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Abstract. We provide a structure-preserving signature (SPS) scheme
with an (almost) tight security reduction to a standard assumption.
Compared to the state-of-the-art tightly secure SPS scheme of Abe
et al. (CRYPTO 2017), our scheme has smaller signatures and public
keys (of about 56%, resp. 40% of the size of signatures and public keys
in Abe et al.’s scheme), and a lower security loss (of O(log Q) instead of
O(λ), where λ is the security parameter, and Q = poly(λ) is the number
of adversarial signature queries).

While our scheme is still less compact than structure-preserving sig-
nature schemes without tight security reduction, it significantly lowers
the price to pay for a tight security reduction. In fact, when accounting
for a non-tight security reduction with larger key (i.e., group) sizes, the
computational efficiency of our scheme becomes at least comparable to
that of non-tightly secure SPS schemes.

Technically, we combine and refine recent existing works on tightly
secure encryption and SPS schemes. Our technical novelties include a
modular treatment (that develops an SPS scheme out of a basic message
authentication code), and a refined hybrid argument that enables a lower
security loss of O(log Q) (instead of O(λ)).
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1 Introduction

Structure-Preserving Signatures (SPSs). Informally, a cryptographic
scheme (such as an encryption or signature scheme) is called structure-preserving
if its operation can be expressed using equations over a (usually pairing-friendly)
cyclic group. A structure-preserving scheme has the advantage that we can rea-
son about it with efficient zero-knowledge proof systems such as the Groth-Sahai
non-interactive zero-knowledge (NIZK) system [31]. This compatibility is the key
to constructing efficient anonymous credential systems (e.g., [10]), and can be
extremely useful in voting schemes and mix-nets (e.g., [30]).

In this work, we are concerned with structure-preserving signature (SPS)
schemes. Since popular tools such as “structure-breaking” collision-resistant hash
functions cannot be used in a structure-preserving scheme, constructing an SPS
scheme is a particularly challenging task. Still, there already exist a variety of SPS
schemes in the literature [2,4–6,17–19,29,35,37,39,44] (see also Table 1 for details
on some of them).

Tight Security for SPS Schemes. A little more specifically, in this work we
are interested in tightly secure SPS schemes. Informally, a cryptographic scheme
is tightly secure if it enjoys a tight security reduction, i.e., a security reduction
that transforms any adversary A on the scheme into a problem-solver with about
the same runtime and success probability as A, independently of the number of
uses of the scheme.1 A tight security reduction gives security guarantees that do
not degrade in the size of the setting in which the scheme is used.

Specifically, tight security reductions allow to give “universal” keylength rec-
ommendations that do not depend on the envisioned size of an application.
This is useful when deploying an application for which the eventual number of
uses cannot be reasonably bounded a priori. Moreover, this point is particularly
vital for SPS schemes. Namely, an SPS scheme is usually combined with several
other components that all use the same cyclic group. Thus, a keylength increase
(which implies changing the group, and which might be necessary for a non-
tightly secure scheme for which a secure keylength depends on the number of
uses) affects several schemes, and is particularly costly.

In recent years, progress has been made in the construction of a variety of
tightly2 secure cryptographic schemes such as public-key encryption schemes [11,
25,33–35,42,43], identity-based encryption schemes [8,14,20,21,27,36], and sig-
nature schemes [3,6,14,16,21,34,35,42]. However, somewhat surprisingly, only
few SPS schemes with tight security reductions are known. Moreover, these

1 We are only interested in reductions to well-established and plausible computational
problems here. While the security of any scheme can be trivially (and tightly) reduced
to the security of that same scheme, such a trivial reduction is of course not very
useful.

2 Most of the schemes in the literature are only “almost” tightly secure, meaning
that their security reduction suffers from a small multiplicative loss (that however
is independent of the number of uses of the scheme). In the following, we will not
make this distinction, although we will of course be precise in the description and
comparison of the reduction loss of our own scheme.
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tightly secure SPS schemes [6,35] are significantly less efficient than either “ordi-
nary” SPS or tightly secure signature schemes (see Table 1). One reason for this
apparent difficulty to construct tightly secure SPS schemes is that tight security
appears to require dedicated design techniques (such as a sophisticated hybrid
argument over the bits of an IBE identity [21]), and most known such techniques
cannot be expressed in a structure-preserving manner.

Table 1. Comparison of standard-model SPS schemes (in their most efficient variants).
We list unilateral schemes (with messages over one group) and bilateral schemes (with
messages over both source groups of a pairing) separately. The notation (x1, x2) denotes
x1 elements in G1 and x2 elements in G2. |M |, |σ|, and |pk | denote the size of messages,
signatures, and public keys (measured in group elements). “Sec. loss” denotes the
multiplicative factor that the security reduction to “Assumption” loses, where we omit
dominated and additive factors. (Here, “generic” means that only a proof in the generic
group model is known.) For the tree-based scheme HJ12, � denotes the depth of the tree
(which limits the number of signing queries to 2�). Q denotes the number of adversarial
signing queries, and λ is the security parameter.

Scheme |M | |σ| |pk | Sec. loss Assumption

HJ12 [35] 1 10� + 6 13 8 DLIN

ACDKNO16 [2] (n1, 0) (7, 4) (5, n1 + 12) Q SXDH, XDLIN

LPY15 [44] (n1, 0) (10, 1) (16, 2n1 + 5) O(Q) SXDH, XDLINX

KPW15 [39] (n1, 0) (6, 1) (0, n1 + 6) 2Q2 SXDH

JR17 [37] (n1, 0) (5, 1) (0, n1 + 6) Q log Q SXDH

AHNOP17 [6] (n1, 0) (13, 12) (18, n1 + 11) 80λ SXDH

Ours (unilateral) (n1, 0) (8, 6) (2, n1 + 9) 6 log Q SXDH

AGHO11 [5] (n1, n2) (2, 1) (n1, n2 + 2) — Generic

ACDKNO16 [2] (n1, n2) (8, 6) (n2 + 6, n1 + 13) Q SXDH, XDLIN

KPW15 [39] (n1, n2) (7, 3) (n2 + 1, n1 + 7) 2Q2 SXDH

AHNOP17 [6] (n1, n2) (14, 14) (n2 + 19, n1 + 12) 80λ SXDH

Ours (bilateral) (n1, n2) (9, 8) (n2 + 4, n1 + 9) 6 log Q SXDH

1.1 Our Contribution

Overview. We present a tightly secure SPS scheme with significantly improved
efficiency and tighter security reduction compared to the state-of-the-art tightly
secure SPS scheme of Abe et al. [6]. Specifically, our signatures contain 14 group
elements (compared to 25 group elements in [6]), and our security reduction
loses a factor of only O(log Q) (compared to O(λ)), where λ denotes the security
parameter, and Q = poly(λ) denotes the number of adversarial signature queries.
When accounting for loose reductions through an appropriate keylength increase,
the computational efficiency of our scheme even compares favorably to that of
state-of-the-art non-tightly secure SPS schemes.
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In the following, we will detail how we achieve our results, and in particular
the progress we make upon previous techniques. We will also compare our work
to existing SPS schemes (both tightly and non-tightly secure).

Central Idea: A Modular Treatment. A central idea in our work (that
in particular contrasts our approach to the one of Abe et al.) is a modular
construction. That is, similar to the approach to tight IBE security of Blazy,
Kiltz, and Pan [14], the basis of our construction is a tightly secure message
authentication code (MAC). This tightly secure MAC will then be converted
into a signature scheme by using NIZK proofs, following (but suitably adapting)
the generic MAC-to-signatures conversion of Bellare and Goldwasser [12].

Starting Point: A Tightly Secure MAC. Our tightly secure MAC will have
to be structure-preserving, so the MAC used in [14] cannot be employed in our
case. Instead, we derive our MAC from the recent tightly secure key encapsula-
tion mechanism (KEM) of Gay, Hofheinz, and Kohl [26] (which in turn builds
upon the Kurosawa-Desmedt PKE scheme [41]). To describe their scheme, we
assume a group G = 〈g〉 of prime order p, and we use the implicit notation
[x] := gx from [24]. We also fix an integer k that determines the computational
assumption to which we want to reduce.3 Now in (a slight simplification of) the
scheme of [26], a ciphertext C with corresponding KEM key K is of the form

C = ( [t], π ), K = [(k0 + μk1)�t] (for μ = H([t])), (1)

where H is a collision-resistant hash function, and k0,k1, t ∈ Z
2k
p and π are

defined as follows. First, k0,k1 ∈ Z
2k
p comprise the secret key. Next, t = A0r

for a fixed matrix A0 (given as [A0] in the public key) and a random vector
r ∈ Z

k
p chosen freshly for each encryption. Finally, π is a NIZK proof that proves

that t ∈ span(A0)∪ span(A1) for another fixed matrix A1 (also given as [A1] in
the public key). The original Kurosawa-Desmedt scheme [41] is identical, except
that π is omitted, and k = 1. Hence, the main benefit of π is that it enables a
tight security reduction.4

We can view this KEM as a MAC scheme simply by declaring the MAC tag
for a message M to be the values (C,K) from (1), only with μ := M (instead
of μ = H([t])). The verification procedure of the resulting MAC will check π,
and then check whether C really decrypts to K. (Hence, MAC verification still
requires the secret key k0,k1.) Now a slight adaptation of a generic argument of
Dodis et al. [22] reduces the security of this MAC tightly to the security of the
underlying KEM scheme. Unfortunately, this resulting MAC is not structure-
preserving yet (even if the used NIZK proof π is): the message M = μ is a scalar
(from Zp).5

3 For k = 1, we can reduce to DDH in G, and for k > 1, we can reduce to the k-Linear
assumption, and in fact even to the weaker Matrix-DDH assumption [24].

4 Actually, the scheme of [26] uses an efficient designated-verifier NIZK proof π that
is however not structure-preserving (and thus not useful for our case), and also
induces an additional term in K. For our purposes, we can think of π as a (structure-
preserving) Groth-Sahai proof.

5 A structure-preserving scheme should have group elements (and not scalars) as mes-
sages, since Groth-Sahai proofs cannot (easily) be used to prove knowledge of scalars.
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Abstracting Our Strategy into a Single “core lemma”. We can distill
the essence of the security proof of our MAC above into a single “core lemma”.
This core lemma forms the heart of our work, and shows how to randomize all
tags of our MAC. While this randomization follows a previous paradigm called
“adaptive partitioning” (used to prove the tight security of PKE [26,33] and
SPS schemes [6]), our core lemma induces a much smaller reduction loss. The
reason for this smaller reduction loss is that previous works on tightly secure
schemes (including [6,26,33]) conduct their reduction along the individual bits
of a certain hash value (or message to be signed). Since this hash value (or
message) usually has O(λ) bits, this induces a hybrid argument of O(λ) steps,
and thus a reduction loss of O(λ). In contrast, we conduct our security argument
along the individual bits of the index of a signing query (i.e., a value from 1 to
Q, where Q is the number of signing queries). This index exists only in the
security proof, and can thus be considered as an “implicit” way to structure our
reduction.6

From MACs to Signatures and Structure-Preserving Signatures. For-
tunately, our core lemma can be used to prove not only our MAC scheme, but
also a suitable signature and SPS scheme tightly secure. To construct a signature
scheme, we can now use an case-tailored (and heavily optimized) version of the
generic transformation of Bellare and Goldwasser [12]. In a nutshell, that trans-
formation turns a MAC tag (that requires a secret key to verify) into a publicly
verifiable signature by adding a NIZK proof to the tag that proves its validity,
relative to a public commitment to the secret key. For our MAC, we only need
to prove that the given key K really is of the form K = [(k0 + μk1)�t]. This
linear statement can be proven with a comparatively simple and efficient NIZK
proof π′. For k = 1, an optimized Groth-Sahai-based implementation of π, and
an implicit π′ (that uses ideas from [38,40]), the resulting signature scheme will
have signatures that contain 14 group elements.

To turn our scheme into an SPS scheme, we need to reconsider the equation
K = [(k0 + μk1)�t] from (1). In our MAC (and also in the signature scheme
above), we have set μ = M ∈ Zp, which we cannot afford to do for an SPS
scheme. Our solution consists in choosing a different equation that fulfills the
following requirements:

(a) it is algebraic (in the sense that it integrates a message M ∈ G), and
(b) it is compatible with our core lemma (so it can be randomized quickly).

For our scheme, we start from the equation

K = [k�
0 t + k�

(
M
1

)
] (2)

for uniform keys k0,k. We note that a similar equation has already been used
by Kiltz, Pan, and Wee [39] for constructing SPS schemes, although with a very

6 A reduction loss of O(log Q) has been achieved in the context of IBE schemes [20],
but their techniques are different and rely on a composite-order group.
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different and non-tight security proof. We can plug this equation into the MAC-
to-signature transformation sketched above, to obtain an SPS scheme with only
14 group elements (for k = 1) per signature.

Our security proof will directly rely on our core lemma to first randomize
the k�

0 t part of (2) in all signatures. After that, similar to [39], an information-
theoretic argument (that only uses the pairwise independence of the second part
of (2), when viewed as a function of M) shows security.

Our basic SPS scheme is unilateral, i.e., its messages are vectors over only
one source group of a given pairing. To obtain a bilateral scheme that accepts
“mixed” messages over both source groups of an asymmetric pairing, we can use
a generic transformation of [39] that yields a bilateral scheme with signatures of
17 group elements (for k = 1).

1.2 Related Work and Efficiency Comparison

In this subsection, we compare our work to the closest existing work (namely,
the tightly secure SPS scheme of Abe et al. [6]) and other, non-tightly secure
SPS schemes.

Comparison to the Work of Abe et al. The state of the art in tightly secure
SPS schemes (and in fact currently the only other efficient tightly secure SPS
scheme) is the recent work of Abe et al. [6]. Technically, their scheme also uses a
tightly secure PKE scheme (in that case [33]) as an inspiration. However, there
are also a number of differences in our approaches which explain our improved
efficiency and reduction.

Table 2. Comparison of the computational efficiency of state-of-the-art SPS schemes
(in their most efficient, SXDH-based variants) with our SXDH-based schemes in the
unilateral (UL) and bilateral (BL) version. With “PPEs” and “Pairings”, we denote
the number of those operations necessary during verification, where “batched” denotes
optimized figures obtained by “batching” verification equations [13]. The “|M |” and
“Sec. loss” columns have the same meaning as in Table 1. The column “|G1|” denotes
the (bit)size of elements from the first source group in a large but realistic scenario
(under some simplifying assumptions), see the discussion in Sect. 1.2. “|σ| (bits)”
denotes the resulting overall signature size, where we assume that the bitsize of G2

elements is twice the bitsize of G1-elements.

Scheme |M | PPEs Pairings
(plain)

Pairings
(batched)

Sec. loss |G1|
(bits)

|σ|
(bits)

KPW [39] (n1, 0) 3 n1 + 11 n1 + 10 2Q2 322 2576

JR [37] (n1, 0) 2 n1 + 8 n1 + 6 Q log Q 270 1890

AHNOP [6] (n1, 0) 15 n1 + 57 n1 + 16 80λ 226 8362

Ours (UL) (n1, 0) 6 n1 + 29 n1 + 11 6 log Q 216 4320

KPW [39] (n1, n2) 4 n1+n2+15 n1+n2+14 2Q2 322 4186

AHNOP [6] (n1, n2) 16 n1+n2+61 n1+n2+18 80λ 226 9492

Ours (BL) (n1, n2) 7 n1+n2+33 n1+n2+15 6 log Q 216 5400
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First, Abe et al.’s scheme involves more (and more complex) NIZK proofs,
since they rather closely follow the PKE scheme from [33]. This leads to larger
proofs and thus larger signatures. Instead, our starting point is the much simpler
scheme of [26] (which only features one comparatively simple NIZK proof in its
ciphertext).

Second, while the construction of Abe et al. is rather monolithic, our con-
struction can be explained as a modification of a simple MAC scheme. Our
approach thus allows for a more modular exposition, and in particular we can
outsource the core of the reduction into a core lemma (as explained above) that
can be applied to MAC, signature, and SPS scheme.

Third, like previous tightly secure schemes (and in particular the PKE
schemes of [26,33]), Abe et al. conduct their security reduction along the indi-
vidual bits of a certain hash value (or message to be signed). As explained above,
our reduction is more economic, and uses a hybrid argument over an “implicit”
counter value.

Efficiency Comparison. We give a comparison to other SPS schemes in
Table 1. This table shows that our scheme is still significantly less efficient in
terms of signature size than existing, non-tightly secure SPS schemes. However,
when considering computational efficiency, and when accounting for a larger
security loss in the reduction with larger groups, things look differently.

The currently most efficient non-tightly secure SPS schemes are due to Jutla
and Roy [37] and Kiltz, Pan, and Wee [39]. Table 2 compares the computational
complexity of their verification operation with the tightly secure SPSs of Abe
et al. and our schemes. Now consider a large scenario with Q = 230 signing
queries and a target security parameter of λ = 100. Assume further that we
use groups that only allow generic attacks (that require time about the square
root of the group size). This means that we should run a scheme in a group of
size at least 22(λ+log L), where L denotes the multiplicative loss of the respective
security reduction. Table 2 shows the resulting group sizes in column “|G1|” (in
bits, such that |G1| = 200 denotes a group of size 2200).

Now very roughly, the computational complexity of pairings can be assumed
to be cubic in the (bit)size of the group [7,9,23,28]. Hence, in the unilateral set-
ting, and assuming an optimized verification implementation (that uses “batch-
ing” [13]) the computational efficiency of the verification in our scheme is roughly
on par with that in the (non-tightly secure) state-of-the-art scheme of Jutla
and Roy [37], even for small messages. For larger messages, our scheme becomes
preferable. In the bilateral setting, our scheme is clearly the most efficient known
scheme.

Roadmap

We fix some notation and recall some preliminaries in Sect. 2. In Sect. 3, we
present our basic MAC and prove it secure (using the mentioned core lemma).
In Sects. 4 and 5, we present our signature and SPS schemes. Due to lack of
space, for some proofs (including the more technical parts of the proof of the
core lemma, and a full proof for the signature scheme) we refer to the full version.



More Efficient (Almost) Tightly Secure Structure-Preserving Signatures 237

2 Preliminaries

In this section we provide the preliminaries which our paper builds upon. First,
we want to give an overview of notation used throughout all sections.

2.1 Notation

By λ ∈ N we denote the security parameter. We always employ negl : N → R≥0 to
denote a negligible function, that is for all polynomials p ∈ N[X] there exists an
n0 ∈ N such that negl(n) < 1/p(n) for all n ≥ n0. For any set S, by s ←R S we
set s to be a uniformly at random sampled element from S. For any distribution
D by d ← D we denote the process of sampling an element d according to the
distribution D. For any probabilistic algorithm B by out ← B(in) by out we
denote the output of B on input in. For a deterministic algorithm we sometimes
use the notation out := B(in) instead. By p we denote a prime throughout the
paper. For any element m ∈ Zp, we denote by mi ∈ {0, 1} the i-th bit of m’s bit
representation and by m|i ∈ {0, 1}i the bit string comprising the first i bits of
m’s bit representation.

It is left to introduce some notation regarding matrices. To this end let k, � ∈
N such that � > k. For any matrix A ∈ Z

�×k
p , we write

span(A) := {Ar | r ∈ Z
k
p} ⊂ Z

�
p,

to denote the span of A.
For a full rank matrix A ∈ Z

�×k
p we denote by A⊥ a matrix in Z

�×(�−k)
p

with A�A⊥ = 0 and rank � − k. We denote the set of all matrices with these
properties as

orth(A) := {A⊥ ∈ Z
�×(�−k)
p | A�A⊥ = 0 and A⊥ has rank � − k}.

For vectors v ∈ Z
k+n
p (n ∈ N), by v ∈ Z

k
p we denote the vector consisting

of the upper k entries of v and accordingly by v ∈ Z
n
p we denote the vector

consisting of the remaining n entries of v.
Similarly, for a matrix A ∈ Z

2k×k
p , by A ∈ Z

k×k
p we denote the upper square

matrix and by A ∈ Z
k×k
p the lower one.

2.2 Pairing Groups and Matrix Diffie-Hellman Assumptions

Let GGen be a probabilistic polynomial time (PPT) algorithm that on input
1λ returns a description PG = (G1,G2, GT , p, P1, P2, e) of asymmetric pairing
groups where G1, G2, GT are cyclic group of order p for a 2λ-bit prime p,
P1 and P2 are generators of G1 and G2, respectively, and e : G1 × G2 → GT is
an efficiently computable (non-degenerate) bilinear map. Define PT := e(P1, P2),
which is a generator of GT . We use implicit representation of group elements. For
i ∈ {1, 2, T} and a ∈ Zp, we define [a]i = aPi ∈ Gi as the implicit representation
of a in Gi. Given [a]1, [a]2, one can efficiently compute [ab]T using the pairing e.



238 R. Gay et al.

For two matrices A, B with matching dimensions, we define e([A]1, [B]2) :=
[AB]T ∈ GT .

We recall the definitions of the Matrix Decision Diffie-Hellman (MDDH)
assumption from [24].

Definition 1 (Matrix distribution). Let k, � ∈ N, with � > k and p be a
2λ-bit prime. We call a PPT algorithm D�,k a matrix distribution if it outputs
matrices in Z

�×k
p of full rank k.

Note that instantiating D2,1 with a PPT algorithm outputting matrices
(

1
a

)

for a ←R Zp, D2,1-MDDH relative to G1 corresponds to the DDH assumption
in G1. Thus, for PG = (G1,G2, GT , p, P1, P2, e), assuming D2,1-MDDH relative
to G1 and relative to G2, corresponds to the SXDH assumption.

In the following we only consider matrix distributions D�,k, where for all
A ←R D�,k the first k rows of A form an invertible matrix. We also require that
in case � = 2k for any two matrices A0,A1 ←R D2k,k the matrix (A0 | A1)
has full rank with overwhelming probability. In the following we will denote this
probability by 1 − ΔD2k,k

. Note that if (A0 | A1) has full rank, then for any
A⊥

0 ∈ orth(A0), A⊥
1 ∈ orth(A1) the matrix (A⊥

0 | A⊥
1 ) ∈ Z

2k×2k
p has full rank

as well, as otherwise there would exists a non-zero vector v ∈ Z
2k
p \{0} with

(A0 | A1)�v = 0. Further, by similar reasoning (A⊥
0 )�A1 ∈ Z

k×k
p has full rank.

The D�,k-Matrix Diffie-Hellman problem in Gi, for i ∈ {1, 2, T}, is to distin-
guish the between tuples of the form ([A]i, [Aw]i) and ([A]i, [u]i), for a randomly
chosen A ←R D�,k, w ←R Z

k
p and u ←R Z

�
p.

Definition 2 (D�,k-Matrix Diffie-Hellman D�,k-MDDH). Let D�,k be a
matrix distribution. We say that the D�,k-Matrix Diffie-Hellman (D�,k-MDDH)
assumption holds relative to a prime order group Gi for i ∈ {1, 2, T}, if for all
PPT adversaries A,

Advmddh
PG,Gi,D�,k,A(λ) := |Pr[A(PG, [A]i, [Aw]i) = 1]

−Pr[A(PG, [A]i, [u]i) = 1]| ≤ negl(λ),

where the probabilities are taken over PG := (G1,G2,GT , p, P1, P2) ← GGen(1λ),
A ←R D�,k,w ←R Z

k
p,u ←R Z

�
p.

For Q ∈ N, W ←R Z
k×Q
p and U ←R Z

�×Q
p , we consider the Q-fold

D�,k-MDDH assumption, which states that distinguishing tuples of the form
([A]i, [AW]i) from ([A]i, [U]i) is hard. That is, a challenge for the Q-fold D�,k-
MDDH assumption consists of Q independent challenges of the D�,k-MDDH
assumption (with the same A but different randomness w). In [24] it is shown that
the two problems are equivalent, where the reduction loses at most a factor � − k.

Lemma 1 (Random self-reducibility of D�,k-MDDH, [24]). Let �, k, Q ∈
N with � > k and Q > � − k and i ∈ {1, 2, T}. For any PPT adversary A,
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there exists an adversary B such that T (B) ≈ T (A) + Q · poly(λ) with poly(λ)
independent of T (A), and

AdvQ-mddh
PG,Gi,D�,k,A(λ) ≤ (� − k) · Advmddh

PG,Gi,D�,k,B(λ) + 1
p−1 .

Here

AdvQ-mddh
PG,Gi,D�,k,A(λ) := |Pr[A(PG, [A]i, [AW]i) = 1]

−Pr[A(PG, [A]i, [U]i) = 1]| ,

where the probability is over PG := (G1,G2,GT , p, P1, P2) ← GGen(1λ), A ←R

D�,k,W ←R Z
k×Q
p and U ←R Z

�×Q
p .

For k ∈ N we define Dk := Dk+1,k.
The Kernel-Diffie-Hellman assumption Dk-KMDH [45] is a natural computa-

tional analogue of the Dk-MDDH Assumption.

Definition 3 (Dk-Kernel Diffie-Hellman assumption Dk-KMDH). Let
Dk be a matrix distribution. We say that the Dk-Kernel Diffie-Hellman (Dk-
KMDH) assumption holds relative to a prime order group Gi for i ∈ {1, 2} if for
all PPT adversaries A,

Advkmdh
PG,Gi,D�,k,A(λ) := Pr[c�A = 0 ∧ c 
= 0 | [c]3−i ←R A(PG, [A]i)]

≤ negl(λ),

where the probabilities are taken over PG := (G1,G2,GT , p, P1, P2) ← GGen(1λ),
and A ←R Dk.

Note that we can use a non-zero vector in the kernel of A to test membership
in the column space of A. This means that the Dk-KMDH assumption is a
relaxation of the Dk-MDDH assumption, as captured in the following lemma
from [45].

Lemma 2 ([45]). For any matrix distribution Dk, Dk-MDDH ⇒ Dk-KMDH.

2.3 Signature Schems and Message Authentication Codes

Definition 4 (MAC). A message authentication code (MAC) is a tuple of
PPT algorithms MAC := (Gen,Tag,Ver) such that:

Gen(1λ): on input of the security parameter, generates public parameters pp and
a secret key sk.

Tag(pp, sk ,m): on input of public parameters pp, the secret key sk and a message
m ∈ M, returns a tag tag.

Ver(pp, sk ,m, tag): verifies the tag tag for the message m, outputting a bit b = 1
if tag is valid respective to m, and 0 otherwise.
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We say MAC is perfectly correct, if for all λ ∈ N,all m ∈ M and all (pp, sk) ←
Gen(1λ) we have

Ver(pp, sk ,m,Tag(pp, sk ,m)) = 1.

Definition 5 (UF-CMA security). Let MAC := (Gen,Tag,Ver) be a MAC. For
any adversary A, we define the following experiment:

Expuf-cma
MAC,A(λ):

(pp, sk) ← Gen(1λ)
Qtag := ∅
(m�, tag�) ← ATagO(·)(pp)
if m� /∈ Qtag and VerO(m�, tag�) = 1

return 1
else return 0

TagO(m):
Qtag := Qtag ∪ {m}
tag ← Tag(pp, sk ,m)
return tag

VerO(m, tag):
b ← Ver(pp, sk ,m, tag)
return b

The adversary is restricted to one call to VerO. We say that a MAC scheme
MAC is UF-CMA secure, if for all PPT adversaries A,

Advuf-cma
MAC,A(λ) := Pr[Expuf-cma

MAC,A(λ) = 1] ≤ negl(λ).

Note that in our notion of UF-CMA security, the adversary gets only one forgery
attempt. This is due to the fact that we employ the MAC primarily as a building
block for our signature. Our notion suffices for this purpose, as an adversary can
check the validity of a signature itself.

Definition 6 (Signature). A signature scheme is a tuple of PPT algorithms
SIG := (Gen,Sign,Ver) such that:

Gen(1λ): on input of the security parameter, generates a pair (pk , sk) of keys.
Sign(pk , sk ,m): on input of the public key pk, the secret key sk and a message

m ∈ M, returns a signature σ.
Ver(pk ,m, σ): verifies the signature σ for the message m, outputting a bit b = 1

if σ is valid respective to m, and 0 otherwise.

We say that SIG is perfectly correct, if for all λ ∈ N, all m ∈ M and all
(pk , sk) ← Gen(1λ),

Ver(pk ,m,Sign(pk , sk ,m)) = 1.

In bilinear pairing groups, we say a signature scheme SIG is structure-preserving
if its public keys, signing messages, signatures contain only group elements and
verification proceeds via only a set of pairing product equations.

Definition 7 (UF-CMA security). For a signature scheme SIG := (Gen,Sign,
Ver) and any adversary A, we define the following experiment:
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Expuf-cma
SIG,A (λ):

(pk , sk) ← Gen(1λ)
Qsign := ∅
(m�, σ�) ← ASignO(·)(pk)
if m� /∈ Qsign and Ver(pk ,m�, σ�) = 1

return 1
else return 0

SignO(m):
Qsign := Qsign ∪ {m}
σ ← Sign(pk , sk ,m)
return σ

We say that a signature scheme SIG is UF-CMA, if for all PPT adversaries A,

Advuf-cma
SIG,A (λ) := Pr[Expuf-cma

SIG,A (λ) = 1] ≤ negl(λ).

2.4 Non-interactive Zero-Knowledge Proof (NIZK)

The notion of a non-interactive zero-knowledge proof was introduced in [15]. In
the following we present the definition from [32]. Non-interactive zero-knowledge
proofs will serve as a crucial building block for our constructions.

Definition 8 (Non-interactive zero-knowledge proof [32]). We consider
a family of languages L = {Lpars} with efficiently computable witness relation
RL. A non-interactive zero-knowledge proof for L is a tuple of PPT algorithms
PS := (PGen,PTGen,PPrv,PVer,PSim) such that:

PGen(1λ, pars) generates a common reference string crs.
PTGen(1λ, pars) generates a common reference string crs and additionally a

trapdoor td.
PPrv(crs, x, w) given a word x ∈ L and a witness w with RL(x,w) = 1, outputs

a proof Π ∈ P.
PVer(crs, x,Π) on input crs, x ∈ X and Π outputs a verdict b ∈ {0, 1}.
PSim(crs, td , x) given a crs with corresponding trapdoor td and a word x ∈ X ,

outputs a proof Π.

Further we require the following properties to hold.

Completeness: For all possible public parameters pars, for all words x ∈ L,
and all witnesses w such that RL(x,w) = 1, we have

Pr[PVer(crs, x,Π) = 1] = 1,

where the probability is taken over (crs, psk) ← PGen (1λ, pars) and Π ←
PPrv(crs, x, w).

Composable zero-knowledge�: For all PPT adversaries A we have that

Advkeygen
PS,A (λ) :=

∣∣Pr[A(1λ, crs) = 1 | crs ← PGen(1λ, pars)]

−Pr[A(1λ, crs) = 1 | (crs, td) ← PTGen(1λ, pars)]
∣∣

is negligible in λ.
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Further for all public parameters pars, all pairs (crs, td) in the range of
PTGen(1λ), all words x ∈ L, and all witnesses w with RL(x,w) = 1, we have
that the outputs of

PPrv(crs, x, w) and PSim(crs, td , x)

are statistically indistinguishable.
Perfect soundness: For all crs in the range of PGen(1λ, pars), for all words

x /∈ L and all proofs Π it holds PVer(crs, x,Π) = 0.

Remark. We will employ a weaker notion of composable zero-knowledge in the
following. Namely:

Composable zero-knowledge: For a PPT adversary A, we define

Advzk
PS,A(λ) :=

∣∣∣∣ Pr

⎡
⎢⎢⎣b′ = b

∣∣∣∣∣∣∣∣

crs0 ←R PGen(1λ, pars);
(crs1, td) ←R PTGen(1λ, pars);
b ←R {0, 1};
b′ ←R AProve(·,·)(1λ, crsb)

⎤
⎥⎥⎦ − 1

2

∣∣∣∣.

Fig. 1. NIZK argument for L∨
A0,A1 [31,46].
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Here Prove(x,w) returns ⊥ if RL(x,w) = 0 or Πb if RL(x,w) = 1, where
Π0 ←R PPrv(crs0, x, w) and Π1 ←R PSim(crs1, td , x). We say that PS satis-
fies composable zero-knowledge if Advzk

PS,A(λ) is negligible in λ for all PPT A.

Note that the original definition of composable zero-knowledge tightly implies
our definition of composable zero-knowledge. We choose to work with the latter
in order to simplify the presentation of our proofs. Note that for working with this
definition in the tightness setting, it is crucial that Advzk

PS,A(λ) is independent
of the number of queries to the oracle Prove.

2.5 NIZK for Our OR-language

In this section we recall an instantiation of a NIZK for an OR-language implicitly
given in [31,46]. This NIZK will be a crucial part of all our constructions, allowing
to employ the randomization techniques from [6,26,33] to obtain a tight security
reduction.

Public Parameters. Let PG ← GGen(1λ). Let k ∈ N. Let A0,A1 ←R D2k,k.
We define the public parameters to comprise

pars := (PG, [A0]1, [A1]1).

We consider k ∈ N to be chosen ahead of time, fixed and implicitly known to all
algorithms.

OR-Proof ([31,46]). In Fig. 1 we present a non-interactive zero-knowledge proof
for the OR-language

L∨
A0,A1

:= {[x]1 ∈ Z
2k
p | ∃r ∈ Z

k
p : [x]1 = [A0]1 · r ∨ [x]1 = [A1]1 · r}.

Note that this OR-proof is implicitly given in [31,46]. We recall the proof in
the full version.

Lemma 3. If the Dk-MDDH assumption holds in the group G2, then the proof
system PS := (PGen,PTGen,PPrv,PVer,PSim) as defined in Fig. 1 is a non-
interactive zero-knowledge proof for L∨

A0,A1
. More precisely, for every adversary

A attacking the composable zero-knowledge property of PS, we obtain an adver-
sary B with T (B) ≈ T (A) + Qprove · poly(λ) and

Advzk
PS,A(λ) ≤ Advmddh

PG,G2,Dk,B(λ).

3 Tightly Secure Message Authentication Code Scheme

Let k ∈ N and let PS := (PGen,PTGen,PPrv,PSim) a non-interactive zero-
knowledge proof for L∨

A0,A1
as defined in Sect. 2.5. In Fig. 2 we provide a MAC

MAC := (Gen,Tag,Ver) whose security can be tightly reduced to D2k,k-MDDH
and the security of the underlying proof system PS.
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Fig. 2. Tightly secure MAC MAC := (Gen,Tag,Ver) from the D2k,k-MDDH
assumption.

Instead of directly proving UF-CMA security of our MAC, we will first provide
our so-called core lemma, which captures the essential randomization technique
from [6,26,33]. We can employ this lemma to prove the security of our MAC and
(structure-preserving) signature schemes. Essentially, the core lemma shows that
the term [k�

0 t]1 is pseudorandom. We give the corresponding formal experiment
in Fig. 3.

Fig. 3. Experiment for the core lemma. Here, F : Zp → Z
2k
p is a random function

computed on the fly. We highlight the difference between Expcore
0,A and Expcore

1,A in gray.
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Lemma 4 (Core lemma). If the D2k,k-MDDH assumption holds in G1 and
the tuple of algorithms PS := (PGen,PTGen,PPrv,PVer) is a non-interactive
zero-knowledge proof system for L∨

A0,A1
, then going from experiment Expcore

0,A (λ)
to Expcore

1,A (λ) can (up to negligible terms) only increase the winning chances of
an adversary. More precisely, for every adversary A, there exist adversaries B,
B′ with running time T (B) ≈ T (B′) ≈ T (A) + Q · poly(λ) such that

Advcore
0,A (λ) ≤ Advcore

1,A (λ) + Δcore
A (λ),

where

Δcore
A (λ) :=(4k�log Q� + 2) · Advmddh

PG,G1,D2k,k,B(λ)

+ (2�log Q� + 2) · AdvZK
PS,B′(λ)

+ �log Q� · ΔD2k,k
+ 4�log Q	+2

p−1 + �log Q	·Q
p .

Recall that by definition of the distribution D2k,k (Sect. 2.2), the term ΔD2k,k
is

statistically small.

Proof Outline. Since the proof of Lemma 4 is rather complex, we first outline
our strategy. Intuitively, our goal is to randomize the term u′ used by oracles
TagO and VerO (i.e., to change this term from k�

0 t to (k0 + F(ctr))�t for a
truly random function F). In this, it will also be helpful to change the distribution
of t ∈ Z

2k
p in tags handed out by TagO as needed. (Intuitively, changing t can

be justified with the D2k,k-MDDH assumption, but we can only rely on the
soundness of PS if t ∈ span(A0) ∪ span(A1). In other words, we may assume
that t ∈ span(A0)∪ span(A1) for any of A’s VerO queries, but only if the same
holds for all t chosen by TagO.)

We will change u′ using a hybrid argument, where in the i-th hybrid we set
u′ = (k�

0 + Fi(ctr|i))�t for a random function Fi on i-bit prefixes, and the i-bit
prefix ctr|i of ctr. (That is, we introduce more and more dependencies on the
bits of ctr.) To move from hybrid i to hybrid i + 1, we proceed again along a
series of hybrids (outsourced into the full version), and perform the following
modifications:

Partitioning. First, we choose t ∈ span(Actri+1) in VerO, where ctri+1 is the
(i + 1)-th bit of ctr. As noted above, this change can be justified with the
D2k,k-MDDH assumption, and we may still assume t ∈ span(A0)∪ span(A1)
in every TagO query from A.

Decoupling. At this point, the values u′ computed in TagO and VerO are
either of the form u′ = (k�

0 + Fi(ctr|i))�A0r or u′ = (k�
0 + Fi(ctr|i))�A1r

(depending on t). Since Fi : {0, 1}i → Z
2k
p is truly random, and the matrix

A0||A1 ∈ Z
2k×2k
p has linearly independent columns (with overwhelming

probability), the two possible subterms Fi(ctr|i)�A0 and Fi(ctr|i)�A1 are
independent. Thus, switching to u′ = (k�

0 +Fi+1(ctr|i+1))�t does not change
A’s view at all.
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After these modifications (and resetting t), we have arrived at the (i + 1)-th
hybrid, which completes the proof. However, this outline neglects a number of
details, including a proper reasoning of PS proofs, and a careful discussion of
the decoupling step. In particular, an additional complication arises in this step
from the fact that an adversary may choose t ∈ span(Ab) for an arbitrary bit
b not related to any specific ctr. This difficulty is the reason for the somewhat
surprising “∃ctr′ ≤ ctr” clause in VerO.

Proof (of Lemma 4). We proceed via a series of hybrid games G0, . . . ,G3.�log Q	,
described in Fig. 4, and we denote by εi the advantage of A to win Gi, that is
Pr[Gi(A, 1λ) = 1], where the probability is taken over the random coins of Gi

and A.

Fig. 4. Games G0,G1,G2,G3.i for i ∈ {0, . . . , �log Q� − 1}, for the proof of the core
lemma (Lemma 4). Fi : {0, 1}i → Z

2k
p denotes a random function, and ctr|i denotes

the i-bit prefix of the counter ctr written in binary. In each procedure, the components
inside a solid (dotted, gray) frame are only present in the games marked by a solid
(dotted, gray) frame.

G0: We have G0 = Expcore
0,A (λ) and thus by definition:

ε0 = Advcore
0,A (λ).

G0 � G1: Game G1 is as G0, except that crs is generated by PTGen and the
proofs computed by TagO are generated using PSim instead of PPrv. This
change is justified by the zero-knowledge of PS. Namely, let A be an adver-
sary distinguishing between G0 and G1. Then we can construct an adversary
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B on the composable zero-knowledge property of PS as follows. The adversary
B follows G0, except he uses the crs obtained by its own experiment instead
of calling PGen. B answers tag queries following the tag oracle, but instead of
computing Π itself it asks its own oracle Prove. Now B simulates G0 in case it
was given a real crs and it simulates G1 in case it was given a crs generated by
PTGen. B is thus such that T (B) ≈ T (A) + Q · poly(λ) and

|ε0 − ε1| ≤ AdvZK
PS,B(λ).

G1 � G2: We can switch [t]1 to random over G1 by applying the D2k,k

assumption. More precisely, let A be an adversary distinguishing between G1

and G2 and let B be an adversary given a Q-fold D2k,k-MDDH challenge
(PG, [A0]1, [z1]1, . . . , [zQ]1) as input. Now B sets up the game for A similar
to G1, but instead choosing A0 ←R D2k,k, it uses its challenge matrix [A0]1
as part of the public parameters pars. Further, to answer tag queries B sets
[ti]1 := [zi]1 and computes the rest accordingly. This is possible as the proof
Π is simulated from game G1 on. In case B was given a real D2k,k-challenge, it
simulates G1 and otherwise G2. Lemma 1 yields the existence of an adversary B1

with T (B1) ≈ T (A) + Q · poly(λ) and

|ε1 − ε2| ≤ k · Advmddh
PG,G1,D2k,k,B1

(λ) + 1
p−1 .

G2 � G3.0: As for all ctr ∈ N we have F0(ctr|0) = F0(ε) and k0 is distributed
identically to k0 + F0(ε) for k0 ←R Z

2k
p we have

ε2 = ε3.0.

G3.i � G3.(i+1): For the proof of this transition we refer to the full version. We
obtain: For every adversary A there exist adversaries Bi, B′

i such that T (Bi) ≈
T (B′

i) ≈ T (A) + Q · poly(λ), and

ε3.i ≤ε3.(i+1) + 4k · Advmddh
PG,G1,D2k,k,Bi

(λ) + 2AdvZK
PS,B′

i
(λ)

+ ΔD2k,k
+ 4

p−1 + Q
p .

G3.�logQ	 � Expcore
1,A (λ) : It is left to reverse the changes introduced in the

transitions from game G0 to game G2 to end up at the experiment Expcore
1,A (1λ).

In order to do so we introduce an intermediary game G4, where we set [t] :=
[A0]1r for r ←R Z

k
p. This corresponds to reversing transition G1 � G2. By the

same reasoning for every adversary A we thus obtain an adversary B3.�log Q	 with
T (B3.�log Q	) ≈ T (A) + Q · poly(λ) such that

|ε3.�log Q	 − ε4| ≤ k · Advmddh
PG,G1,D2k,k,B3.�log Q�(λ) + 1

p−1 .

As [t]1 is now chosen from span([A0]1) again, we can switch back to honest
generation of the common reference string crs and proofs Π. As in transition
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G0 � G1 for an adversary A we obtain an adversary B4 with T (B4) ≈ T (A) +
Q · poly(λ) and

|ε4 − Advcore
1,A (λ)| ≤ AdvZK

PS,B4
(λ).

Theorem 1 (UF-CMA security of MAC). If the D2k,k-MDDH assumptions
holds in G1, and the tuple PS := (PGen,PTGen,PPrv,PVer) is a non-interactive
zero-knowledge proof system for L∨

A0,A1
, then the MAC MAC := (Gen,Tag,Ver)

provided in Fig. 2 is UF-CMA secure. Namely, for any adversary A, there exists
an adversary B with running time T (B) ≈ T (A) + Q · poly(λ), where Q is the
number of queries to TagO, poly is independent of Q, and

Advuf-cma
MAC,A(λ) ≤ Δcore

B (λ) + Q
p .

Proof. We employ an intermediary game G0 to prove UF-CMA security of
the MAC. By ε0 we denote the advantage of A to win game G0, that is
Pr[G0(A, 1λ) = 1], where the probability is taken over the random coins of G0

and A.

Expuf-cma
A (λ) � G0: Let A be an adversary distinguishing between Expuf-cma

A (λ)
and G0. Then we construct an adversary B with T (B) ≈ T (A) + Q · poly(λ)
allowing to break the core lemma (Lemma 4) as follows. On input pp from
Expcore

β (1λ,B) the adversary B forwards pp to A. Then, B samples k1 ←R Z
2k
p .

Afterwards, on a tag query μ from A, B queries its own TagO oracle (which
takes no input), receives ([t]1,Π, [u′]1), computes [u]1 := [u′]1 + μk�

1 [t]1, and
answers with ([t]1,Π, [u]1). Finally, given the forgery

(
μ�, tag� := ([t]1,Π, [u�]1)

)
from A, if μ� /∈ Qtag and [u�]1 
= [0]1, then the adversary B sends tag′ :=
([t]1,Π, [u�]1 + μk�

1 [t]1) to its experiment (otherwise an invalid tuple). Then
we have Advuf-cma

MAC,A(λ) = Advcore
0,B (λ) and ε0 = Advcore

1,B (λ). The core lemma
(Lemma 4) yields

Advcore
0,B (λ) ≤ Advcore

1,B (λ) + Δcore
B (λ)

and thus altogether we obtain

Advuf-cma
MAC,A(λ) ≤ ε0 + Δcore

B (λ).

Game G0: We now prove that any adversary A has only negligible chances to
win game G0 using the randomness of F together with the pairwise independence
of μ �→ k0 + μk1.

Let
(
μ�, tag�

)
be the forgery of A. we can replace k1 by k1−v for v ←R Z

2k
p ,

as both are distributed identically. Next, for all j ≤ Q we can replace F(j) by
F(j) + μ(j) · v for the same reason. This way, TagO(μ(j)) computes

[u(j)]1 : = [(k0 + μ(j)k1 −μ(j)v + F(j) +μ(j)v )�t(j)]1

= [(k0 + μ(j)k1 + F(j)�t(j)]1,

and VerO
(
[μ�]2, tag� := ([t]1,Π, [u])

)
checks if there exists a counter i ∈ Qtag

such that:

[u]1 = [(k0 + μ�k1 −μ�v + F(i) +μ(i)v )�t]1

= [(k0 + μ�k1 + F(i)�t�]1 +[(μ(i) − μ�)v�t]1 .
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Fig. 5. The UF-CMA security experiment and game G for the UF-CMA proof of MAC
in Fig. 2. F : {0, 1}�log Q� → Z

2k
p denotes a random function, applied on ctr written in

binary. In each procedure, the components inside a gray frame are only present in the
games marked by a gray frame.

For the forgery to be successful, it must hold μ� /∈ Qtag and [u] 
= 0 (and thus
[t]1 
= [0]1). Therefore, each value computed by VerO is (marginally) uniformly
random over G1.

As the verification oracle checks for all counters i ≤ Q, applying the union
bound yields

ε0 ≤ Q
p .

4 Tightly Secure Signature Scheme

In this section, we present a signature scheme SIG for signing messages from
Zp, described in Fig. 6, whose UF-CMA security can be tightly reduced to the
D2k,k-MDDH and Dk-MDDH assumptions.

SIG builds upon the tightly secure MAC from Sect. 3, and functions as a
stepping stone to explain the main ideas of the upcoming structure-preserving
signature in Sect. 5. Recall that our MAC outputs tag = ([t]1,Π, [u]1), where Π
is a (publicly verifiable) NIZK proof of the statement t ∈ span(A0) ∪ span(A1),
and u = (k0 + μk1)�t has an affine structure. Hence, alternatively, we can also
view our MAC as an affine MAC [14] with t ∈ span(A0) ∪ span(A1) and a
NIZK proof for that. Similar to [14], we use (tuned) Groth-Sahai proofs to make
[u]1 publicly verifiable. Similar ideas have been used to construct efficient quasi-
adaptive NIZK for linear subspace [38,40], structure-preserving signatures [39],
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Fig. 6. Tightly UF-CMA secure signature scheme SIG.

and identity-based encryption schemes [14]. In the following theorem we state
the state the security of SIG. For a proof we refer to the full version.

Theorem 2 (Security of SIG). If PS := (PGen,PPrv,PVer,PSim) is a non-
interactive zero-knowledge proof system for L∨

A0,A1
, then the signature scheme

SIG described in Fig. 6 is UF-CMA secure under the D2k,k-MDDH and Dk-MDDH
assumptions. Namely, for any adversary A, there exist adversaries B,B′ with
running time T (B) ≈ T (B′) ≈ T (A) + Q · poly(λ), where Q is the number of
queries to SignO, poly is independent of Q, and

Advuf−cma
SIG,A (λ) ≤ Advuf−cma

MAC,B (λ) + Advmddh
PG,G2,Dk,B′(λ).

5 Tightly Secure Structure-Preserving Signature Scheme

In this section we present a structure-preserving signature scheme SPS, described
in Fig. 7, whose security can be tightly reduced to the D2k,k-MDDH and Dk-
MDDH assumptions. It builds upon the tightly secure signature presented in
Sect. 4 by using a similar idea of [39]. Precisely, we view μ as a label and the
main difference between both schemes is that in the proof we do not need to
guess which μ the adversary may reuse for its forgery, and thus our security
proof is tight.

Theorem 3 (Security of SPS). If PS := (PGen,PTGen,PVer,PSim) is a non-
interactive zero-knowledge proof system for L∨

A0,A1
, the signature scheme SPS

described in Fig. 7 is UF-CMA secure under the D2k,k-MDDH and Dk-MDDH
assumptions. Namely, for any adversary A, there exist adversaries B,B′ with
running time T (B) ≈ T (B′) ≈ T (A) + Q · poly(λ), where Q is the number of
queries to SignO, poly is independent of Q, and

Advuf−cma
SPS,A (λ) ≤ Δcore

B (λ) + Advmddh
PG,G2,Dk,B′(λ) + Q

pk + Q
p .
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Fig. 7. Tightly UF-CMA secure structure-preserving signature scheme SPS with mes-
sage space G

n
1 .

When using PS from Sect. 2.5, we obtain

Advuf−cma
SPS,A (λ) ≤(4k�log Q� + 2) · Advmddh

PG,G1,D2k,k,B(λ)

+ (2�log Q� + 3) · Advmddh
PG,G2,Dk,B′(λ) + �log Q� · ΔD2k,k

+ 4�log Q	+2
p−1 + (Q+1)�log Q	+Q

p + Q
pk .

Strategy. In a nutshell, we will embed a “shadow MAC” in our signature scheme,
and then invoke the core lemma to randomize the MAC tags computed during
signing queries and the final verification of A’s forgery. A little more specifically,
we will embed a term k�

0 t into the A-orthogonal space of each u computed by
SignO and VerO. (Intuitively, changes to this A-orthogonal space do not influ-
ence the verification key, and simply correspond to changing from one signing key
to another signing key that is compatible with the same verification key.) Using
our core lemma, we can randomize this term k�

0 t to (k0 + F(ctr))�t for a ran-
dom function F and a signature counter ctr. Intuitively, this means that we use a
freshly randomized signing key for each signature query. After these changes, an
adversary only has a statistically small chance in producing a valid forgery.

Proof (of Theorem 3). We proceed via a series of hybrid games G0 to G2,
described in Fig. 8. By εi we denote the advantage of A to win Gi.

Expuf-cma
SPS,A (λ) � G0: Here we change the verification oracle as described in

Fig. 8.
Note that a pair (μ�, σ�) that passes VerO in G0 always passes the VerO

check in Expuf-cma
SPS,A (λ). Thus, to bound |Advuf-cma

SPS,A (λ)−ε0|, it suffices to bound the
probability that A produces a tuple (μ�, σ�) that passes VerO in Expuf-cma

SPS,A (λ),
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Fig. 8. Games G0 to G2 for proving Theorem 3. Here, F : Zp → Z
2k
p is a random

function. In each procedure, the components inside a solid (dotted, double, gray) frame
are only present in the games marked by a solid (dotted, double, gray) frame.

but not in G0. For the signature σ� =: ([t]1,Π, [u]1) we can write the verification
equation in Expuf-cma

SPS,A (λ) as

e([u]�1 , [A]2) = e([t]�1 , [K0A]2) + e(
[
m
1

]�

1

, [KA]2)

⇔ e([u]1 − [t]�1 K0 −
[
m
1

]�

1

K, [A]2) = 0

Observe that for any (μ�, ([t]1,Π, [u]1)) that passes the verification equation
in the experiment Expuf-cma

SPS,A (λ), but not the one in G0, the value

[u]1 − [t]�1 K0 −
[
m
1

]�

1

K

is a non-zero vector in the kernel of A. Thus, from A we can construct an adver-
sary B against the Dk-KMDH assumption. Finally, Lemma2 yields an adversary
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B′ with T (B′) ≈ T (A) + Q · poly(λ) such that

|Advuf-cma
SPS,A (λ) − ε0| ≤ Advmddh

PG,G2,Dk,B(λ).

G0 � G1: We can replace K0 by K0+k0(a⊥)� for a⊥ ∈ orth(A) and ki ←R Z
2k
p ,

as both are distributed identically. Note that this change does not show up in the
public key pk . Looking ahead, this change will allow us to use the computational
core lemma (Lemma 4). This yields

ε0 = ε1.

G1 � G2: Let A be an adversary playing either G1 or G2. We build an adversary
B such that T (B) ≈ T (A) + Q · poly(λ) and

Pr[Expcore
0,B (1λ) = 1] = ε1 and Pr[Expcore

1,B (1λ) = 1] = ε2.

This implies, by the core lemma (Lemma 4), that

ε1 ≤ ε2 + Δcore
B (λ).

We now describe B against Expcore
β,B (1λ) for β equal to either 0 or 1. First,

B receives pp := (PG, [A0]1, crs) from Expcore
β,B (1λ), then, B samples A ←R Dk,

a⊥ ∈ orth(A), K0 ←R Z
2k×(k+1)
p , K ←R Z

(n+1)×(k+1)
p and forwards pk :=

(PG, [A0]1, crs, [A]2, [K0A]2, [KA]2) to A.
To simulate SignO([m]1), B uses its oracle TagO, which takes no input, and

gives back ([t]1,Π, [u]1). Then, B computes [u]1 := K�
0 [t]1 +a⊥[u]1 +K�

[
m
1

]
1

,

and returns σ := ([t]1,Π, [u]1) to A.
Finally, given the forgery

(
[m�]1, σ�) with corresponding signature σ� :=

([t�]1,Π�, [u�]1), B first checks if [m�]1 /∈ Qsign and [u�]1 
= [0]1. If it is not the
case, then B returns 0 to A. If it is the case, with the knowledge of a⊥ ∈ Zp,
B efficiently checks whether there exists [u�]1 ∈ G1 such that [u�]1 − K�

0 [t�]1 −
K�

[
m�

1

]
1

= [u�]1a⊥. If it is not the case, B returns 0 to A. If it is the case, B
computes [u�]1 (it can do so efficiently given a⊥), sets tag := ([t�]1,Π�, [u�]1),
calls its verification oracle VerO(tag), and forwards the answer to A.

G2 � G3: In game G2 the vectors r sampled by SignO are uniformly random
over Zk

p, while they are uniformly random over (Zk
p)∗ = Z

k
p\{0} in G3. Since this

is the only difference between the games, the difference of advantage is bounded
by the statistical distance between the two distributions of r. A union bound
over the number of queries yields

ε2 − ε3 ≤ Q
pk .

G3 � G4: These games are the same except for the extra condition c̃tr = ctr′ in
G4, which happens with probability 1

Q over the choice of c̃tr ←R [Q]. Since the
adversary view is independent of c̃tr, we have

ε4 = ε3
Q .
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Game G4: We prove that ε4 ≤ 1
p .

First, we can replace K by K + v(a⊥)� for v ←R Z
n+1
p , and {F(i) : i ∈

[Q], i 
= c̃tr} by {F(i) +wi : i ∈ [Q], i 
= c̃tr} for wi ←R Z
2k
p . Note that this does

not change the distribution of the game.
Thus, for the i-th signing query with i 
= c̃tr the value u is computed by

SignO([mi]1) as

[u]1 = K�
0 [t]1 + (K� +a⊥v� )

[
mi

1

]
1

+a⊥(k0+F(i) +wi )�[t]1,

with [t]1 := [A0]1r, r ←R (Zk
p)∗. This is identically distributed to

[u]1 = K�
0 [t]1 + K�

[
mi

1

]
1

+ γi · a⊥, with γi ←R Zp.

For the c̃tr’th signing query, we have

[u]1 = K�
0 [t]1 + (K� +a⊥v� )

[
m

˜ctr

1

]
1

+ a⊥(k0 + F(c̃tr))�[t]1.

Assuming A succeeds in producing a valid forgery, VerO computes

[u�]1 = K�
0 [t�]1 + (K� +a⊥v� )

[
m�

1

]
1

+a⊥(k0+F(c̃tr))�[t]1.

Since m� 
= m
˜ctr by definition of the security game, we can use the pairwise

independence of m �→ v�
[
m
1

]
1

to argue that v�
[
m�

1

]
1

and v�
[
m

˜ctr

1

]
1

are two

independent values, uniformly random over G1. Thus, the verification equation
is satisfied with probability at most 1

p , that is

ε4 ≤ 1
p .

Bilateral Structure-Preserving Signature Scheme. Our structure-
preserving signature scheme, SPS, defined in Fig. 7 can sign only messages from
G

n
1 . By applying the generic transformation from [39, Sect. 6], we can transform

our SPS to sign messages from G
n1
1 × G

n2
2 using their two-tier SPS, which is

a generalization of [1]. The transformation is tightness-preserving by Theorem
6 of [39] and costs additional k elements from G1 and k + 1 elements from G2

in the signature. For the SXDH assumption (k = 1), our bilateral SPS scheme
requires additional 1 element from G1 and 2 elements from G2 in the signature.
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