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Abstract. In 2014, Smart and Vercauteren introduced a packing tech-
nique for homomorphic encryption schemes by decomposing the plain-
text space using the Chinese Remainder Theorem. This technique allows
to encrypt multiple data values simultaneously into one ciphertext and
execute Single Instruction Multiple Data operations homomorphically.
In this paper we improve and generalize their results by introducing a
flexible Laurent polynomial encoding technique and by using a more fine-
grained CRT decomposition of the plaintext space. The Laurent polyno-
mial encoding provides a convenient common framework for all conven-
tional ways in which input data types can be represented, e.g. finite field
elements, integers, rationals, floats and complex numbers. Our methods
greatly increase the packing capacity of the plaintext space, as well as
one’s flexibility in optimizing the system parameters with respect to effi-
ciency and/or security.

1 Introduction

Homomorphic encryption allows to perform arithmetic operations on encrypted
data without decryption. The idea stems from [26] where the authors introduced
so-called ‘privacy homomorphisms’ from plaintext space to ciphertext space.
In 2009, Gentry [21] presented the first fully homomorphic encryption scheme
(FHE) using ideal lattices. This breakthrough result was followed by several
variants and improvements [6–9,20,23] all using the same blueprint. One first
constructs a somewhat homomorphic encryption (SHE) scheme that can homo-
morphically evaluate arithmetic circuits of limited depth and then turns this
into a fully homomorphic scheme using a bootstrapping procedure. The security
of these schemes relies on the presence of a noise component in the cipher-
texts. This noise grows during arithmetic operations and eventually reaches a
threshold beyond which the ciphertext can no longer be decrypted correctly.
The bootstrapping procedure basically reduces the inherent noise by executing
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the decryption circuit homomorphically. Despite considerable effort in making
bootstrapping more efficient [2,11,13,19], full fledged FHE is still rather slow, so
implementers typically resort to using SHE schemes for practical applications.

The efficiency of homomorphic encryption schemes can be improved signifi-
cantly by a judicious choice of plaintext space and encoding techniques for the
common data types such as finite field elements, integers, rationals, floats and
complex numbers. Concretely, throughout this paper we assume that the plain-
text space is a ring of the form

Rt = Zt[X]/(f(X))

where t ≥ 2 is an integer called the plaintext modulus, and f(X) is the reduction
modulo t of a monic irreducible polynomial f(X) ∈ Z[X] of degree d ≥ 1. This
setting is valid for most SHE schemes whose security relies on the Ring-LWE
problem.1 The degree d together with the ciphertext modulus q and the standard
deviation σ of the initial noise distribution are the main security parameters,
and these are typically determined by the required security level. The noise
growth is influenced by d, q, σ, but also by the plaintext modulus t. A first
optimization to decrease the noise growth is therefore to use a smaller plaintext
space. Several encoding techniques [3,10,12,14,18,25] have been proposed whose
goal is to ‘spread out’ the numerical input data as evenly as possible over the
whole plaintext space, allowing for a smaller value of t. A second optimization,
which can be combined with the first, is to decompose the plaintext space into
smaller pieces using the Chinese Remainder Theorem (CRT) and run several
computations in parallel [4,27]. Smart and Vercauteren [27] described how to
carry out SIMD calculations in an SHE context by viewing Rt as the CRT
composition of

Zt[X]/(f1(X)) × Zt[X]/(f2(X)) × · · · × Zt[X]/(fr(X)),

where f1(X)f2(X) · · · fr(X) is a factorization of f(X) into coprime factors. In
fact, they concentrate on the case t = 2, but the above immediate generalization
is discussed in [22]. We will refer to this decomposition of Rt as a vertical slicing
of the plaintext space.

Contributions. Our first contribution is an improvement of the above SIMD
approach by utilizing a more fine-grained CRT decomposition of the plaintext
space. We do this by also taking into account factorizations of the plaintext
modulus t. We will refer to the CRT decomposition

Rt
∼= Z[X]/(t1, f(X)) × Z[X]/(t2, f(X)) × · · · × Z[X]/(ts, f(X)),

1 A recent adaptation of the FV scheme due to Chen et al. [10] uses as plaintext
modulus a linear polynomial x − a instead of an integer t. The resulting plaintext
space Rx−a = Z[X]/(Xn + 1, x − a) ∼= Z/(an + 1) has various nice features, both
in terms of noise growth and in terms of packing capacity. However, the algebraic
structure of Rx−a becomes more restrictive for CRT decomposition, so rings of this
type will not be considered in this paper.
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corresponding to a factorization t = t1t2 · · · ts into coprime factors, as a horizon-
tal slicing of the plaintext space. The flexibility of our method stems partly from
the fact that factorisations modulo the various ti do not imply a global factorisa-
tion modulo t. This alternative type of slicing for SIMD purposes is not new (see
e.g. [4]). However, by combining horizontal and vertical slicing as explained in
Sect. 4, the plaintext space becomes subdivided in ‘bricks’ as depicted in Fig. 4.
In our SIMD approach, which we call SIM2D, each data slot corresponds to a
set of such bricks (called a block) rather than one vertical or horizontal slice as
considered in previous works. This results in a much more flexible but, at the
same time, denser packing as described in Sect. 5. In Sect. 6 we provide several
tools that can help in making an optimal choice of blocks. This includes slight
alterations to t and/or f(X) that lead to more fine-grained decompositions.

Our second contribution is a novel encoding technique for Laurent polynomi-
als into a plaintext space of the form Rt = Zt[X]/(f(X)) that works for general
f (under the mild assumption that f(0) is an invertible element of Zt). Previous
work [15] could only deal with the very special case of 2-power cyclotomic poly-
nomials, due to concerns of mixing of integral and fractional parts. Our encoding
technique is explained in Sect. 3. Encoding elements of the Laurent polynomial
ring Z[X±1] serves as a convenient common framework for all customary encod-
ing techniques: indeed, under X �→ b the Laurent polynomials specialize to b-ary
expansions for any choice of base b ∈ C \ {0}. This framework allows to encode
common data types such as finite field elements, integers, rationals, floats and
complex numbers. Furthermore, we show that choosing different bases b for dif-
ferent blocks can be useful in optimizing the data packing (see Sect. 6).

Our algorithms for encoding, packing, unpacking and decoding are easy to
implement (pseudo-code is provided) and extremely flexible to use. The overall
goal is to provide a set of tools which together can be used to perform SIMD in
an optimal way, given the constraints on the plaintext space imposed by security,
efficiency and correctness requirements.

2 Preliminaries

2.1 Basic Notation

Vectors are denoted by bold letters such as a and when the individual coordinates
are required, we write a row vector as (a1, . . . , ak). For a natural number r, we
denote the set {1, . . . , r} by [r]. Similarly, for any �,m ∈ Z, � ≤ m, the set
{�, �+1, . . . ,m−1,m} is denoted by [�,m]. The quotient ring of integers modulo
a natural number t is denoted Zt.

2.2 Laurent Polynomials

Most common numerical types (integers, rational, real or complex numbers) are
represented as (finite) power series expansions in a certain base b ∈ C\{0}, using
digits that are taken from some given subset of Z. These expansions naturally
correspond to Laurent polynomials with integral coefficients, i.e. elements of the
ring Z[X±1].
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Most frequently, an integral base b > 1 with digit set {0, . . . , b−1} is used in
practice, such as binary b = 2 or ternary b = 3. For use in SHE schemes, several
variations [3,12,14,18] have been proposed. For the purposes of this paper we
mention the non-integral base non-adjacent form (NIBNAF) from [3] which is a
very sparse expansion with respect to a real base b ∈ (1, 2) and using the digit
set {−1, 0, 1}. All of these expansions can be thought of as the evaluations at
X = b of a Laurent polynomial with integral coefficients.

Example 1. The real number 2.3 can be approximated in base b = 2 using digits
in {0, 1} as

2.3 � 1 · 2 + 1 · 2−2 + 1 · 2−5 + 1 · 2−6,

which is the evaluation of the Laurent polynomial

1 · X + 1 · X−2 + 1 · X−5 + 1 · X−6 ∈ Z[X±1]

at X = b = 2.

Recall that in general, any Laurent polynomial a(X) ∈ Z[X±1] can be
written as

a(X) = a�X
� + · · · + am−1X

m−1 + amXm (1)

where ai ∈ Z for every i ∈ [�,m], a�, am 	= 0 and � ≤ m. For a modulus t (which
will be clear from the context) we write a(X) for the Laurent polynomial in
Zt[X±1] obtained by reducing all coefficients.

Definition 1. For an integral Laurent polynomial a(X) ∈ Z[X±1] represented
as in Eq. (1), we define the bounding box of a(X) as the tuple (w, h) with
w = m− � and h = log2(maxi ai −mini ai +1) the sizes of the exponent and the
coefficient ranges of a(X).

We represent the bounding box graphically with a rectangle of width w and
height h (Fig. 1).

Fig. 1. The bounding box of a polynomial.



342 W. Castryck et al.

2.3 Plaintext Space

Most SHE schemes utilize quotient rings of the form

R = Z[X]/(f(X))

where f(X) ∈ Z[X] is a monic irreducible polynomial of degree d. The plain-
text space is typically represented as a quotient ring Rt = Zt[X]/(f(X)) for
an integral plaintext modulus t. Similarly, the ciphertext space is defined as
Rq = Zq[X]/(f(X)) where q 
 t. Another important parameter is the stan-
dard deviation σ of the discretized Gaussian distribution from which the SHE
encryption scheme samples its noise, which is embedded into the ciphertexts.

Typically, one first sets the parameters q, d and σ, primarily as functions of the
security level, in order to prevent all known attacks on the underlying lattice prob-
lems [1]. Afterwards, the plaintext modulus t is selected, subject to two constraints.
Firstly, it is bounded from above, which stems from the fact that the embedded
noise grows during arithmetic operations up to a critical threshold above which
ciphertexts canno longer be decrypted. Since the plaintextmodulus directly affects
the noise growth in ciphertexts, one can find a maximal t for which the decryp-
tion remains correct while evaluating a given arithmetic circuit C. We denote this
bound by tmax

C . If it is impossible to satisfy this bound then one can use the Chi-
nese Remainder Theorem to split the computation into smaller parts, as explained
in Remark 3; see also [4]. Secondly, as explained in the next section, the plaintext
modulus t is bounded from below by some value tmin

C which depends on the input
data and on the way the latter is encoded, and which ensures correct decoding.

Remark 1. The values of q, d, σ are not uniquely determined by the security level.
Therefore, one can try to use the remaining freedom to target a specific value of
tmax
C . In the remainder of the paper, we will assume that tmax

C is given, and our
aim is to utilize the available plaintext space in an optimal way. One motivation
for targeting maximal flexibility here is that it is not clear whether preselecting
a precise value of tmax

C is always possible in practice (e.g., for a fixed degree and
security level it turns out that the value of tmax

C stabilizes as q → ∞). This is further
impeded by the fact that concrete implementations often do not allow q and d to be
picked from some continuous-like range (e.g., the FV-NFLlib [16] and the SEAL [24]
libraries require that d is a power of 2 and that log2 q is a multiple of some integer).
A second motivation is that it can be desirable to use a single SHE implementation
for encrypting batches of data of largely varying sizes. The plaintext space should
be chosen to fit the largest data, and the methods presented below can then be used
to optimize the handling of the smaller data.

The most common choice for f(X) is a cyclotomic polynomial. The nth
cyclotomic polynomial Φn(X) ∈ Z[X] is the minimal polynomial of a primitive
nth root of unity in C

Φn(X) =
∏

0<k<n , (k,n)=1

(X − ζk
n),

where ζn = e2πi/n. The degree of Φn(X) is equal to φ(n), where φ(n) is the totient
function. It is always irreducible over Z and, additionally, Φ(0) = 1 for n ≥ 3.
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Cyclotomic polynomials are often used by SHE implementers since they have
very nice arithmetic properties such as fast modular reduction and simple Galois
groups, which can be used to move data values in between data slots.

3 Plaintext Encoding/decoding of Laurent Polynomials

In this section we consider the problem of encoding an integral Laurent polyno-
mial in the plaintext space and the reverse operation of decoding. We also give
necessary conditions on the ‘size’ of the plaintext space such that a given circuit
C can be evaluated correctly.

3.1 Encoding

Assume that the input data (integers, rationals, reals, . . . ) has been represented
as a Laurent polynomial a(X) ∈ Z[X±1]. Encoding such a Laurent polynomial in
the plaintext space Rt has been considered in a series of recent works [3,12,14,18].
However, it was emphasized in [14] that the plaintext space should only be defined
modulo a 2-power cyclotomic polynomial f(X) = X2k + 1 for some k. The reason
for this restriction is that the authors required a small and sparse representation
for X−1, which in this case is given by X−1 ≡ −X2k−1 mod f(X).

Here we propose a very general way of encoding Laurent polynomials which
works for almost all defining polynomials f . Let f(X) denote the reduction
modulo t of f(X) and assume that f(0) is co-prime with t, so f(0) is invertible
in Zt. Define g(X) by writing f(X) = g(X)X + f(0), then it is obvious that
modulo f(X) we have that X−1 ≡ −g(X)f(0)−1.

The encoding map Encdf is then given by the sequence of ring homomorphisms

Z[X±1] mod t−−−−→ Zt[X±1]
ηf−→ Rt

with

ηf :
X �→ X

X−1 �→ −g(X)f(0)−1 .

Example 2. In the case of the 2-power cyclotomic polynomial f(X) = X2k + 1,
the above map replaces negative powers X−j by −Xd−j , which coincides with
the approach from [14]: when expressed in terms of the basis 1,X,X2, . . . , Xd−1

of Rt, the map ηf places the positive exponents at the low end of this range,
and the negative exponents are placed at the high end.

3.2 Decoding

The crux of the construction relies on the fact that the above encoding map
Encdf defines an isomorphism when restricted to a subset of Laurent polynomi-
als. Indeed, if we choose a subset of Zt[X±1] of the form

Zt[X±1]m� =

{
m∑

i=�

aiX
i|ai ∈ Zt

}
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with � and m chosen such that m − � + 1 = d, then the restriction of ηf to
Zt[X±1]m� is an isomorphism between two free Zt-modules of rank d. The inverse
of this map, denoted θf,�,m, is easy to compute in practice, since it simply cor-
responds to a matrix inversion.

Thus, θf,�,m determines the decoding algorithm from Rt to Laurent polyno-
mials over Zt. In the final step, one has to lift a Laurent polynomial from Zt[X±1]
to Z[X±1] by choosing a representative for each coefficient in a non-empty subset
A of Z of size t. For simplicity we will always take A = [z, z + t − 1] for some
z ∈ Z, common choices being A = [−(t−1)/2�, �(t−1)/2�] or A = [0, t−1]. But
any set A of representatives would be possible, and in fact it can even depend on
the coefficient under consideration. Together these two steps define the decoding
map Decdf,�,m,A.

3.3 Correctness Conditions

Since homomorphic encryption aims to perform arithmetic operations on cipher-
texts, one usually deals with a ciphertext being the outcome of an arithmetic
circuit involving only multiplications and additions. By the homomorphic prop-
erty this ciphertext corresponds to a plaintext which is the result of the same
operations in the plaintext space. Given a circuit C, the result of its evalua-
tion on encodings of Laurent polynomials a = (a1(X), . . . , ak(X)) is denoted by
C(Encdf (a)) ∈ Rt.

To guarantee correctness of circuit evaluation, one has to make sure that
there exist �,m ∈ Z such that m − � + 1 = d and some non-empty set A � Z of
size at most t such that

Decdf,�,m,A(C(Encdf (a))) = C(a),

where C(a) is the result of the same circuit evaluation in Z[X±1]. This implies
that the bounding box (w, h) of C(a) has to satisfy w ≤ m − � + 1 = d and
h ≤ log2 |A| = log2 t. In this case, we say that the plaintext space covers the
bounding box of C(a) as shown in Fig. 2 below.

Fig. 2. The bounding box of C(a) is covered by the plaintext space Rt.
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If the bounding box (w, h) of a Laurent polynomial has larger height than
the plaintext space, i.e. h > log2 t, then we say that the computation overflows
modulo t. If we end up with w > d then we say that it overflows modulo f(X).

The parameters t and d should therefore be taken large enough to satisfy
the above requirement. In practice, d is usually fixed by the security require-
ments of the SHE scheme. The choice for t, however, strongly depends on the
arithmetic circuit C one is trying to evaluate. Initially, the input data of the
circuit is encoded by Laurent polynomials whose bounding boxes are of height
h ≤ log2(|{b-base digits}|). During arithmetic operations the height (typically)
grows to the height of the bounding box of the outcome. For a given circuit C,
this defines a lower bound for t to guarantee correct decoding, which we denote
tmin
C . Combined with the upper bound on t from Sect. 2.3, one obtains a range

for t, namely [tmin
C , tmax

C ].

Example 3. To illustrate encoding and decoding, we take Rt = Z7[X]/(f(X))
where f(X) = X9 + 4X7 + 1. Thus, g(X) = X8 + 4X6 and Encdf maps X−1 to
6X8 + 3X6. Let us multiply two rational numbers, 182

243 and 1476. Their base-3
expansions are as follows

182
243

= 2 · 3−5 + 2 · 3−3 + 2 · 3−1, 1476 = 2 · 32 + 2 · 36

or as Laurent polynomials

a = 2X−5 + 2X−3 + 2X−1, b = 2X2 + 2X6.

Applying Encdf we get encodings of a and b in Rt, namely, a = 6X2 + 4X4 +
4X6 + 5X8 and b = 2X2 + 2X6. Their product is equal to

c = X + 4X3 + 5X4 + 4X5 + X6 + 3X8.

We take � = −3, m = 5 and A = {4, 5, . . . , 10} in order to keep the product
inside the box. Now we can define Decdf,−3,5,A. The first step is to construct a
linear operator θf,−3,5 using the inverse of the matrix defining the restriction of
ηf on Z7[X±1]5−3:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
3 0 0 0 0 0 0 1 0
0 3 0 0 0 0 0 0 1
6 0 3 0 0 0 0 0 0
0 6 0 0 0 0 0 0 0
0 0 6 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 6 0 4
3 0 0 0 0 0 0 6 0
0 0 0 0 0 0 0 0 6
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 3 0 2
5 0 0 0 0 1 0 3 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ Z
9×9
7 .
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Then c is mapped to a Laurent polynomial 4X−3 + 4X−1 + X + 4X3 + 4X5 ∈
Z7[X±1]. By looking for representatives of the coefficients in the set A we get
4X−3 + 4X−1 + 8X + 4X3 + 4X5 ∈ Z[X±1] and evaluate it at X = 3

4 · 3−3 + 4 · 3−1 + 8 · 3 + 4 · 33 + 4 · 35 =
29848

27
,

which is the correct product of 182
243 and 1476.

Remark 2. Note that the above condition for correct decoding only depends on
the bounding box of the evaluation of the circuit C(a) and not on the bounding
boxes of the individual inputs ai(X) ∈ Z[X±1] nor on those of the intermediate
values. Indeed, we always have

C(Encdf (a1(X)), . . . ,Encdf (ak(X))) = Encdf (C(a)), (2)

simply because Encdf is a ring homomorphism. This implies that the bounding
boxes of the input or intermediate values should not necessarily be contained in
the bounding box of the plaintext space, as long as the outcome of evaluation is.

4 Splitting the Plaintext Space

In this section we recall how the Chinese Remainder Theorem (CRT) can be
used to split the plaintext space naturally along two directions: firstly, we will
split horizontally for each prime power factor ti of the plaintext modulus t and
secondly, each horizontal slice will be split vertically by factoring f(X) mod ti.

4.1 Horizontal Splitting

If t is a composite that factors into distinct prime powers t = t1 . . . ts then the
ring Rt can be mapped via the CRT to a direct product of Rti ’s resulting in the
following ring isomorphism

CRTt : Rt → Rt1 × · · · × Rts

a(X) �→ (a(X) mod t1, . . . , a(X) mod ts)

whose inverse is easy to compute. For a given index subset I = {i1, . . . , ic} ⊆ [s]
the map CRTt induces a surjective morphism

CRTtI : Rt → Rti1
× · · · × Rtic

,

which is well-defined via the projection map

πtI :
∏

i∈[s]

Rti →
∏

i∈I

Rti

so that CRTtI = πtI · CRTt. The CRTt can be represented as a ‘horizontal’
splitting of the plaintext space according to the unique factorization of t into
distinct prime powers {ti}i∈[s]. Each horizontal slice in Fig. 3 corresponds to
some Rti .
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Fig. 3. CRTt decomposition of Rt

4.2 Vertical Splitting

For each factor ti of t we define f i(X) ∈ Zti [X] to be the reduction of f(X)
modulo ti. Since f(0) is co-prime with t, it is also co-prime with any ti and thus,
f i(0) is invertible.

The factorization of f i(X) into irreducible factors modulo ti can be com-
puted as follows: if ti is prime, then one can simply use factorization algorithms
for polynomials over finite fields; for ti a prime power, one first computes the
factorization modulo the prime and then lifts it using Hensel’s lemma to a fac-
torization modulo ti. The result in both cases is that we can easily obtain a
factorization

f i(X) ≡
ri∏

j=1

f ij(X)

for monic irreducible polynomials f ij(X) ∈ Zti [X]. Note that the constant terms
f ij(0) are all invertible because their product f i(0) is invertible. Applying the
CRT in the polynomial dimension gives the following map for each ti:

CRTti,fi
: Rti → Rti,1 × · · · × Rti,ri

a(X) �→ (a(X) mod f i1(X), . . . , a(X) mod f iri
(X)).

Here the Rti,j denotes the ring Zti [X]/(f ij(X)), which corresponds to a ‘brick’
in Fig. 4. The map CRTti,fi

, whose inverse is again easy to compute, can be
thought of as a ‘vertical’ splitting of Rti . For simplicity we will usually just write
Ri,j rather than Rti,j . By analogy with CRTtI , we introduce the surjective ring
homomorphism CRTti,fJ

from Rti to
∏

j∈J Rti,j where J = {j1, . . . , jc} ⊆ [ri].

5 Improved SIMD Encoding

In this section we combine the results of Sects. 3 and 4 to derive flexible SIMD
encoding and decoding algorithms. Recall that to correctly decode the result of a
circuit evaluation C(a), we require that the bounding box of the plaintext space
covers the bounding box of C(a). We assume that this is indeed the case, and
show how to select a minimal number of bricks of Rt to cover the bounding box
of C(a), leaving the other bricks available for doing parallel computations.
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Fig. 4. Decomposition of Rt using fac-
torization of t and f i’s

Fig. 5. Encoding of a single Laurent
polynomial into Rt.

Recall that each brick corresponds to a ring Ri,j in the decomposition

Rt → Rt1 × · · · × Rts → (R1,1 × · · · × R1,r1) × · · · × (Rs,1 × · · · × Rs,rs
).

Each ring Ri,j has its own bounding box of size (dij , log2 ti), where dij = deg f ij .
Assuming that the bounding box of C(a) is given by (w, h), we need to combine
enough horizontal slices to cover the height h, and inside each horizontal slice,
we need to select enough bricks to cover the width w as illustrated in Fig. 5.
Any unused bricks can be used to encode other data values, for instance to
compute C(b) for some other input vector b, immediately resulting in SIMD
computations.

We formalize this approach by combining bricks into a block structure: we call
a block a set of tuples B = {(ti, f ij)}i∈I(B),j∈J(B,i) with index sets I(B) ⊆ [s] and
J(B, i) ⊆ [ri], where we recall that ri is the number of irreducible factors of f i.
We of course think of this as corresponding to the set of Ri,j ’s with i ∈ I(B), j ∈
J(B, i). Equivalently, through an application of the CRT this corresponds to the
set of quotient rings {Rti/(F i,B)}i∈I(B) where F i,B =

∏
j∈J(B,i) f ij . Graphically

we think of a block as a set of bricks of Rt, which are combined such that the
Ri,j ’s with the same index i are glued column-wise and the resulting rows are
placed on top of each other (Fig. 6).

Fig. 6. Example of a block taken from the CRT decomposition of Rt. The bottom
combination of ‘bricks’ is not a block because their first indices do not coincide.
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In order for a block B to be suitable for computing C(a), whose bounding box
we denote by (w, h), we note that the bounding box of Rti/(F i,B) with i ∈ I(B)
is (wi,B, log2 ti) where

wi,B = deg F i,B =
∑

j∈J(B,i)

dij .

If mini∈I(B) wi,B ≥ w and
∑

i∈I(B) log2 ti ≥ h then we say that B covers the
bounding box (w, h). As we will see C(a) will be decoded correctly as soon as an
encoding block B is used that covers its bounding box.

Example 4. We decompose Rt = Z2761[X]/(f(X)) where f(X) = X20+X15+1.
The plaintext modulus factors into t1 = 11 and t2 = 251 and

f(X) ≡ f1,1(X) · f1,2(X)
≡ (X5 + 3)(X15 + 9X10 + 6X5 + 4) mod 11,

f(X) ≡ f2,1(X) · f2,2(X) · f2,3(X)
≡ (X5 + 18)(X5 + 120)(X10 + 114X5 + 180) mod 251.

Accordingly, Rt splits into (R1,1 ×R1,2)× (R2,1 ×R2,2 ×R2,3). Overall we have 5
‘bricks’ that can be combined into 31 different blocks. For example, one can take
a block {(11,X15+9X10+6X5+4), (251,X5+18), (251,X5+120)} corresponding
to the combination of R1,2, R2,1 and R2,2 or {(11,X5 + 3), (11,X15 + 9X10 +
6X5 + 4)} which simply corresponds to R11 = Rt/(11) (see Fig. 7).

Fig. 7. The block structure of Rt = Z[X]/(2651, X20+X15+1) with two blocks colored
in gray.

The whole plaintext space can be represented by a block as well

P =
⋃

i∈[s]

⋃

j∈[ri]

{(ti, f ij)}.

Therefore, the SIMD packing problem consists in finding a set of disjoint blocks
S = {B1, . . . ,Bu} such that

⋃
B∈S B = P and every block covers the maximal

bounding box among the corresponding output values.
To a partition S of P there naturally corresponds a factorization of f i for

every i ∈ [s]:
f i(X) =

∏

B∈S,i∈I(B)

F i,B(X).
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This induces a family of CRT isomorphisms

CRTti,fi,S
: Rti →

∏

B∈S,i∈I(B)

Rti/(F i,B).

Now we have all the ingredients to pack a number of data values into one plain-
text as described in Algorithm 1.

Algorithm 1. Plaintext packing.
Input : a set of disjoint blocks S = {B1, . . . ,Bu} with corresponding

data values a1, . . . , au ∈ Z[X±1] such that
⋃u

k=1 Bk = P.
Output: b ∈ Rt

1 for k ← 1 to u do
2 for i ∈ I(Bk) do
3 ati,F i,Bk

← EncdF i,Bk
(ak)

4 for i ← 1 to s do
5 bi ← CRT−1

ti,fi,S
({ati,F i,B}B,i∈I(B))

6 b ← CRT−1
t (b1, . . . , bs)

After packing one can encrypt the output and feed it to an arithmetic circuit
(together with other packings in case the circuit takes more than one argument).
The resulting plaintext contains multiple evaluations corresponding to each block
that can be decoded using Algorithm 2.

Algorithm 2. Plaintext decoding for one block.
Input : a plaintext c ∈ Rt, a block B, an exponent range [�,m] and a

coefficient set A ∈ Z

Output: a Laurent polynomial a ∈ Z[X±1]

1 tI ← 1
2 for i ∈ I(B) do
3 tI ← tI · ti
4 ci ← c mod ti
5 ci ← ci mod F i,B
6 mi ← � + wi,B − 1
7 ci ← θF i,B,�,mi

(ci)

8 a ← coefficient-wise CRT−1 of {ci}i∈I(B) to ZtI [X
±1]

9 a ← selecting coefficient representatives of a from the set A

Algorithm 2 produces correct circuit evaluations for all blocks occurring in
Algorithm 1 that satisfy the properties outlined in the next theorem.
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Theorem 1. Let S be a set of disjoint blocks such that
⋃

B∈S B = P. Let C be an
arithmetic circuit taking v arguments and for each block B let aB = (aB,1, . . . , aB,v)
be a vector of Laurent polynomials. For each k = 1, . . . , v let bk denote the output of
Algorithm 1 upon input of (aB,k)B∈S. Let c = C(b1, . . . , bv). Then for each block B
we have that if it covers the bounding box of C(aB), then upon input of c Algorithm 2
produces C(aB), for an appropriate choice of �, m and A.

Proof. By our assumption there are �,m such that C(aB) =
∑m

i=� αiX
i where

min
i∈I(B)

wi,B ≥ m − � + 1 and
∏

i∈I(B)

ti ≥ |A|, (3)

with A = {mini αi, . . . ,maxi αi}. Let a denote the output of Algorithm 2 upon
input of c using these �, m, and A. Since this is a Laurent polynomial having
coefficients in A, by (3) it suffices to prove that the reductions of a and C(aB)
modulo ti are the same for each i ∈ I(B). Again by (3) these reductions are
contained in Zti [X

±1]mi

� where mi = � + wi,B − 1, so by injectivity of ηF i,B it
suffices to prove that

EncdF i,B(a) = EncdF i,B(C(aB)).

From Algorithm 2 we see that the left-hand side is just the reduction of c into
Rti/(F i,B), while the right hand side is

C(EncdF i,B(aB,1), . . . ,EncdF i,B(aB,v))

because of the homomorphic properties of the encoding map. From Algorithm 1
we clearly see that EncdF i,B(aB,k) is the reduction of bk into Rti/(F i,B), for all
k = 1, . . . , v, so the theorem follows. �

Example 5. Using the CRT decomposition of Rt from Example 4 we cube two
Laurent polynomials simultaneously using SIMD, namely u(X) = 7X3 + 7X2

and v(X) = 8X5 + 7X. To encode u3 we take the block B1 with rings R1,1, R2,1

and the remaining bricks to build the block B2 to hold the result v3.
Since only positive exponents are present in the data, all encoding functions

EncdF i,B1
and EncdF i,B2

map u(X) and v(X) identically to the corresponding
Ri,j ’s. Then we get

a11,F1,B1
(X) = 7X3 + 7X2 ∈ R1,1 = R11/(X

5 + 3),

a251,F2,B1
(X) = 7X3 + 7X2 ∈ R2,1 = R251/(X

5 + 18),

a11,F1,B2
(X) = 8X5 + 7X ∈ R1,2 = R11/(X

15 + 9X10 + 6X5 + 4),

a251,F2,B2
(X) = 8X5 + 7X ∈ R2,2 × R2,3

∼= R251/(X
15 + 234X10 + 55X5 + 14).

Applying CRT−1

ti,fi,{B1,B2} for each ti we find

b1 = X18 + X17 + 10X16 + 5X15 + 9X13 + 9X12

+ 2X11 + X10 + 6X8 + 6X7 + 5X6 + 5X5 + 4X3 + 4X2 + 3X + 9 ∈ R11,
b2 = 162X18 + 162X17 + 89X16 + 213X15 + 7X13 + 7X12

+ 244X11 + 144X10 + 125X8 + 125X7 + 126X6 + 177X5

+ 9X3 + 9X2 + 249X + 221 ∈ R251,
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which finally leads to the following plaintext via CRT−1
t

b = 2421X18 + 2421X17 + 340X16 + 1468X15 + 2517X13 + 2517X12

+ 244X11 + 144X10 + 2635X8 + 2635X7 + 126X6 + 2436X5

+ 2017X3 + 2017X2 + 751X + 1978 ∈ R2761.

Now we evaluate an arithmetic circuit z �→ z3 in b and obtain

c = 1943X19 + 401X18 + 745X17 + 391X16 + 433X15

+ 2109X14 + 1717X13 + 2646X12 + 2729X11 + 2347X10

+ 2198X9 + 1724X8 + 234X7 + 421X6 + 2683X5 + 94X4

+ 1188X3 + 1143X2 + 1960X + 1906 ∈ R2761,

which simultaneously encodes u3 and v3.
In order to decode the data we apply Algorithm 2 starting with the block B1

equipped with the exponent range [6, 9] and the coefficient set AB1 = [0, 2760].
At first, we should reduce c modulo F i,B1 and ti for each i ∈ I(B1). As a result,
we find

c1,B1 = 5X4 + 4X3 + 4X2 + 5X ∈ R11/(X5 + 3),
c2,B1 = 101X4 + 52X3 + 52X2 + 101X ∈ R251/(X5 + 18).

To decode into Laurent polynomials we set �i = 6 and mi = 10 for every i ∈
I(B1) because deg F 1,B1 = deg F 2,B1 = 5. Then we follow the same procedure
as in Example 3 to define θF 1,6,10 and θF 2,6,10 via matrices M1 = 7 · M and
M2 = 237 · M where

M =

⎡

⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

⎤

⎥⎥⎥⎥⎦
.

These linear transformations give us two Laurent polynomials modulo 11 and
251, respectively

c1,B1 = 2X9 + 6X8 + 6X7 + 2X6 ∈ Z11[X±1],
c2,B1 = 92X9 + 25X8 + 25X7 + 92X6 ∈ Z251[X±1].

Using the coefficient-wise CRT and lifting coefficients in AB1 we recover the
Laurent polynomial

aB1 = 343X9 + 1029X8 + 1029X7 + 343X6 ∈ Z[X±1],

which is equal to u3.
We repeat the same steps for the block B2 with the exponent range [3, 15]

and the same coefficient set A. This block has again the polynomials F i,B2 of
the same degree and thus every mi = 17 and �i = 3. Executing Algorithm 2 we
get the following sequence of calculations



Homomorphic SIM2D Operations: Single Instruction Much More Data 353

c1,B2 = 2X11 + X10 + 10X7 + 8X5 + 2X3 + 9,
c2,B2 = 89X11 + 170X10 + 172X7 + 203X5 + 92X3 + 111,
↓
c1,B2 = 6X15 + 2X11 + 10X7 + 2X3,
c2,B2 = 10X15 + 89X11 + 172X7 + 92X3,
↓
aB2 = 512X15 + 1344X11 + 1176X7 + 343X3.

The last polynomial is exactly v3 so we correctly cubed two Laurent polynomials.

Remark 3. The CRT factorization can also be exploited when a homomorphic
algorithm needs a bigger plaintext modulus than the upper bound tmax

C discussed
above. Let us denote this modulus with a capital T to emphasize direct incompat-
ibility of this parameter with other SHE parameters, namely, T > tmax

C . However,
one can find a set of natural numbers {Ti ≤ tmax

C } such that T ≤ T ′ =
∏

i Ti.
Then RT ′ splits into smaller quotient rings RTi

. A plaintext a ∈ RT ′ then maps
to a vector whose ith component lies in RTi

. In that case the plaintext space
splits into quotient rings with smaller moduli via CRT such that each ring fits
the SHE settings according to the following diagram

RT ′
CRT−−→

⎧
⎪⎨

⎪⎩

RT1

CRT−−→ ∏
t′|T1

∏
f ′|f mod t′ Rt′,f ′

Alg 1−−−→ RT1

. . .

RTs

CRT−−→ ∏
t′|Ts

∏
f ′|f mod t′ Rt′,f ′

Alg 1−−−→ RTs

A homomorphic circuit evaluation must then be repeated over each CRT
factor Ti. Nevertheless, this gives some freedom of choice for Ti’s so as to find
RT ′ with a nice CRT decomposition.

6 Parameter Choice

In this section we discuss a set of tools that will allow implementers to benefit
from our enhanced SIMD approach as much as possible. There are three param-
eters that directly affect the packing capacity. We list them below in an order
that seems natural for solving any packing problem. Nevertheless, all parameters
depend on each other.

Plaintext Modulus. Earlier we defined the range [tmin
C , tmax

C ] from which the
plaintext modulus t is allowed to be chosen. Additionally, at the end of Sect. 4
we discussed the CRT trick that allows to handle plaintext moduli that are
bigger than tmax

C . Altogether this gives a designer some freedom to choose t such
that it splits into many ‘advantageous’ ti’s. An ‘advantageous’ ti means that the
factorization of f i is such that the resulting CRT decomposition can embed as
many plaintexts as possible, which is usually facilitated by a finer brick structure
as in Fig. 8.



354 W. Castryck et al.

Fig. 8. The CRT decompositions of plaintext spaces corresponding to different t’s.

This brick structure is defined by the ti’s and by the degrees of the f ij ’s,
namely di1, . . . , diri

which constitute a decomposition type of f modulo ti. Let
G be the Galois group of the splitting field of f over Q. It can be considered as
a subgroup of the group Sd of permutations of d elements. Every automorphism
σ can be represented as a product of cycle permutations with a corresponding
pattern of cycle lengths. Additionally, we say that a set P of prime numbers has
density δ if

lim
x→∞

|{p ≤ x : p ∈ P}|
|{p ≤ x : p prime}| = δ.

Then the probability that a desired decomposition type occurs for some random
ti is estimated by the following classical theorem.

Theorem 2 (Frobenius). The density of the set P of primes modulo which
f has a given decomposition type d1, d2, . . . , dr exists, and it is equal to 1/|G|
times the number of automorphisms σ ∈ G with cycle pattern d1, d2, . . . , dr.

An interesting case is where f i splits into linear factors since it gives maximal
flexibility to combine blocks. There exists only one σ ∈ G corresponding to
such a decomposition which is the identity permutation, so the corresponding
probability is 1/|G|.
Example 6. If f(X) is the nth cyclotomic polynomial then its Galois group G
has d = φ(n) elements and it always splits into irreducible factors of the same
degree, i.e. its decomposition type modulo ti is always (d′, . . . , d′) where d′ is the
order of ti modulo n; here we implicitly assume that gcd(ti, n) = 1. Let us take
f(X) = X2k +1. Its Galois group is isomorphic to Z

×
2k+1 or to the direct product

of two cyclic groups C2 × C2k−1 . It contains 2k elements with orders shown in
the following table:

ord 1 2 4 . . . 2k−1

#{a ∈ Z
×
2k+1} 1 3 4 . . . 2k−1

This implies that f splits into 2k′
irreducible factors of degree 2k−k′

modulo
a random ti with probability 2−k′

, for any k′ ∈ {1, . . . , k − 2, k − 1}.
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In the classical example of a homomorphic application a client encrypts his
data and sends it to a third party to perform calculations. Since encryption and
decryption are done only on the client side, he therefore has the possibility to
tweak the plaintext modulus without re-generation of keys as long as the eval-
uation (or linearization) key does not depend on t. It is important to note that
the plaintext modulus does not affect the security level of an SHE scheme but it
does affect the decryption correctness. Hence, t should fit the upper bound tmax

C
introduced by the noise growth inside ciphertexts. As a result, one can exploit
the same technique as above to find Rt with the most useful decomposition.

Block Set. Recall that the plaintext space can be thought of as a set of bricks
P. Every block is then a subset of P. The packing problem consists in finding a
partition of P with the maximal number of blocks where each one satisfies Theo-
rem 1. It is clear that the partition search is highly dependent on the data values
and the arithmetic operations being performed homomorphically. Therefore the
same plaintext space can be used differently for various applications as shown in
Fig. 9. If r =

∑s
i=1 ri is the cardinality of P then the total number of partitions

is equal to the r-th Bell number Br. That number grows exponentially (see [17])
while r is increasing according to

ln Br

r
� ln r.

As a result a system designer has a lot of flexibility to play with the plaintext
space partitions to fit data into some block structure. Obviously, the maximal
number of blocks cannot be bigger than r, in which case the blocks are just the
singletons {Ri,j}. A plaintext space with many CRT factors is usually easier to
handle because it is more flexible for block constructions.

Fig. 9. Different partitions of P.
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If one does not find a satisfying partition of all of P, it is of course also
possible to leave a couple of bricks unused by packing zeros in them (or even
random values).

Encoding Base. Representing data using Laurent polynomials requires a
numerical base b which can be a real or a complex number. The size of b affects
the length of a representation as well as the size of its coefficients.

In [3] it was shown that non-integral bases taken from the interval (1, 2) have
a simple greedy algorithm that, given a real number, produces a base-b expansion
with a ternary set of coefficients. This procedure has the property that smaller
bases lead to sparser representations and thus smaller coefficient growth but
longer expansions. To illustrate this we resort again to the box representation of
a Laurent polynomial (Fig. 10).

Fig. 10. The examples of bounding boxes corresponding to different encoding bases.

As a result, by changing the encoding base one could play a trade-off game
between degree and coefficient size such that the number of plaintexts fitting a
block structure is maximal. Furthermore, each block allows to encode data in
a different base because neither Algorithm 1 nor Algorithm 2 depends on the
choice of b.

Example 7. To illustrate the aforementioned techniques we revisit a medical appli-
cation of the YASHE homomorphic encryption scheme [4] given in [5]. In this paper
the standard logistic function is homomorphically computed to predict the prob-
ability of having a heart attack. The algorithm is divided into two steps.

Step 1. One computes the following weighted sum of six encrypted predictive
variables

z = 0.072 · z1 + 0.013 · z2 − 0.029 · z3 + 0.008 · z4 − 0.053 · z5 + 0.021 · z6,

where each zi ∈ [0, 400]. The multiplicative depth of the corresponding circuit
is 1. For this step we take the same YASHE parameters as in [5], i.e. q � 2128 and
f(X) = X4096 + 1. Given these parameters we derive tCmax = 2097152 � 221 using
[4, Lem. 9]. Running over all primes less than tCmax we find that modulo t1 = 257
and modulo t2 = 3583 our polynomial f(X) can be written as a product of 128



Homomorphic SIM2D Operations: Single Instruction Much More Data 357

coprime factors of degree 32. With t = t1 the conventional SIMD technique allows
then to pack at most 128 values into one plaintext. This capacity can be achieved
with base-3 balanced ternary expansions that result in an output bounding box of
size (29, log2 53). However, our approach supports t = t1 · t2 so one can pack 256
values using the same encoding method.

Step 2. The output of Step 1 is decrypted, decoded to a real number and
encoded again to a plaintext. This ‘refreshed’ encoding is then encrypted and
given as input to the following approximation of the logistic function

P (x) =
1
2

+
1
4
x − 1

48
x3 +

1
480

x5 − 17
80640

x7.

In this step the multiplicative depth is 3, q � 2512 and f(X) = X16384+1. These
parameters lead to tCmax � 250. Using the previous SIMD technique the maximal
plaintext capacity can be achieved with the plaintext modulus t � 230.54 and
base-3 balanced ternary encoding. In this case f(X) splits into 8192 quadratic
factors and the output bounding box is of size (229, 29.54). We can thus compose
71 blocks with 115 slots and one block with the remaining slots. As a result, one
plaintext can contain at most 71 values.

This capacity can be increased with our SIM2D technique. In particular, one
can notice that the ratio between tCmax and the previously mentioned modulus t
is around 219.46, which implies some part of the plaintext space remains unfilled.
We can fill that space setting the plaintext modulus to t1 ·t2 with t1 � 230.54 and
t2 = 675071 � 219.36. The polynomial f(X) splits into 128 factors of degree 128
modulo t2. To fit the modulus t2 we encoded real values with the non-integral
base b = 1.16391 and obtained the output bounding box (1684, 19.36). Therefore
one block should consist of 14 slots, and we can construct 9 such blocks. As a
result, we can combine these blocks with the 71 blocks given by the old SIMD
technique, which results in a total plaintext capacity of 80 values.

7 Conclusion

In this paper we presented two techniques that make SIMD operations in the set-
ting of homomorphic encryption more flexible and efficient. Our first technique
showed how data values that are naturally represented as Laurent polynomials
can be encoded into a plaintext space of the form Zt[X]/(f(X)). Furthermore,
we also provided sufficient conditions for correct decoding after evaluation of an
arithmetic circuit. Our second technique relied on a fine-grained CRT decompo-
sition of the plaintext space resulting in a much denser and thus more efficient
data packing compared to the state of the art. Finally, we provided guidelines
on how to choose system parameters in order to find the most efficient packing
strategy for a particular task.
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