORP (bitwise-xor of outputs of two inde-
pendent n-bit random permutations) has gained broad attention over
the last two decades due to its high security. Very recently, Dai et al.
(CRYPTO’17), by using a method which they term the Chi-squared
method (χ2 method), have shown n-bit security of XORP when the under-
lying random permutations are kept secret to the adversary. In this work,
we consider the case where the underlying random permutations are
publicly available to the adversary. The best known security of XORP
in this security game (also known as indifferentiable security) is 2n

3
-bit,

due to Mennink et al. (ACNS’15). Later, Lee (IEEE-IT’17) proved a

better (k−1)n
k

-bit security for the general construction XORP[k] which
returns the xor of k (≥ 2) independent random permutations. However,
the security was shown only for the cases where k is an even integer.
In this paper, we improve all these known bounds and prove full, i.e.,
n-bit (indifferentiable) security of XORP as well as XORP[k] for any k.
Our main result is n-bit security of XORP, and we use the χ2 method to
prove it.

Keywords: Random permutation · Indifferentiable security
χ2 method · XOR construction · Simulator

1 Introduction

The problem to construct pseudorandom functions (PRFs) from pseudorandom
permutations (PRPs) is called “Luby-Rackoff Backwards” [BKR98] (referring to
the well known work of Luby and Rackoff who showed how to construct a PRP
from a PRF [LR88]). In [BKR98], the authors considered two sequential block
cipher calls, where the output of the first call is the key input to the second
one. However, this construction achieves security only up to the birthday bound
on the output size. Achieving security beyond the birthday bound is somewhat
non-trivial. Xoring the outputs of two independent n-bit random permutations1

1 In this work, we will essentially focus on information theoretic security in the ideal
model. Therefore, the permutations and functions that we will consider, will be
random (and not pseudorandom).

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10820, pp. 387–412, 2018.
https://doi.org/10.1007/978-3-319-78381-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78381-9_15&domain=pdf

388 S. Bhattacharya and M. Nandi

is a very simple way to construct random functions from random permutations.
We call it the XOR construction and denote it as XORP. We also consider a
generalized version of the XOR construction in which we xor k independent
n-bit random permutations, and denote it as XORP[k]. Lucks [Luc00] showed
beyond the birthday bound security for XORP[k] for all k ≥ 2. In particular,
he showed that the construction achieves at least kn

k+1 -bit security. This bound
was further improved in a sequence of papers [BI99,CLP14,Pat10,Pat08b]. Very
recently, Dai et al. [DHT17] have shown n-bit security for XORP. Earlier, Men-
nink et al. [MP15] showed a reduction proving that the security of XORP[k]
can be reduced to that of XORP for any k ≥ 3. Hence, XORP[k] also achieves
n-bit security. The XORP (or its general version XORP[k]) construction is impor-
tant since it has been used to obtain some constructions achieving beyond the
birthday bound (or sometimes almost full) security (e.g., CENC [Iwa06,IMV16],
PMAC Plus [Yas11], and ZMAC [IMPS17]).

Moving from secret to public random permutation. While to a cer-
tain degree it is possible to view the permutations as secret, there are many
reasons to consider the setting where they are public. For example, we some-
times instantiate block ciphers with fixed keys. Moreover, many unkeyed per-
mutations are designed as an underlying primitive of encryption [BDPVA11a],
MAC [BDPVA11b], hash functions [BDP+13,RAB+08,Wu11,GKM+09], etc.
The CAESAR competition [CAE] received various permutation-based authen-
ticated encryptions, and all of these constructions have been analyzed in the
public permutation model.

The security game, in this setting, is clearly different from the standard
indistinguishable model due to the public access of the adversary to the under-
lying permutations. An appropriate notion is the indifferentiability framework,
introduced by Maurer et al. [MRH04]. Informally, it gives a sufficient condi-
tion under which an ideal functionality can be replaced by an indifferentiable-
secure construction based on ideal, publicly available underlying primitives. We
note that the security game for indifferentiability is also an indistinguisha-
bility game in which one has to design a simulator aimed to simulate the
underlying primitive. In the past, many constructions were analyzed (e.g.,
[AMP10,BDPVA08,BMN10]) under this security notion.

Known indifferentiable security bounds of XORP and XORP[k]. In this
indifferentiability model, Mandal et al. [MPN10] proved 2n

3 -bit security for
XORP. Later, Mennink et al. [MP15] pointed out a subtle but non-negligible
flaw in their proof and fixed the security proof. Recently, Lee [Lee17] has shown
improved security for the general construction XORP[k]. In particular, he has
proved (k−1)n

k -bit security for the general construction XORP[k] when k is an
even integer. Table 1 summarizes the state-of-the-art for XORP and XORP[k] in
the public permutation setting.

Full Indifferentiable Security 389

Table 1. A brief comparison of known bounds and our bounds for the constructions
XORP and XORP[k]. Here q denotes the total number of queries made by the adversary
to all oracles.

Construction Best known bound Our bound

XORP q3/22n [MP15]
√

q/2n

XORP[k] qk+1

2nk (k ≥ 4 even) [Lee17]
√

q/2n

Mirror theory and its limitation. Patarin introduced a combinatorial prob-
lem motivated from the PRF-security of XORP[k] type constructions. Informally,
mirror theory (see [Pat10]) provides a suitable lower bound on the number of
solutions satisfying a system of linear equations involving exactly two variables
at a time. Together with the H-coefficient technique [Vau03,Pat08a,IMV16], this
leads to a bound on the PRF-distinguishing advantage of XORP. The mirror the-
ory seems to be very powerful as it can be applied to prove optimal security for
many constructions such as EDM, EWCDM, etc. [MN17a,MN17b]. However,
the proof of the mirror theory is quite complex with some of its steps lacking
necessary details. Later, Patarin [CLP14] himself provided a simpler alternative
but sub-optimal proof for XORP[k] (which is a trivial corollary of the mirror
theory).

One may wonder whether the same technique can be applied to the indiffer-
entiability setup or not. Here, we note that the mirror theory puts a constraint
on the system of equations so that no equation in one variable can be generated
through linear combination of equations from the system. On the other hand, in
the indifferentiable security game, the adversary can make public permutation
calls and observe the responses. So, along with the two variables linear equa-
tions, we also have to consider several single variable equations. This shows the
limitation of the mirror theory in this setup.

Our contribution and the proof technique. Proving full security of XORP in
the public permutation model was an open problem so far. The original simulator
[MPN10], used in the security proof of XORP, is conjectured to allow for security
up to 2n queries. However, the authors of [MP15] expressed this as a highly non-
trivial exercise. In this paper, we resolve this open problem and prove n-bit
indifferentiable security of XORP and XORP[k] for all k ≥ 3. Full indifferentiable
security of XORP is our main result which we state and prove in Theorem2.
Subsequently, in Theorem 3, we show full indifferentiability of XORP[k]; for this,
we reduce the security of XORP[k](k ≥ 3), to the security of XORP, and then
apply our main result.

The simulator (described in Sect. 3) that we consider in the security proof of
XORP follows the same steps as the simulator of [MPN10,Lee17] in the case of
forward queries. However, the simulator differs in the responses to the backward
queries. In the case of backward queries, the simulator queries the ideal random
function repeatedly (about n times) until it succeeds in its goal.

390 S. Bhattacharya and M. Nandi

We follow the recently introduced χ2 method [DHT17] to prove our claim.
This method was implicitly used by Stam [Sta78] while proving a bound on the
total variation between a truncated random permutation and a random function.
Though in a purely statistical context, (to the best of our knowledge) Stam’s work
can be viewed as the origin of the χ2 method, which led to a bound on the PRF-
security of the truncated random permutation construction (see [GG16,GGM17]
for recent results and discussion on this construction). In [DHT17], the authors
used this method to obtain bounds on the PRF-security of XORP and the EDM
construction [CS16a,MN17b]. Also, using this method full PRF-security of vari-
able output length XOR pseudorandom functions has been shown [BN18].

In this paper, we show another application of the χ2 method in (symmetric-
key) cryptography in the context of XORP[k] type construction. Our main result
demonstrates the power of this method as the proof of full security of XORP, in the
indifferentiability setup, becomes very hard with the existing methods. However,
our proof using the χ2 method is not a straightforward extension of the proof in the
indistinguishability framework due to Dai et al.; it is somewhat complicated as,
unlike in the indistinguishability framework, we will need to consider the primitive
queries (i.e., outputs of the individual permutations). Moreover, we will have to
handle the backward queries whose analysis is somewhat involved.

Outline of the paper. In the next section, we cover the preliminaries where we
discuss the notion of indifferentiability and the χ2 method. In Sect. 3, we describe
the simulator that we consider in the proof of our main result (Theorem2). In
Sect. 4, we state and prove Theorem 2. Some auxilliary proofs, used in the proof of
Theorem 2, are given in Sect. 5. Finally, in Sect. 6, we show full indifferentiability
of XORP[k].

2 Preliminaries

In this section, we cover the technical preliminaries required to understand our
results. We begin with the notational setup. Then we recall the preliminary
security notions related to adversary and its advantage in the context of an
indistinguishability game. This is to motivate our subsequent discussion on the
notion of indifferentiability. Finally, we briefly describe the χ2 method which is
our main tool.

Notational convention. We will use upper case letters to denote random
variables and their corresponding lower case letters to denote particular real-
izations of the variables. Given an integer s we will use the notation Xs to
denote the tuple (X1, . . . , Xs) of random variables and use xs to denote the
tuple (x1, . . . , xs) of corresponding realizations. Moreover, we write {Xs} to
denote the set {Xi : 1 ≤ i ≤ s}. Given a set S , we will write X ←$ S to mean
that X is sampled uniformly at random from the set S .

Full Indifferentiable Security 391

2.1 Adversary and Advantage

Here, we recall the notion of adversarial advantage in the context of a generic
indistinguishability game. An adversary A is an oracle algorithm that interacts
with an oracle O through queries and responses. Finally, it returns a bit b ∈
{0, 1}. We express this as A O → b.

In an indistinguishability game, A interacts with two oracles O1 and O2.
The goal of A is to distinguish between O1 and O2 only from the corresponding
queries and responses. The advantage of the adversary in this game, denoted
AdvA (O1,O2), is given by

Advdist
O1,O2

(A) := |Pr[A O1 → 1] − Pr[A O2 → 1]|,

where the probabilities are taken over the random coins of A ,O1, and O2.
In this work, we will focus on the information theoretic security of the con-

structions (XORP and XORP[k]). So, we let A to be computationally unbounded.
Therefore, without loss of any generality, we assume A to be deterministic (it
can always fix its internal coin tosses to those which maximizes its advantage).
However, we restrict A to only q queries. Let the corresponding replies from
O1 and O2 be Xq

1 = (X1,1, . . . , X1,q) and Xq
2 = (X2,1, . . . , X2,q) respectively.

Note that Xq
1 and Xq

2 are random variables that capture the randomness of the
oracles O1 and O2 respectively. Both Xq

1 and Xq
2 are distributed over the output

alphabet Ωq = Ω × · · · × Ω of the oracles. Then in this setting, it is not difficult
to see that

Advdist
O1,O2

(A) = |Pr[A O1 → 1] − Pr[A O2 → 1]|
≤ max

E ⊆Ωq

∑

xq∈E

(Pr[Xq
1 = xq] − Pr[Xq

2 = xq]). (1)

The quantity on the r.h.s. of (1) is the statistical distance or the total varia-
tion distance between Xq

1 and Xq
2 . We will consider it slightly more formally in

Sect. 2.3. We denote by Advdist
O1,O2

(q) the maximum of the distinguishing advan-
tages Advdist

O1,O2
(A) among all the adversaries A making at most q queries.

2.2 Indifferentiability

The notion of indifferentiability was introduced by Maurer et al. in [MRH04].
It is a stronger security notion than indistinguishability in the following sense.
Informally, let a construction T have oracle access to an ideal primitive F. Then
in an indistinguishability game, when T is presented as an oracle to the adversary
A , it can only query T in a black-box manner, i.e., A can not query F. Whereas
in the indifferentiability game, A can query both T and F.

392 S. Bhattacharya and M. Nandi

As shown in Fig. 1, in the indifferentiability game, in the real world, a con-
struction T has oracle access to an ideal primitive F. On the other hand, in the
ideal world, the simulator S has access to another ideal primitive G. A can query
any of these four entities with the goal of distinguishing between the two worlds.
In this case, A ’s advantage can be written as

Advdiff
TF,GS(A) = |Pr[A T,F → 1] − Pr[A G,S → 1]|.

In order to prove indifferentiability of T from G, it is sufficient to construct a
simulator S in such a way that Advdiff

TF,GS(A) becomes negligible for any adversary
A . The following definition captures this idea more formally.

Fig. 1. Indifferentiability game

Definition 1 (Indifferentiability [MRH04]). A Turing machine T with oracle
access to an ideal primitive F is said to be (t, qT, qF, ε)-indifferentiable from an
ideal primitive G if there exists a simulator S with oracle access to G and running
time at most t, such that for any adversary A , it holds that

Advdiff
TF,GS(A) < ε.

A makes at most qT queries to T or G and at most qF queries to F or S. Similarly,
TF is said to be computationally indifferentiable from G if the running time of A
is bounded above by a polynomial in the security parameter and ε is a negligible
function of the security parameter.

Remark 1. For our purpose, we will not consider the parameter t. Also, we will
not consider qT and qF separately and focus on their sum q = qT + qF, which is
the total number of queries made by A . Moreover, when F and S are adequately
understood we will write the advantage term as Advdiff

T,G(A).

We write Advdiff
T,G(q) = maxA Advdiff

T,G(A), where maximum is taken over all
adversaries making at most q queries to its oracles.

Indifferentiable security of XORP and XORP[k]. We first describe the XORP
and XORP[k] constructions. Let Perm denote the set of all permutations over
the set {0, 1}n. Let Π0 and Π1 be two independent random permutations, i.e.,

Full Indifferentiable Security 393

Π0,Π1 ←$ Perm. The XORP construction takes an input x from {0, 1}n and
returns the element Π0(x)⊕Π1(x). This construction can be further generalized
to k permutations. Let Π0, . . . ,Πk−1 be k independent random permutations.
We define

XORP[k](x) =
k−1⊕

i=0

Πi(x). (2)

So, XORP[2] is same as XORP. Now, we describe the setting of indifferentiable
security in our context.

Real world. In the real world, the construction XORP has oracle access to the
random permutations Π0 and Π1. When the adversary A queries the construc-
tion XORP with a value x ∈ {0, 1}n, XORP queries the oracles Π0 and Π1

with x and receives back Π0(x) and Π1(x) respectively. Finally, it computes
Π0(x) ⊕ Π1(x) and returns it to A . In addition to querying the XORP con-
struction, A can directly query the oracles Π0 and Π1 and obtain the values
of Π0(y),Π1(y),Π−1

0 (y), and Π−1
1 (y) for any y ∈ {0, 1}n. The queries for Π0(y)

and Π1(y) are forward queries and the queries Π−1
0 (y) and Π−1

1 (y) are backward
queries.

Ideal world. In the ideal world, A queries the random function $ and the sim-
ulator S. S has oracle access to $. However, S does not have access to (the
transcripts of) the interactions between A and $. The purpose of S is to simu-
late the output behavior of the oracles Π0 and Π1. That is, for b ∈ {0, 1}, when
A makes a forward query (x, b) with x ∈ {0, 1}n, S returns a random variable
Vb ∈ {0, 1}n. So, for b ∈ {0, 1}, Vb simulates Πb(x). Similarly, when A makes
a backward query (y, b) (with y ∈ {0, 1}n and b ∈ {0, 1}) S returns a random
variable Vb ∈ {0, 1}n ∪ {⊥}. Vb ∈ {0, 1}n simulates Πb

−1(y). The output Vb =⊥
indicates that S aborted after a fixed number of iterations. This will be more
clear when we will describe the simulator S in Sect. 3. In order to prove that
XORP is indifferentiable from $ it is enough to construct simulator S in such a
way that no adversary A can distinguish between the distributions of Vb and
Πb. In other words, advantage of any adversary A , which, in this case, can be
written as below,

Advdiff
XORP,$(A) = |Pr[A XOR,(Π0,Π1,Π

−1
0 ,Π−1

1) → 1] − Pr[A $,S → 1]|
becomes negligible. In our case, we will restrict A to q queries and obtain a
concrete upper bound on Advdiff

XORP,$(A) (in terms of parameters q and n). This
will be sufficient to show indifferentiability of XORP with $. For the XORP[k]
construction, we obtain similar upper bound on Advdiff

XORP[k],$(A).

2.3 χ2 Method for Bounding Total Variation

Here, we provide a brief description of the χ2 method. Given a set Ω, let Xq :=
(X1, . . . , Xq) and Zq := (Z1, . . . , Zq) be two random vectors distributed over

394 S. Bhattacharya and M. Nandi

Ωq = Ω×· · ·×Ω (q times) according to the distributions P0 and P1 respectively.
Then the total variation distance or statistical distance between the distributions
P0 and P1 is defined as

‖P0 − P1‖ :=
1
2

∑

xq∈Ωq

|P0(xq) − P1(xq)| = max
E ∈Ωq

(
∑

xq∈E

P0(xq) − P1(xq)

)
.

In what follows, we will require the following conditional distributions.

P0|xi−1(xi) := Pr[Xi = xi | X1 = x1, . . . , Xi−1 = xi−1],

P1|xi−1(xi) := Pr[Zi = xi | Z1 = x1, . . . , Zi−1 = xi−1].

When i = 1, P0|xi−1 [x1] represents Pr[X1 = x1]. Similarly, for P1|xi−1 [x1]. Let
xi−1 ∈ Ωi−1, i ≥ 1. The χ2-distance2 between these two conditional probability
distributions is defined as

χ2(P0|xi−1 ,P1|xi−1) :=
∑

xi∈Ω

(P0|xi−1(xi) − P1|xi−1(xi))2

P1|xi−1(xi)
. (3)

Note that for the above definition to work, it is required that the support of the
distribution P0|xi−1 be contained within the support of the distribution P1|xi−1 .
Further, when the distributions P0|xi−1 and P1|xi−1 are clear from the context
we will use the notation χ2(xi−1) for χ2(P0|xi−1 ,P1|xi−1).

In a very recent work [DHT17], Dai et al. introduced a new method, which
they term the χ2 method (Chi-squared method), to bound the statistical distance
between two joint distributions in terms of the expectations of the χ2-distances
of the corresponding conditional distributions. At the heart of the χ2 method is
the following theorem, stated in our notation and setting.

Theorem 1 ([DHT17]). Following the notation as above and suppose the sup-
port of the distribution P0|xi−1 is contained within the support of the distribution
P1|xi−1 for all xi−1, then

‖P0 − P1‖ ≤
(

1
2

q∑

i=1

Ex[χ2(Xi−1)]

) 1
2

, (4)

where for each i, the expectation is over the (i−1)-th marginal distribution of P0.

As an aside, we mention that the main ingredients of the proof of Theorem1
are (i) Pinsker’s inequality, (ii) chain rule of Kullback-Leibler divergence (KL
divergence), and (iii) Jensen’s inequality3: Pinsker’s inequality upper bounds
statistical distance between the distributions by the KL divergence between the
2 χ2-distance has its origin in mathematical statistics dating back to the work of

Pearson (see [LV87]). It may be observed that χ2-distance is not symmetric and
hence it is not a metric.

3 See [CT06] for a background on these topics.

Full Indifferentiable Security 395

two distributions, chain rule of KL divergence expresses the KL divergence of two
joint distributions as the sum of the KL divergences between corresponding con-
ditional distributions, and finally Jensen’s inequality is used to upper bound the
KL divergence between two distributions by their χ2-divergence (χ2-distance).

In [DHT17], Dai et al. have applied Theorem1 to show PRF-security of
two well known constructions, namely the xor of two random permutations
[Pat08b,Pat10,BI99,Luc00] and the encrypted Davies-Meyer (EDM) construc-
tion [CS16a,MN17a]. Subsequently, in [BN18], this method has been applied to
prove full PRF-security of the variable output length XOR pseudorandom func-
tion construction. This method seems to have potential for further application
to obtain better bounds (and simplified proofs) on the PRF-security of other
constructions where proofs so far have evaded more classical methods, such as
the H-coefficient method [Pat08a]. In fact, much earlier, Stam [Sta78] used this
method, implicitly and in a purely statistical context, to obtain a PRF-security
bound of the truncated random permutation construction.

3 Simulator and Transcripts

3.1 Description of the Simulator

Here, we describe the simulator S used in the proof of Theorem 2.4 The goal of
the simulator S is to mimic the permutations Π := (Π0(.),Π1(.),Π0

−1(.),Π1
−1(.))

in such a way that (XORP,Π) and ($,S) look indistinguishable. So, S has inter-
faces corresponding to the forward and backward queries of the random permuta-
tions Π0 and Π1. Formally, S consists of a pair of stateful randomized algorithms
SIMFWD (which is invoked for the responses to the forward queries) and SIMBCK

(which is invoked for responses to the backward queries). More precisely, for
x ∈ {0, 1}n and b ∈ {0, 1}, when an adversary A makes a forward query (x, b)
to S, S runs the algorithm SIMFWD and returns a random variable Vb ∈ {0, 1}n.
So, for b ∈ {0, 1}, Vb simulates Πb(x). Similarly, when A makes a backward query
(y, b) (with y ∈ {0, 1}n and b ∈ {0, 1}) to S, S runs the algorithm SIMBCK and
returns a random variable Vb ∈ {0, 1}n ∪ {⊥}. Vb ∈ {0, 1}n simulates Πb

−1(y).
Note that S has access to the random function $ which returns random elements
from {0, 1}n on every fresh query. The goal of the simulator S is to simulate the
output behavior of Π0(.),Π1(.),Π0

−1(.), and Π1
−1(.) in the ideal world in such

a way that it remains consistent with the XORP construction, which is given by
the condition

$(x) = SIMFWD(x, 0) ⊕ SIMFWD(x, 1) for x ∈ {0, 1}n.

However, S may fail to maintain the condition. Whenever it fails (which happens
only for the backward queries), SIMBCK returns ⊥. Before returning ⊥ it makes
several attempts where it interacts with $. If after n attempts it fails to maintain
the condition (we will show that would happen with very low probability), it
aborts. Vb = ⊥ indicates that event.
4 We will consider another simulator in the proof of Theorem 3.

396 S. Bhattacharya and M. Nandi

Description of the internal state. In order to be consistent with its replies,
i.e., to output the same Vb corresponding to the same queries (forward or back-
ward), S is stateful, i.e., it maintains a history of all the previous interactions
(i.e., queries and responses) with A . To do this, S internally maintains three
sets D ,R0, and R1, and also maintains two lists (indexed by elements of D)
L0,L1.

The set D contains all x ∈ {0, 1}n belonging to the forward queries (x, b)
made by A and all Vb ∈ {0, 1}n that the simulator output on a backward query
made by A . For b ∈ {0, 1}, the set Rb contains all y ∈ {0, 1}n belonging to the
backward queries (y, b) made by A along with all Vb output by S on a forward
query made by A . The lists L0,L1 capture the input-output mapping of S.
More precisely, for b ∈ {0, 1}, x ∈ D , y ∈ Rb, Lb(x) = y implies either Vb = y
was output on a forward query (x, b) or Vb = x was output on a backward query
(y, b). More importantly, for all x ∈ D , the relationship L0(x) ⊕ L1(x) = $(x)
is always satisfied.

Now, we describe how the simulator works via the algorithms SIMFWD and
SIMBCK. Details of the these algorithms are given in Figs. 2 and 3. In the follow-
ing, we assume that A always makes fresh queries since otherwise the simulator
can repeat the previous responses (as it maintains internal states keeping all
previous queries and responses).

Algorithm SIMFWD (see Fig. 2). On an input (x ∈ {0, 1}n, b ∈ {0, 1}), S queries
$ to obtain Z = $(x). Then, S samples Vb randomly from the set {0, 1}n \ {Rb ∪
{Z ⊕ R1−b}}, where Z ⊕ R1−b denotes the set {Z ⊕ y|y ∈ R1−b}. Here, it can

Fig. 2. Description of the simulator for all forward queries.

Full Indifferentiable Security 397

be observed that the set {0, 1}n \ {Rb ∪ {Z ⊕ R1−b}} is non-empty, provided
q < 2n−1. Therefore, for q < 2n−1, the sampling is always possible. Subsequently,
S sets Vb and Z⊕Vb as outputs of SIMFWD(x, b) and SIMFWD(x, 1−b) respectively
(and hence SIMFWD(x, 0) ⊕ SIMFWD(x, 1) = $(x)). Before S returns Vb to the
adversary, it updates all internal sets accordingly.

Algorithm SIMBCK (see Fig. 3). Next, we present the algorithm SIMBCK. On an
input (y ∈ {0, 1}n, b ∈ {0, 1}), S samples an element Vb randomly from outside
the set D and then obtains $(Vb) by querying $. Now, there is a certain chance
that $(Vb)⊕y is in the range set R1−b, which would then violate the permutation
property of Π1−b that S is simulating. So, S continue with similar attempts until
it samples a Vb such that $(Vb) ⊕ y /∈ R1−b. It makes at most n such attempts.
If it fails after all these n attempts, it returns ⊥. In all these attempts, the S
maintains an auxiliary set D ′ which is not a part of its state and only used
locally during an execution. At the beginning of the algorithm, D ′ is initialized
to the current domain D . At the start of each iteration, a fresh Vb is sampled
from the set {0, 1}n \ D ′. If the conditions y ⊕ $(Vb) ∈ R1−b is satisfied (i.e.,
the sampled Vb turns out to be a bad choice), then Vb is appended to D ′ and
the next iteration begins. Note that if q + n < 2n then the set {0, 1}n \ D ′ is
always non-empty so that the sampling of Vb (in Step 6) is possible in every
iteration. But q + n < 2n is trivially satisfied for n ≥ 3 and q < 2n−1. When the
condition is not satisfied (i.e., when y ⊕ $(Vb) /∈ R1−b) then S returns Vb after
appropriately updating all the internal sets.

Remark 2. Here, as an aside, one may notice that there is a chance of collision
due to two backward queries made to the two random permutations in the real
world or two interfaces in the ideal world. We explain this with the following
example. Assume that A makes backward queries (y, 0) and (y′, 1) in the real
world. Then it is easy to see that there is a positive probability of getting the
same output in both the cases (as Π0 and Π1 are sampled independently from
the set Perm). On the other hand, in the ideal world, when A makes the query
(y, 0), then if y ⊕ $(V0) /∈ R1 (which has positive probability) then at Step 13 of
SIMBCK L1(V0) is set to $(V0) ⊕ y and V0 is returned to A . Now, if A makes
the query ($(V0) ⊕ y, 1) then due to the check at Step 2, V0 is again returned
to A . Therefore, there is a positive probability of collision for the queries (y, 0)
and (y′, 1) in the ideal world as well (as was to be expected since the simulator
is simulating the permutations Π0 and Π1), where y′ = $(V0) ⊕ y in this case.

3.2 Additional Information to the Adversary

After the adversary A has finished its interaction in the real/ideal world, i.e.,
when it has made q queries and received corresponding replies, it is provided
with the following additional information. Note that the additional information
does not degrade A ’s advantage as it is always possible to discard it. Below we
assume x, xi, y are from {0, 1}n and b is from {0, 1}.

398 S. Bhattacharya and M. Nandi

Fig. 3. Description of the simulator for all backward queries.

1. For each query x made to the construction XORP, A is given the values Π0(x)
and Π1(x). Similarly, for each query x made to the random function $, A is
given the outputs of the simulator S corresponding to the forward queries
(x, 0) and (x, 1).

2. For each forward query (x, b) made to Πb (i.e., for each value of Πb(x)), it is
also given Π1−b(x). Similarly, for each forward query (x, b) made to S, A is
also given the value corresponding to the forward query (x, 1 − b).

3. For each backward query (y, b) made to Πb (i.e., for each value of Π−1
b (y)), it

is also given Π1−b(Π−1
b (y)). For each backward query (y, b) made to S, A is

also given the value corresponding to the forward query (x, 1 − b), where x is
the value returned by S on the backward query (y, b).

With access to this extra information, A knows the tuple (xi,Π0(xi),Π1(xi))
corresponding to its i-th query in the real world. Note that from Π0(xi) and
Π1(xi), A can always obtain Π0(xi) ⊕ Π1(xi) (which is, in fact, the output
of XORP when queried with xi). Therefore, we do not include this redundant

Full Indifferentiable Security 399

information in the tuple. When Π0(xi) and Π1(xi) are treated as random
variables, we will denote Π0(xi) by U0,i and Π1(xi) by U1,i. So, the tuple
(xi, U0,i, U1,i) is a random variable and an arbitrary but fixed value of this ran-
dom variable will be denoted by (xi, u0,i, u1,i). Similarly, in the ideal world,
corresponding to the i-th query, A knows the tuple (xi, V0,i, V1,i), where for
b ∈ {0, 1}, Vb,i is the reply of S to the forward query (xi, b). Similar to the pre-
vious case, we will denote a fixed value of the random variable (xi, V0,i, V1,i) by
(xi, v0,i, v1,i). In the case where the backward query resulted in an abort, i.e.,
the output was ⊥, we take xi = ⊥ and v0,i and v1,i can be arbitrary (but fixed).
In fact, in this case, v0,i and v1,i are purely included to maintain uniformity of
presentation and will be disregarded in subsequent calculations. Further, slightly
abusing the notation for its simplicity, we will denote any such tuple (i.e., a tuple
with xi = ⊥) by ⊥. Note that we did not include the query type (i.e., forward
or backward) information in the tuple as, in our calculation, we will consider
both the possibilities for a tuple. However, for the sake of completeness, one can
assume that A has this information.

Without loss of any generality we will assume that A does not repeat its
queries as the response will be the same for a repeated query. Also, we will
discard any duplicate copy of a tuple that may have occurred due to the extra
information supplied to A 5.

(Extended) transcript of the adversary. In the real world, the sequence of
random variables (xi, U0,i, U1,i), with 1 ≤ i ≤ q, is supported on the set Tu of
sequences (xi, u0,i, u1,i), 1 ≤ i ≤ q, xi, u0,i, u1,i ∈ {0, 1}n and xi �= xj , u0,i �=
u0,j , u1,i �= u1,j for 1 ≤ i < j ≤ q. Whereas in the ideal world the sequence of
random variables (xi, V0,i, V1,i), with 1 ≤ i ≤ q, is supported on the set Tv of
sequences (xi, v0,i, v1,i), 1 ≤ i ≤ q, xi ∈ {0, 1}n ∪ {⊥}, v0,i, v1,i ∈ {0, 1}n and
xi �= xj , v0,i �= v0,j , v1,i �= v1,j for each 1 ≤ i < j ≤ q such that xi �= ⊥ �= xj . So,
we have Tu ⊂ Tv. We term elements of Tu and Tv views of the adversary. In
our subsequent treatment, we will solely work with the views from the real and
the ideal world, and the fact that Tu ⊂ Tv will be essential for the application
of the χ2 method.

4 Main Result

In this section, we state and prove our main result. We continue in the setup of
the previous section. To simplify the presentation we denote 2n by N . Our main
result is the following.

Theorem 2. Let N ≥ 16 and q < N
2 . Then

Advdiff
XORP,$(q) ≤

√
1.25q

N

5 For example, such a duplicate of a tuple (xi, u0,i, u1,i) can occur in the real world if
A queries the XORP with xi and later makes a backward query to Π0 with u0,i.

400 S. Bhattacharya and M. Nandi

Proof. Before presenting the technical details we will provide a brief outline of
the proof to help the reader follow the underlying idea and the flow of the proof.
But before that we will describe our notational setup for the proof.

Notational setup: To simplify the notation we will denote the random variable
(xi, U0,i, U1,i) by Si and (xi, V0,i, V1,i) by Ti. So, Si (resp. Ti) follows the distri-
bution of the real (resp. ideal) world which we denote by pfwd

0 (.) (resp pfwd
1) when

Si (resp Ti) is a forward query and by pbck
0 (.) (resp pbck

1) when Si (resp Ti) is a
backward query. Hence, we denote Pr[Si = si] by pfwd

0 (si) and Pr[Ti = ti] by
pfwd

1 (ti) when Si and Ti are forward queries and likewise for backward queries.
Further, we will abuse the notation to denote the joint distribution of Si−1 by
pfwd

0 when Si−1 corresponds to i − 1 forward queries and by pbck
0 when Si−1 cor-

responds to i − 1 backward queries. Moreover, for fixed si and si−1, we denote
Pr[Si = si | S1 = s1, . . . , Si−1 = si−1] by pfwd

0 (si | si−1) when Si corresponds to
a forward query; likewise for the other cases.

Outline of the proof: The main tool we use in our proof is Theorem1. Our goal
is to evaluate the r.h.s. of (4). In doing so, we calculate Ex[χ2(Si−1)] over the real
world distributions (pfwd

0 and pbck
0). More precisely, we consider the two cases;

(i) when si is a forward query, and (ii) when si is a backward query. For the
forward query case, we first calculate χ2(si−1) for fixed si−1, which is given by
the sum of

(pfwd
0 (si | si−1) − pfwd

1 (si | si−1))2

pfwd
1 (si | si−1)

taken over all possible si given si−1. Here, we note that the support Tu of real
world distributions (pfwd

0 and pbck
0) is included in the supports Tu and Tv of

the ideal world distributions pfwd
0 and pbck

0 respectively. Hence, χ2(si−1) is well
defined. Next, we consider the random variable Si−1 in the real world. Each
Sj ∈ {Si−1} may correspond to a forward query or a backward query. However,
since the distributions pfwd

0 and pbck
0 are identical, the distribution of Si−1 does

not depend on the query type of each individual Sj . So, we treat χ2(Si−1) as a
random variable and take its expectation under the distribution of Si−1. Finally,
we take the sum of Ex[χ2(Si−1)] for all i in the range 1 ≤ i ≤ q, which turns
out to be 8q3

N3 .
Corresponding steps for the backward query case are exactly similar to the

forward query case when si �=⊥. The case when si =⊥ is treated separately.
Summing the expectations Ex[χ2(Si−1)] for the two subcases (i.e., for si �=⊥
and si =⊥) we obtain the final sum (taken over all i in the range 1 ≤ i ≤ q)
for the backward query case to be 2.5q

N . Finally, we get the upper bound on
Advdiff

XORP,$(q) by applying Theorem1, where we get an upper bound on the r.h.s.
of (4) by taking the maximum of the forward and backward queries for all the q
queries (which in this case turns out to be the backward query).

Full Indifferentiable Security 401

Technical details: Following the above discussion we first consider the case when
si is a forward query, and then consider the case when it is a backward query.
To simplify notation, from here on, we will denote i − 1 by r.

Forward query

First, we calculate pfwd
0 (si | sr) and pfwd

1 (si | sr) for fixed si and sr, where
si = (xi, u0,i, u1,i). pfwd

0 (si | sr) is straightforward to calculate. Since xi /∈ {xr},
Π0(xi) and Π1(xi) are two independent random samples drawn from outside the
sets {ur

0} and {ur
1} respectively. Thus

pfwd
0 (si | sr) = Pr[Si = (xi, u0,i, u1,i) | S1 = (x1, u0,1, u1,1), . . . ,

Sr = (xr, u0,r, u1,r)]
= Pr[Π0(xi) = u0,i ∧ Π1(xi) = u1,i | Π0(xj) = u0,j∧

Π1(xj) = u1,j∀1 ≤ j ≤ r]

=
1

(N − r)2
(5)

To calculate pfwd
1 (si | sr), we consider, without loss of any generality, the execu-

tion of the algorithm SIMFWD algorithm on the forward query (v0,i, 0) (the case
when the forward query is (v1,i, 1) is identical). In this case, D = {xr},R0 =
{ur

0},R1 = {ur
1}. Then we have

pfwd
1 (si | sr) = Pr[Ti = (xi, v0,i, v1,i) | T1 = (x1, v0,1, v1,1), . . . , Tr = (xr, v0,r, v1,r)]

= Pr[$(xi) = v0,i ⊕ v1,i ∧ V0 = v0,i | D = {xr},R0 = {ur
0},R1 = {ur

1}]

=
1

N
× 1

N − |Wxi |
, (6)

where Wxi
= R0 ∪ {$(xi) ⊕ R1}. From (5) and (6) we derive the expression for

χ2(sr) below.

χ2(sr) =
∑

si

(pfwd
0 (si|sr)−pfwd

1 (si|sr))2

pfwd
1 (si|sr)

=
∑

si

(
1

(N−r)2
− 1

N(N−|W xi
|)

)2

1
N(N−|W xi

|)

=
∑

si

N
(

|Wxi
|− 2rN−r2

N

)2

(N−|Wxi
|)(N−r)4 . (7)

The sum in (7) is over all possible si’s given sr. The number of such number of
such si’s is (N − r)(N − |Wxi

|). Therefore,

χ2(sr) =
N
(
|Wxi

| − 2rN−r2

N

)2

(N − r)3
(8)

Let Sr be chosen according to the distribution pfwd
0 . Then D ,R0,R1 are random

variables. This, in turn, means Wxi
and χ2(Sr) are also random variables (as

402 S. Bhattacharya and M. Nandi

functions of D ,R0,R1). Our goal is to calculate the expectation of χ2(Sr) under
the distribution pfwd

0 . For notational simplicity, we denote the random variable
|Wxi

| by W (mildly violating our notational convention). So, from (8) we have

Ex[χ2(Zr)] = Ex

⎡

⎢⎣
N
(
W − 2rN−r2

N

)2

(N − r)3

⎤

⎥⎦

=
N

(N − r)3
× Ex

[(
W − 2rN − r2

N

)2
]

. (9)

In the next lemma, whose proof is postponed to Sect. 5, we calculate Ex[W].

Lemma 1. With the above notation

Ex[W] =
2rN − r2

N
, and Var[W] ≤ r2

N
.

Using Lemma 1, (9) can be written as

Ex[χ2(Sr)] =
N

(N − r)3
× Ex

[
(W − Ex[W])2

]

=
N

(N − r)3
× Var[W].

In Lemma 1, we also showed that Var[W] ≤ r2

N . This leads to the following final
expression for the forward query case.

q∑

i=1

Ex[χ2(Sr)] ≤
q∑

i=1

r2

(N − r)3

≤ 8q3

N3
. (10)

In (10), we used the fact r < q and q < N
2 .

Backward query

Let Z be the set of all possible si’s which are not ‘abort’, i.e., si �= ⊥. Then for
backward queries we have the following split.

Ex[χ2(Sr)] =Ex

[
∑

si∈Z

(pbck
0 (si | Sr) − pbck

1 (si | Sr))2

pbck
1 (si | Sr)

]

+ Ex
[
(pbck

0 (⊥ | Sr) − pbck
1 (⊥ | Sr))2

pbck
1 (⊥ | Sr)

]
(11)

We evaluate the two expectations on the r.h.s. of (11) in the following two cases.

Full Indifferentiable Security 403

Case 1: si ∈ Z
In this case, we have for fixed sr,

pbck
0 (si | sr) = pfwd

0 (si | sr) =
1

(N − r)2
.

Next, we calculate pbck
1 (si | sr). For this, we need to consider the execution of

the algorithm SIMBCK. Let the backward query, without loss of any generality, be
(v0,i, 0). Further, let us denote by V j

0 the V0 sampled by the algorithm SIMBCK

at the j-th iteration, where by j-th iteration we mean j-th repeated execution
of the steps 6 to 19 of SIMBCK. Let us assume that SIMBCK succeeds at the �-
th iteration for 1 ≤ � ≤ n, i.e., for 1 ≤ j ≤ � − 1, $(V j

0) ⊕ v0,i ∈ R1, and
V �

0 = xi, where R1 = {vr
1} (also R0 = {vr

0},D = {xr}). Let us denote by
BAD�−1 the event $(V 1

0) ⊕ v0,i, . . . , $(V �−1
0) ⊕ v0,i ∈ R1 and by E the event

D = {xr} ∧ R0 = {vr
0} ∧ R1 = {vr

1}. Then

pbck
1 (si | sr) = Pr[Ti = (xi, v0,i, v1,i) | Tr = (xr, v0,r, v1,r), . . . , T1 = (x1, v0,1, v1,1)]

=
n∑

�=1

Pr[BAD�−1 ∧ V �
0 = xi ∧ $(xi) = v0,i ⊕ v1,i | E]

=
n∑

�=1

Pr[V �
0 = xi ∧ $(xi) = v0,i ⊕ v1,i | BAD�−1,E] × Pr[BAD�−1 | E]

Now, Pr[BAD�−1 | E] can be calculated as

Pr[BAD�−1 | E] =
�−1∏

j=1

Pr[$(V j
0) ⊕ v0,i ∈ R1 = {vr

1} | E]

=
(r

N

)�−1

. (12)

To justify (12) we first note that the distribution pbck
0 (.) is supported on the

set of tuples sr = (s1, . . . , sr) such that none of the sj , with 1 ≤ j ≤ r, is ⊥.
So, in the SIMBCK algorithm the set R1 has size r. Also, at the j-th iteration,
with 1 ≤ j ≤ � − 1 a fresh V j

0 (sampled from outside the set D ′) is given to $.
Therefore, BAD�−1 occurs when � − 1 independent events each with probability
r
N occur, leading to the expression in (12).

Next, at the �-th iteration the set D ′ has size r + � − 1. Since V �
0 is sampled

at random from the set {0, 1}n \ D ′, we immediately have

Pr[V �
0 = xi ∧ $(xi) = v0,i ⊕ v1,i | BAD�−1,E] =

1
N

× 1
N − r − � + 1

. (13)

By combining (12) and (13) we get

pbck
1 (si | sr) =

n∑

�=1

1
N

× 1
N − r − � + 1

×
(r

N

)�−1

. (14)

In the following lemma, we derive a lower and an upper bound on pbck
1 (si | sr).

Proof of the lemma is given in Sect. 5.

404 S. Bhattacharya and M. Nandi

Lemma 2. With the above notation, the following bounds hold for pbck
1 (si | sr).

1
(N − r)2

×
(
1 −
(r

N

)n)
≤ pbck

1 (si | sr) ≤ 4
N(N − r)

.

Let us denote the lower and upper bounds in Lemma2 by L and U respectively.
Then

(
pbck

0 (si | sr) − pbck
1 (si | sr)

)2

pbck
1 (si | sr)

≤ max

⎧
⎪⎨

⎪⎩

(
U − 1

(N−r)2

)2

U
,

(
L − 1

(N−r)2

)2

L

⎫
⎪⎬

⎪⎭
.

(15)

(15) is justified because the function

(
y− 1

(N−r)2

)2

y attains its minimum (= 0) at
y = 1

(N−r)2 and is strictly increasing for y ≥ 1
(N−r)2 and strictly decreasing for

y ≤ 1
(N−r)2 . Now,

(
U − 1

(N−r)2

)2

U
=

3N − 4r

4N(N − r)3
,

and
(
L − 1

(N−r)2

)2

L
=

(
r
N

)2n

(N − r)2 × (1 − (r
N

)n) .

Further, considering that |Z | is at most (N −|D |)(N −|R1|) = (N −r)2, we get

∑

si∈Z

(
pbck

0 (si | sr) − pbck
1 (si | sr)

)2

pbck
1 (si | sr)

≤ max

{
3N − 4r

4N(N − r)
,

(
r
N

)2n

(
1 − (r

N

)n)
}

.

Therefore, when Sr is a random variable that follows the distribution pbck
0 , we

obtain the following expectation under the distribution pbck
0 .

Ex

[
∑

si∈Z

(
pbck

0 (si | Sr) − pbck
1 (si | Sr)

)2

pbck
1 (si | Sr)

]
≤ max

{
3N − 4r

4N(N − r)
,

(
r
N

)2n

(
1 − (r

N

)n)
}

.

(16)

Case 2: si = ⊥
In the real world, there is no abort, so pbck

0 (⊥ | Sr) = 0. Therefore, similar to (12),

Ex

[(
pbck

0 (⊥ | Sr) − pbck
1 (⊥ | Sr)

)2

pbck
1 (⊥ | Sr)

]
= Ex

[
pbck

1 (⊥ | Sr)
]

= pbck
1 (⊥)

=
(r

N

)n

. (17)

Full Indifferentiable Security 405

From (11), (16), and (17) we derive

q−1∑

r=0

Ex[χ2(Sr)] ≤
q−1∑

r=0

max

{
3N − 4r

4N(N − r)
,

(
r
N

)2n

(
1 − (r

N

)n)
}

+
(r

N

)n

≤ q ×
(

max

{
3

4(N − q)
,

(
q
N

)2n

(
1 − (q

N

)n)
}

+
(q

N

)n
)

.

For q < N
2 we have the following bounds,

3
4(N − q)

<
3

2N
,

(
q
N

)2n

(
1 − (q

N

)n) <
1

N(N − 1)
, and

(q

N

)n

<
1
N

.

Hence, we have for the backward query

q−1∑

r=0

Ex[χ2(Sr)] ≤ 2.5q

N
. (18)

Finally, we get the following upper bound on Advdiff
XORP,$(q).

Advdiff
XORP,$(q) = ‖Sq − T q‖ (19)

≤
√√√√1

2

q−1∑

r=0

Ex[χ2(Sr)] (20)

≤
√

1.25q

N
, (21)

where (19) is from the definition of Advdiff
XORP,$(q). (20) is given by (4) and (21)

is given by the maximum of (10) and (18) (which is (18)) for the q queries. ��

5 Auxiliary Proofs

In this section we state and prove Lemmas 1 and 2. We begin with Lemma 1
where we work with the same notation and setting of the Forward Query part
of the proof of Theorem 2.

5.1 Proof of Lemma 1

Lemma 1. With the notation of Theorem2,

Ex[W] =
2rN − r2

N
, and Var[W] ≤ r2

N
.

406 S. Bhattacharya and M. Nandi

Proof. When Zr is chosen according to the distribution pfwd
0 the sets {Ur

0 } and
{Ur

1 } are two random subsets (sampled independently) of {0, 1}n of cardinality
r. Also, in keeping with the notation of Theorem2, we assume xi to be a fixed
element of {0, 1}n. Now, for each g ∈ {0, 1}n, we define an indicator random
variable Ig as follows.

Ig =

{
1 if g ∈ {Ur

0 } and g ⊕ xi ∈ {Ur
1 }

0 otherwise.

Therefore,

Ex[Ig] = Pr[Ig = 1] = Pr[g ∈ {Ur
0 } ∧ g ⊕ xi ∈ {Ur

1 }] =
r

N
× r

N
=

r2

N2
. (22)

Also,

W = 2r −
∑

g∈{0,1}n

Ig.

Thus,

Ex[W] = 2r − Ex

⎡

⎣
∑

g∈{0,1}n

Ig

⎤

⎦ = 2r −
∑

g∈{0,1}n

Ex[Ig] =
2rN − r2

N
.

Next, to calculate Var[W] we use the following relationship.

Var[W] = Var

⎡

⎣
∑

g∈{0,1}n

Ig

⎤

⎦ =
∑

g∈{0,1}n

Var[Ig] +
∑

g �=h∈{0,1}n

Cov[Ig, Ih].

Var[Ig] is straightforward to calculate from the defintion;

Var[Ig] = Ex[I2
g] − Ex[Ig]2 = Ex[Ig](1 − Ex[Ig])

=
r2

N2
×
(

1 − r2

N2

)

<
r2

N2
.

From the definition, Cov[Ig, Ih] is given by Cov[Ig, Ih] = Ex[IgIh] −
Ex[Ig]Ex[Ih]. Since Ex[Ig] = Ex[Ih] = r2

N2 is given by (22), the task reduces to
the calculation of Ex[IgIh] which we consider below.

Ex[IgIh] = Pr[Ig = 1 ∧ Ih = 1]
= Pr[g ∈ {Ur

0 } ∧ h ∈ {Ur
0 } ∧ g ⊕ xi ∈ {Ur

1 } ∧ h ⊕ xi ∈ {Ur
1 }]

= Pr[g ∈ {Ur
0 } ∧ h ∈ {Ur

0 }] × Pr[g ⊕ xi ∈ {Ur
1 } ∧ h ⊕ xi ∈ {Ur

1 }]

=
r(r − 1)

N(N − 1)
× r(r − 1)

N(N − 1)

=
(

r(r − 1)
N(N − 1)

)2

Full Indifferentiable Security 407

Therefore, Cov[Ig, Ih] =
(

r(r−1)
N(N−1)

)2

−
(

r2

N2

)2

< 0. This implies that

Var[W] < N × r2

N2
=

r2

N
.

This finishes the proof of the lemma. ��

5.2 Proof of Lemma 2

Lemma 2. With the notation of Theorem2, the following bounds hold for
pbck

1 (si | sr).

1
(N − r)2

×
(
1 −
(r

N

)n)
≤ pbck

1 (zi | zr) ≤ 4
N(N − r)

.

Proof. The lower bound is justified as follows.

pbck
1 (zi | zr) =

n∑

�=1

1
N

× 1
N − r − � + 1

×
(r

N

)�−1

≥ 1
N(N − r)

×
n∑

�=1

(r

N

)�−1

=
1

N(N − r)
× 1 − (r

N

)n

1 − (r
N

)

=
1

(N − r)2
×
(
1 −
(r

N

)n)
.

For the upper bound, we get

pbck
1 (zi | zr) =

n∑

�=1

1
N

× 1
N − r − � + 1

×
(r

N

)�−1

≤ 4
N2

×
∞∑

�=1

(r

N

)�−1

(23)

=
4

N(N − r)
.

The first term on the r.h.s. of (23) follows by noting that r < q < N
2 and

� < n = log N ≤ N
4 , for N ≥ 16. ��

6 Extension to the Xor of k Permutations

In this section, we apply our main result (Theorem2) to show full indifferen-
tiable security of the XORP[k] construction for any k. Following Theorem 2, it
is sufficient to consider XORP[k] with k ≥ 3. In particular, our result is the
following.

408 S. Bhattacharya and M. Nandi

Theorem 3. Let N ≥ 16 and q < N
2 . Then, there exists a simulator S′ for

XORP[k], k ≥ 3, such that for any adversary A ′, there exists an adversary A with

Advdiff
XORP[k],$(A

′) = Advdiff
XORP,$(A)

and hence, Advdiff
XORP[k],$(q) ≤

√
1.25q

N .

Proof. The indifferentiable security analysis of XORP[k] follows a reduction tech-
nique which is similar to the technique used in [MP15] to prove PRF-security of
XORP[k] in the indistinguishability setting. However, in our case, we additionally
need to consider the simulator S′.
Brief description of S′. First, we recall the simulator S for XORP from Sect. 3.
The simulator S′ works almost the same way as S works. It first samples (k − 2)
independent random permutations Π2, . . . ,Πk−1. Note that the sampling can be
simulated as a lazy sampling in an efficient manner instead of sampling the whole
permutations at a time.

In case of a forward or backward query (x, i), with i ≥ 2, S′ responds honestly
(i.e., it uses its own sampled random permutation as mentioned above). When
i ∈ {0, 1}, it behaves exactly in the same way as S except that it computes
$′(x) = $(x) ⊕ Π2(x) ⊕ · · · Πk−1(x) and then applies Step 5 of SIMFWD (see
Fig. 2) in case of a forward query, or Step 7 of SIMBCK (see Fig. 3) in case of a
backward query.

Next, we describe the reduction for the adversaries. Suppose there is an
adversary A ′ against XORP[k] and consider the simulator S′ defined above. Now,
we construct an adversary A against XORP and the simulator S. The adversary
A first stores the permutations Π2, . . . ,Πk−1 (again using lazy sampling to make
those efficient). Next, A runs the algorithm A ′ which can make two types of
queries, namely (a) primitive or simulator queries and (b) construction or random
function queries. Below, we consider these two types of queries.

(a) In case of a primitive or simulator query (x, i) (either forward or back-
ward), A first checks whether i ≥ 2 or not. If i ≥ 2, then A can sim-
ulate the response on its own, i.e., it computes Πi(x) or Π−1

i (x), where
Πi ∈ {Π2, . . . ,Πk−1}, and sends the output back to A ′. If i = 0 or 1,
then A forwards the query to its simulator/primitive oracle and whatever
response it gets again forwards to A ′; so, it basically relays the queries and
responses.

(b) In case of a construction or random function query, A forwards the query to
its corresponding construction/random function oracle. Suppose A gets Z as
a response. Then it computes Z ′ = Z ⊕⊕k−1

i=2 Πi(x), and sends Z ′ back toA ′.

Note that A is actually interacting with (XORP, (Π0,Π1,Π
−1
0 ,Π−1

1)), whereas
the interaction interface of A ′ is equivalent to

(XORP[k], (Π0, . . . ,Πk−1,Π
−1
0 , . . . ,Π−1

k−1)).

Full Indifferentiable Security 409

Now, assume that A is interacting with ($,S), the interaction interface of A ′

is then equivalent to ($ ⊕ XORP[k − 2],S′). It is easy to see the correctness of
the first oracle as A ′ xors his computation of XORP[k − 2] with the output
of $. Similarly, one can show the simulator interface of A ′ is S′. Note that $ ⊕
XORP[k−2] is completely independent of XORP[k−2], and we can consider it as
another independent random function $′. Thus, the interface of A ′ is equivalent
to ($′,S′). So, A perfectly simulates the real and the ideal world of A ′. Therefore,
Advdiff

XORP[k],$(A
′) = Advdiff

XORP,$(A). By Theorem 2, we finally have

Advdiff
XORP[k],$(q) ≤

√
1.25q

N
. ��

7 Conclusion

Proving full security of XORP construction in the secret or public permutation
model (i.e., indifferentiable security) is a challenging problem. Recently, Dai et
al. introduced a method, called the χ2 method, using which they were able to
obtain full PRF-security of XORP in the secret random permutation model. The
full security in the public permutation model for this construction was an open
problem. In this paper, we apply the χ2 method to the XORP construction to
prove its full indifferentiable security. We believe this method can also be used
for other cryptographic constructions for which the full security is not known.

Here, we also remark that though our bound shows full (i.e., n-bit) indiffer-
entiable security of XORP and XORP[k], in practice (i.e., for realistic setting of
parameters), it does not lead to full n-bit security (mainly due to the presence
of the square root in the bound). As an immediate goal, it will be interesting to
investigate if a more sophisticated application of the χ2 method can get rid of
the square root in our bound.

Acknowledgement. We are indebted to the reviewers for their patient reading and
valuable comments which improved the quality of this paper significantly.

This work is supported in part by the WISEKEY project, which we gratefully
acknowledge.

References

[AMP10] Andreeva, E., Mennink, B., Preneel, B.: On the indifferentiability of the
Grøstl hash function. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010.
LNCS, vol. 6280, pp. 88–105. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-15317-4 7

[BDP+13] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., NIST, G.: Keccak
and the SHA-3 Standardization (2013)

[BDPVA08] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indif-
ferentiability of the sponge construction. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 181–197. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3 11

https://doi.org/10.1007/978-3-642-15317-4_7
https://doi.org/10.1007/978-3-642-15317-4_7
https://doi.org/10.1007/978-3-540-78967-3_11

410 S. Bhattacharya and M. Nandi

[BDPVA11a] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the
sponge: single-pass authenticated encryption and other applications. In:
Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 320–337.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28496-
0 19

[BDPVA11b] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the security of
the keyed sponge construction. In: Symmetric Key Encryption Workshop
(SKEW 2011) (2011)

[BI99] Bellare, M., Impagliazzo, R.: A tool for obtaining tighter security analy-
ses of pseudorandom function based constructions, with applications to
PRP to PRF conversion. IACR Cryptol. ePrint Arch. 1999, 24 (1999)

[BKR98] Bellare, M., Krovetz, T., Rogaway, P.: Luby-Rackoff backwards: Increas-
ing security by making block ciphers non-invertible. In: Nyberg, K. (ed.)
EUROCRYPT 1998. LNCS, vol. 1403, pp. 266–280. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0054132

[BMN10] Bhattacharyya, R., Mandal, A., Nandi, M.: Security analysis of the mode
of JH hash function. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol.
6147, pp. 168–191. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13858-4 10

[BN18] Bhattacharya, S., Nandi, M.: Revisiting variable output length pseudo-
random functions. IACR Trans. Symmetric Cryptol. 2018(1) (2018, to
appear)

[CAE] CAESAR: Competition for Authenticated Encryption: Security, Appli-
cability, and Robustness. http://competitions.cr.yp.to/caesar.html/

[CLP14] Cogliati, B., Lampe, R., Patarin, J.: The indistinguishability of the XOR
of k permutations. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS,
vol. 8540, pp. 285–302. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46706-0 15

[CS16a] Cogliati, B., Seurin, Y.: EWCDM: an efficient, beyond-birthday secure,
nonce-misuse resistant MAC. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9814, pp. 121–149. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53018-4 5

[CT06] Cover, T.M., Thomas, J.A.: Elements of Information Theory (Wiley
Series in Telecommunications and Signal Processing), Wiley-Interscience
(2006)

[DHT17] Dai, W., Hoang, V.T., Tessaro, S.: Information-theoretic indistinguisha-
bilityvia the chi-squared method. In: Katz and Shacham [KS17], pp.
497–523 (2017)

[GG16] Gilboa, S., Gueron, S.: The Advantage of Truncated Permutations,
CoRR abs/1610.02518 (2016)

[GGM17] Gilboa, S., Gueron, S., Morris, B.: How many queries are needed to
distinguish a truncated random permutation from a random function?
J. Cryptol. 31(1), 162–171 (2017)

[GKM+09] Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F.,
Rechberger, C., Schläffer, M., Thomsen, S.S.: Grøstl-a SHA-3 candidate.
In: Dagstuhl Seminar Proceedings, Schloss Dagstuhl-Leibniz-Zentrum
für Informatik (2009)

[IMPS17] Iwata, T., Minematsu, K., Peyrin, T., Seurin, Y.: ZMAC: a fast tweak-
able block cipher mode for highly secure message authentication. IACR
Cryptol. ePrint Arch. 2017, 535 (2017)

https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/BFb0054132
https://doi.org/10.1007/978-3-642-13858-4_10
https://doi.org/10.1007/978-3-642-13858-4_10
http://competitions.cr.yp.to/caesar.html/
https://doi.org/10.1007/978-3-662-46706-0_15
https://doi.org/10.1007/978-3-662-46706-0_15
https://doi.org/10.1007/978-3-662-53018-4_5

Full Indifferentiable Security 411

[IMV16] Iwata, T., Mennink, B., Vizár, D.: CENC is optimally secure. IACR
Cryptol. ePrint Arch. 2016, 1087 (2016)

[Iwa06] Iwata, T.: New blockcipher modes of operation with beyond the birth-
day bound security. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol.
4047, pp. 310–327. Springer, Heidelberg (2006). https://doi.org/10.1007/
11799313 20

[KS17] Katz, J., Shacham, H. (eds.): CRYPTO 2017. LNCS, vol. 10403.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9

[Lee17] Lee, J.: Indifferentiability of the sum of random permutations towards
optimal security. IEEE Trans. Inf. Theory 63(6), 4050–4054 (2017)

[LR88] Luby, M., Rackoff, C.: How to construct pseudorandom permutations
from pseudorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

[Luc00] Lucks, S.: The sum of PRPs Is a secure PRF. In: Preneel, B.
(ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 470–484. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 34

[LV87] Liese, F., Vajda, I.: Convex Statistical Distances. Teubner, Leipzig (1987)
[MN17a] Mennink, B., Neves, S.: Encrypted Davies-Meyer and its dual: Towards

optimal security using Mirror theory, Cryptology ePrint Archive, Report
2017/xxx, to be published in CRYPTO 2017 (2017). http://eprint.iacr.
org/2017/537

[MN17b] Mennink, B., Neves, S.: Encrypted davies-meyer and its dual: towards
optimal security using mirror theory. In: Katz and Shacham [KS17], pp.
556–583 (2017)

[MP15] Mennink, B., Preneel, B.: On the XOR of multiple random permuta-
tions. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychronakis, M.
(eds.) ACNS 2015. LNCS, vol. 9092, pp. 619–634. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-28166-7 30

[MPN10] Mandal, A., Patarin, J., Nachef, V.: Indifferentiability beyond the birth-
day bound for the xor of two public random permutations. In: Gong,
G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 69–81.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17401-
8 6

[MRH04] Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility
results on reductions, and applications to the random oracle methodol-
ogy. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 2

[Pat08a] Patarin, J.: The “Coefficients H” technique. In: Avanzi, R.M., Keliher,
L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04159-4 21

[Pat08b] Patarin, J.: A proof of security in O(2n) for the xor of two random
permutations. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155,
pp. 232–248. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-85093-9 22

[Pat10] Patarin, J.: Introduction to Mirror Theory: Analysis of Systems of Lin-
ear Equalities and Linear Non Equalities for Cryptography. Cryptology
ePrint Archive, Report 2017/287 (2010). http://eprint.iacr.org/2010/287

[RAB+08] Rivest, R.L., Agre, B., Bailey, D.V., Crutchfield, C., Dodis, Y., Flem-
ing, K.E., Khan, A., Krishnamurthy, J., Lin, Y., Reyzin, L., et al.: The
MD6 hash function-a proposal to NIST for SHA-3. NIST 2(3) (2008,
submitted)

https://doi.org/10.1007/11799313_20
https://doi.org/10.1007/11799313_20
https://doi.org/10.1007/978-3-319-63697-9
https://doi.org/10.1007/3-540-45539-6_34
http://eprint.iacr.org/2017/537
http://eprint.iacr.org/2017/537
https://doi.org/10.1007/978-3-319-28166-7_30
https://doi.org/10.1007/978-3-642-17401-8_6
https://doi.org/10.1007/978-3-642-17401-8_6
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-642-04159-4_21
https://doi.org/10.1007/978-3-540-85093-9_22
https://doi.org/10.1007/978-3-540-85093-9_22
http://eprint.iacr.org/2010/287

412 S. Bhattacharya and M. Nandi

[Sta78] Stam, A.J.: Distance between sampling with and without replacement.
Statistica Neerlandica 32(2), 81–91 (1978)

[Vau03] Vaudenay, S.: Decorrelation: a theory for block cipher security. J. Cryp-
tol. 16(4), 249–286 (2003)

[Wu11] Wu, H.: The hash function JH, NIST (round 3), 6 (2011, submitted)
[Yas11] Yasuda, K.: A new variant of PMAC: beyond the birthday bound.

In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 596–609.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-
9 34

https://doi.org/10.1007/978-3-642-22792-9_34
https://doi.org/10.1007/978-3-642-22792-9_34

	Full Indifferentiable Security of the Xor of Two or More Random Permutations Using the 2 Method
	1 Introduction
	2 Preliminaries
	2.1 Adversary and Advantage
	2.2 Indifferentiability
	2.3 2 Method for Bounding Total Variation

	3 Simulator and Transcripts
	3.1 Description of the Simulator
	3.2 Additional Information to the Adversary

	4 Main Result
	5 Auxiliary Proofs
	5.1 Proof of Lemma1
	5.2 Proof of Lemma2

	6 Extension to the Xor of k Permutations
	7 Conclusion
	References

