
Thunderella: Blockchains with Optimistic
Instant Confirmation

Rafael Pass1(B) and Elaine Shi2

1 CornellTech, New York, USA
rafael@cs.cornell.edu
2 Cornell, Ithaca, USA

Abstract. State machine replication, or “consensus”, is a central
abstraction for distributed systems where a set of nodes seek to agree
on an ever-growing, linearly-ordered log. In this paper, we propose a
practical new paradigm called Thunderella for achieving state machine
replication by combining a fast, asynchronous path with a (slow) syn-
chronous “fall-back” path (which only gets executed if something goes
wrong); as a consequence, we get simple state machine replications that
essentially are as robust as the best synchronous protocols, yet “opti-
mistically” (if a super majority of the players are honest), the protocol
“instantly” confirms transactions.

We provide instantiations of this paradigm in both permissionless
(using proof-of-work) and permissioned settings. Most notably, this
yields a new blockchain protocol (for the permissionless setting) that
remains resilient assuming only that a majority of the computing power
is controlled by honest players, yet optimistically—if 3/4 of the comput-
ing power is controlled by honest players, and a special player called the
“accelerator”, is honest—transactions are confirmed as fast as the actual
message delay in the network. We additionally show the 3/4 optimistic
bound is tight for protocols that are resilient assuming only an honest
majority.

1 Introduction

State machine replication, also referred to as atomic broadcast, is a core dis-
tributed systems abstraction that has been investigated for three decades. In
a state machine replication protocol, a set of servers seek to agree on an ever-
growing, linearly-ordered log, such that two important properties are satisfied:
(1) consistency, i.e., all servers must have the same view of the log; and (2)
liveness, i.e., whenever a client submits a transaction, the transaction is incor-
porated quickly into the log. In this paper, we will also refer to state machine
replication as consensus for short1.

The full version of this paper is available at https://eprint.iacr.org/2017/913 [36].
1 Although the term “consensus” has been used in the distributed systems literature

to mean other related abstractions such as single-shot consensus; in this paper, we
use “consensus” to specifically refer to “state machine replication”.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10821, pp. 3–33, 2018.
https://doi.org/10.1007/978-3-319-78375-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78375-8_1&domain=pdf
https://eprint.iacr.org/2017/913

4 R. Pass and E. Shi

State machine replication is a fundamental building block for replicated
databases. For more than a decade, companies such as Google and Facebook
have deployed Paxos-style protocols [5,24,30] to replicate a significant part of
their computing infrastructure. These classical deployment scenarios are typi-
cally relatively small scale, with fast local-area networking, where crash (rather
than byzantine) faults are usually of concern.

Fuelled by decentralized cryptocurrencies, recently the community has been
excited about large-scale applications of distributed consensus. Two deployment
scenarios are of interest: (1) the permissionless setting where anyone can join
freely (e.g., decentralized cryptocurrencies); and (2) the permissioned setting
where only approved participants may join (e.g., a consortium blockchain where
multiple banks collaborate to build a distributed ledger). Regardless of which
setting, the typical deployment would involve a large number of nodes (e.g., thou-
sands or more) controlled by mutually distrustful individuals and organizations.

Roughly speaking, two broad classes of protocols have been considered for
the large-scale setting, each with their own set of deficiencies:

– First, classical-style protocols such as PBFT [9] and Byzantine-Paxos [30]
confirm transactions quickly in the normal case; but these protocols are noto-
riously complicated, making implementation, reconfiguration, and mainte-
nance relatively difficult especially in a large-scale setting. Further, these
protocols achieve “fast confirmation” by adopting the asynchronous (or par-
tially synchronous) model, and thus inherently they can tolerate at most 1

3
corruptions [15,38].

– Second, blockchain-style protocols, represented by Nakamoto’s original
blockchain [19,34,35], are a new breakthrough in distributed consensus: these
protocols are conceptually simple and tolerate minority corruptions. More-
over, it is has been shown how to remove the expensive proof-of-work from
blockchain-style consensus [11,26,40] thus solving the energy waste problem.
Further, not only has blockchains’ robustness been empirically proven, earlier
works [11,40] have also shown mathematically that blockchain-style consensus
indeed achieves certain robustness properties in the presence of sporadic par-
ticipation and node churn that none of the classical-style protocols can attain!
Unfortunately known blockchain-style protocols suffer from slow transaction
confirmation, e.g., Bitcoin’s Nakamoto consensus has a 10-minute block inter-
val and it takes several blocks to confirm a transaction with sufficient con-
fidence. Earlier works that mathematically analyze blockchain-style consen-
sus [35,40] have pointed out that such slowness is inherent for blockchain-style
protocols since the expected block interval must be set to be sufficiently large
for the protocol to retain security.

A natural question that arises is whether there is some way to simultaneously
reap the benefit of both of these “worlds”. Unfortunately, a negative answer
was presented by earlier works [38–40] which showed that a natural notion of
fast transaction confirmation called “responsiveness” is unattainable against 1

3

Thunderella: Blockchains with Optimistic Instant Confirmation 5

(even static) corruptions in classical or permissionless models. In this paper we
consider a new notion called optimistic responsiveness that allows us “circum-
vent” this lower bound such that we can achieve responsiveness most of the time
in practice and yet tolerate up to minority corruptions in the worst-case. In
our approach, in the optimistic case (when e.g., a super majority is honest), we
enjoy the fast nature of asynchronous protocols; and yet we retain the resilience
of synchronous (e.g., blockchain) protocols as well as their robustness proper-
ties (e.g., support for sporadic participation). More precisely, we show how to
combine a fast and simple “asynchronous path”—which guarantees consistency
but not liveness—with a (slow) synchronous “fall-back” path which only gets
executed if something goes wrong.

1.1 The Thunderella Paradigm

To characterize what we mean by “fast” or “instant confirmation”, we adopt the
same notion of responsiveness as proposed in the work by Attiya et al. [1] and
later adopted by others [23,38]. A consensus protocol is said to be responsive iff
any transaction input to an honest node is confirmed in time that depends only
on the actual network delay, but not on any a-priori known upper bound on the
network delay. Henceforth in this paper, we use δ to denote the actual network
delay and use Δ to denote an a-priori known upper bound of the network’s delay
where Δ is possibly provided as input to the protocol.

As shown in [38], achieving responsiveness requires us to assume that 2/3
of the players are honest. (Additionally, all known protocols that are responsive
are very complicated, and thus hard to implement.)

Towards overcoming this issue, we here instead consider a notion of opti-
mistic responsiveness—where responsiveness is only required to hold when-
ever some “goodness conditions” are satisfies. More precisely, we consider two
sets of conditions:

– worst-case conditions (denoted W) under which the protocol provides
worst-case guarantees including consistency and “slow” confirmation (e.g.,
W = majority honest).

– optimistic-case conditions (denoted O ⊆ W) under which the protocol addi-
tionally provides responsive confirmation (e.g., O = “more than 3

4 are honest
and online, and some designated player (the “leader”) is honest”).

Our main result is a paradigm for taking any blockchain protocol (permis-
sioned or permissionless) that satisfies consistency and liveness under conditions
W , and transform it into a new protocol that satisfies consistency and liveness
under “essentially” the same conditions W (and in many cases, actually the
same conditions W), and additionally satisfies optimistic responsiveness under
condition O.

6 R. Pass and E. Shi

The idea in a nutshell. To explain our approach, consider first the following
simple protocol:

– We have a designated entity: the leader, or “accelerator”.
– Transactions are sent to the leader; the leader signs the transaction (with

an increasing sequence number), and sends out the signed transaction to a
“committee” of players.

– The committee members “ack” all leader-signed transactions, but at most
one per sequence number.

– If a transaction has received more than 3/4 of the committees signatures—we
refer to such a transaction as being notarized. Participants, can directly output
their longest sequence of consecutive (in terms of their sequence numbers)
notarized transactions—all those transactions are confirmed.

It is not hard to see that this protocol is consistent under condition W ′ =
“1/2 the committee is honest”); additionally, it satisfies liveness with optimistic
responsiveness under condition O = “leader is honest, and 3/4 of the committee
is honest”. In fact, under these optimistic condition, we only need 2 commu-
nication rounds to confirm a transaction! This approach is extremely practical
and indeed this protocol is often used in practice—for instance chain.com use
something very similar as their permissioned blockchain (and manage to handle
a very high volume of transactions with fast confirmations).

The problem with this approach, however, is that the protocol does not satisfy
liveness (even “slow” liveness) under condition W ′. If the leader is cheating (or
is simply taken down from the network), the protocol halts. (Indeed, in this case
chain.com resorts to manually fixing the issue.)

To overcome this problem, we leverage the underlying (slow) blockchain pro-
tocol, which satisfies both consistency and liveness under W = “honest majority
of players”. Roughly speaking, if players notice that transactions are not get-
ting confirmed by the leader/committee, some “evidence” of this is sent to the
underlying blockchain. We then enter a “cool-down” period, where committee
members stop signing messages from the leader, yet we allow players to broadcast
any notarized transactions they have seen so far. The length of the cool-down
period is counted in blocks on the underlying blockchain (say κ blocks where κ
is a security parameter). Finally, after the cool-down period ends, we can safely
enter a “slow period” where transactions only get confirmed in the underlying
blockchain. We can next use the blockchain to switch out the leader (if needed)
and begin a new epoch of the optimistic protocol.

Let us point out the reason for having a cool-down period: without it, players
may disagree on the set of transactions that have been confirmed before entering
the “slow mode”, and thus may end up with inconsistent views. The cool-down
period enables honest players to post all notarized transactions they have seen
to the (slow) underlying blockchain, and thus (slowly) reach consistency of this
set of transactions; once we have reached this consistent view (at the end of the
cool-down), we can finally fully switch over to confirming new transactions on
the blockchain.

Thunderella: Blockchains with Optimistic Instant Confirmation 7

Collecting evidence of cheating. It only remains to explain how to collect evi-
dence that the leader (and/or committee) is cheating or is simply “unavailable”.
This turns out to also be simple: if a player notices that his transaction is not
getting confirmed by the leader or committee, he can send the transaction to
the underlying blockchain. The leader is additionally instructed to confirm all
transactions it sees on the blockchain.

Now, if players see some transaction on the blockchain, that has not got-
ten notarized within a sufficiently long amount of time—counted in blocks in
the underlying blockchains (say within n blocks)—they know that the leader/
committee must be cheating/unavailable, and thus should enter the cool-down
period. (Note that as long as the leader can confirm transactions before n blocks
are created on the underlying blockchain, he cannot be “falsely accused”; and, by
the security of the underlying blockchains those blocks cannot be created too fast.)

Selecting the committee. So far we have constructed a protocol that satisfies
consistency and liveness under conditions W ∩ W ′ (i.e., assuming an honest
majority of players, and an honest majority in the committee), and additionally
satisfies liveness with optimistic responsiveness under condition O. The question
now is how to select the committee. We consider two different approaches:

– Using all players as the committee: In a permissioned setting, the sim-
plest approach is to simply use all players as the committee. In this case,
W ′ = W and thus, we trivially have resilience under W . A variant of this
approach with improved communication complexity is to subsample a com-
mittee among the set of players (for instance, using the approach in [11] which
additionally requires a random oracle), and change committees on a regular
basis (to ensure adaptive security)—the resulting protocol, however, will only
be secure if corruptions are “slow” (to ensure the attacker does not have time
to corrupt the whole committee before it gets switched out). If sub-sampling
is instead done “secretly” using a VRF and a random oracle (as in [32]), we
can also ensure that the resulting protocol is adaptively secure in a model
with erasures, even with “instantaneous corruption”.

We mention that these approaches may also be used in the permissionless
setting if Thunderella is used to construct a crypto currency: then we can use
(potentially a sub-sample of) recent “stakeholders” to form a committee.

– Using “recent miners” as the committee: A different approach that
works in both the permissioned and permissionless setting is to select the
committee as the miners of recent blocks (as was done in [38]). We note, how-
ever, that to rely on this approach, we need to ensure that the underlying is
blockchain is “fair” [37] in the sense that the fraction of honestly mined blocks
is close to the fraction of honest players. This is not the case for Nakamoto’s
original blockchain (see e.g., [17]), but as shown in [37], any blockchain can be
turned into a fair one. If we use this approach, the resulting protocol will now
be consistent and live under simply the condition W (i.e., honest majority),
yet also satisfy optimistic liveness under condition O. (Again, this only gives
security under adaptive corruption where corruption is “slow”, so the set of
recent miners changes sufficiently fast before they can all be corrupted.)

8 R. Pass and E. Shi

Permissionless Thunderella. For instance, if we apply the second approach (of
selecting the committee as the recent miners) to Nakamoto’s proof-of-work based
blockchain, we get the following theorem:

Theorem 1 (Thunderellafor permissionless environments, informal).
Assume a proof-of-work random oracle. Then, there exists a state machine repli-
cation protocol that achieves consistency and (non-responsive) liveness in a per-
missionless environment as long as the adversary wields no more than 1

2 − ε the
total online computation power in every round where ε is an arbitrarily small con-
stant, and moreover it takes a short while for the adversary to adaptively corrupt
nodes. Moreover, if more than 3

4 of the online computation power is honest and
online, then the protocol achieves responsiveness (after a short non-responsive
warmup period) in any “epoch” in which the leader is honest and online.

Permissioned Thunderella. Similar theorems can be shown for permissioned envi-
ronments (in e.g., the “sleepy model” of [40], or even just in the “classic” model
of Dolev-Strong [14]).

The classical mode is essentially the standard synchronous model adopted
by the existing distributed systems and cryptography literature. In this model,
all nodes are spawned upfront, and their identities and public keys are provided
to the protocol as input; further, crashed nodes are treated as faulty and count
towards the corruption budget. In a classical, synchronous network, we show that
the classical Dolev-Strong byzantine agreement protocol [14] can be extended to
implement Thunderella’s underlying “blockchain”. In this case, our Thunderella
paradigm (where use the first approach to instantiate the committee) gives rise
to the following informal theorem:

Theorem 2 (Thunderellafor permissioned, classical environments (infor-
mal)). Assume the existence of a PKI and one-way functions. There exists a
state machine replication protocol that achieves consistency and (non-responsive)
liveness in a classical environment under any f < n number of fully adaptive,
byzantine corruptions where n denotes the total number of nodes; moreover, the
protocol achieves responsiveness as long as the leader is honest and moreover
�n+f

2 + 1� nodes are honest.

The “sleepy” model was recently proposed by Pass and Shi [40] to capture the
requirements arising from “sporadic participation” in large-scale, permissioned
consensus. Specifically, the sleepy model was in fact inspired by permissionless
decentralized cryptocurrencies such as Bitcoin, where nodes may come and go
frequently during the protocol, and the protocol should nonetheless guarantee
consistency and liveness even for players that join late, and for players who might
have had a short outage and woke up later to rejoin the protocol.

The sleepy model is “permissioned” in nature in that the set of approved
protocol participants and their public keys are a-priori known and provided to
the protocol as input. However, unlike the classical setting, (1) nodes are allowed
to be non-participating (i.e., sleeping); (2) sleeping nodes are not treated as
faulty; and (3) the protocol may not know in advance how many players will

Thunderella: Blockchains with Optimistic Instant Confirmation 9

actually show up. In comparison, in a classical setting, non-participating nodes
are regarded as having crashed and count towards the corruption budget; and
moreover a classical protocol need not guarantee consistency and liveness for
nodes that have crashed but wake up later to rejoin.

In such a sleepy model, Pass and Shi [40] show that roughly speaking, we
can achieve consensus when the majority of online (i.e., non-sleeping) nodes
are honest (interestingly, unlike the classical synchronous model, [40] also prove
that no state machine replication protocol can tolerate more than 1

2 corruption
(among online nodes).

Our Thunderella paradigm (again using the first approach for selecting the
committee) can be instantiated in the sleepy model using the sleepy consensus
protocol as the underlying blockchain. This gives rise to the following infor-
mal theorem in a sleepy environment (where we assume that the adversary can
adaptively put honest nodes to sleep).

Theorem 3 (Thunderellafor permissioned, sleepy environments (infor-
mal)). Assume the existence of a PKI, enhanced trapdoor permutations, and a
common reference string (CRS). There exists a state machine replication protocol
that achieves consistency and (non-responsive) liveness in a sleepy environment
with static corruptions, as long as 1

2 − ε of the online nodes are honest in every
round for any arbitrarily small constant ε; moreover, if more than 3

4 fraction
of nodes are honest and online, the protocol achieves responsiveness (after a
short non-responsive warmup period) in any epoch in which leader is honest and
online.

In fact, the above theorem also extends to adaptive corruptions with erasures
using the adaptively secure version of sleepy consensus [40]2 as Thunderella’s
underlying blockchain, assuming the existence of a VRF and a random oracle
(using the approach from [32]).

Lower bounds on the optimistic honest threshold. We additionally prove that
our optimistic bound of 3/4 is tight: no protocol that is (worst-case) resilient for
simply an honest majority, can be optimistically responsive when more than 1/4
of the player can be corrupted.

Practical Considerations: Instant Confirmation and Scalability. The low latency
and poor scalability of Nakamoto’s blockchain protocol are typically viewed as
the main bottlenecks for Bitcoin as well as other cryptocurrencies.

Our paradigm provides a very practical and simple approach for overcoming
these issue. The Thunderella paradigm shows how to build on top of currently
running blockchains, to enable “optimistic instant confirmation” of transactions.
Additionally, note that in our protocol, players only need to send transactions

2 The paper has multiple adaptively secure versions; here we rely on the one that
achieves adaptive security with erasures in the random oracle model (as this proto-
col has better parameters than the one which satisfies adaptive security without a
random oracle).

10 R. Pass and E. Shi

to the leader, who in turn lead the committee to confirm the transaction. Most
notably, the underlying blockchain is essentially only used when something goes
wrong, and blocks need not be distributed to the whole network before getting
confirmed; thus, Thunderella also solves the scalability issue with Nakamoto’s
blockchain protocol. Of course, both of these guarantees are only “optimistic”—
but arguably, under normal circumstances one would expect 3/4 of the play-
ers to act honestly, and the leader could be incentivized (paid) to perform its
job (and if it doesn’t, will be kicked out). Thus, we believe our approach is a
practically viable approach for circumventing the main bottlenecks of today’s
cryptocurrencies.

Comparison. At the surface, our idea is reminiscient of classical-style protocols
such as PBFT and Byzantine-Paxos. In particular, protocols like PBFT also have
a very simple normal path that consists of O(1) rounds of voting. However, when
the normal path gets stuck, PBFT-style protocols fall back to a “view change”
mechanism that is also responsive—and thus these protocols tolerate only 1

3 cor-
ruptions in the worst-case, and are invariably complex due to the need to handle
asynchrony. (Furthermore, this approach is not amenable for protocols in the
permissionless setting). Our key insight is to instead fall back to a synchronous
path in the worst case, thus allowing us to circumvent the 1

3 lower bound for par-
tial synchrony and yet still be responsive in practice most of the time. Moreover,
since our protocol is fundamentally synchronous, we benefit from the simplicity
and robustness enjoyed by synchronous protocols (e.g., blockchains).

Interestingly, Thunderella is also a constant factor faster in the fast path than
most PBFT- or Paxos-style protocols. PBFT-style protocols typically require
multiple rounds of voting even in the normal path (c.f. Thunderella has exactly
one)—and the latter rounds are necessary to prepare for the possibility of a view
change. Although it is possible to compress the normal path to a single round of
voting, this is typically achieved either by sacrificing resilience (e.g., tolerating
only 1

5 corruptions) [42] or by adding yet another optimistic layer on top of the
normal path—thus further complicating the already complex protocol [29].

Roadmap. In this extended abstract, we simply provide a description and proof
of the general Thunderella paradigm (informally described above) assuming the
existence of a fixed committee, a majority of which is honest. We defer the formal
treatment of how to select the committee to the online full version [36] (although
we described it informally above).

2 Definitions

We present informal definitions in this section while deferring the detailed formal
definitions to the online full version [36].

We adopt the standard Interactive Turing Machines (ITM) approach to
model protocol execution. A protocol refers to an algorithm for a set of
interactive Turing Machines (also called nodes) to interact with each other.

Thunderella: Blockchains with Optimistic Instant Confirmation 11

The execution of a protocol Π that is directed by an environment Z(1κ)
(where κ is a security parameter), which activates a number of nodes as either
honest or corrupt nodes. Honest nodes would faithfully follow the protocol’s pre-
scription, whereas corrupt nodes are controlled by an adversary A which reads
all their inputs/message and sets their outputs/messages to be sent.

Aprotocol’s execution proceeds in rounds thatmodel atomic time steps.Hence-
forth, we use the terms round and time interchangeably. At the beginning of every
round, honest and online nodes receive inputs from an environment Z; at the end
of every round, honest and online nodes send outputs to the environment Z.

Corruption model. In the standard distributed systems or cryptography litera-
ture, crashed nodes are often treated as faulty and count towards the corruption
budget. In this paper, we describe a more general model in which we distinguish
crashed nodes (also referred to as sleeping nodes) and corrupt nodes. An honest
node may have a short-term or long-term outage during which it is not able to
participate in the protocol. However, such a crashed node is not in the control of
the adversary—in this case we do not attribute this node as corrupt. Informally,
we often refer to the set of honest nodes that have not crashed as being online.
We also consider all corrupt nodes as being online (since this gives the adversary
more advantage).

We stress that the motivation for not treating crashed nodes as corrupt is to
allow us to prove a more powerful theorem: our Thunderella paradigm ensures
consistency and worst-case liveness when α fraction of the committee are hon-
est but not necessarily online (and assuming that the underlying blockchain is
secure). In particular, as we noted, α can be as small as a single member of
the committee—but in this case the conditions necessary for instant confirma-
tion are somewhat more stringent (i.e., all committee members must be honest
and online for instant confirmation). In a more traditional model where crash is
treated as corrupt, all of our theorems still apply—except that “honest” would
equate to “honest and online”.

More formally, in our model, the environment Z controls when nodes are
spawned, corrupted, put to sleep, or waken up:

– At any time during the protocol execution, the environment Z can spawn
new nodes, and newly spawned nodes can either be honest or corrupt. The
adversary A has full control of all corrupt nodes.

– At any time during the protocol execution, Z can issue a corrupt instruction
to an honest (and possibly sleeping) node. When this happens, its internal
states are exposed to A and A henceforth controls the node.

– At any time during the protocol execution, Z can issue a sleep instruction
to an honest node. When this happens, the node immediately becomes asleep
(or sleeping), and it stops sending and receiving protocol messages and per-
forming any computation. Sleeping is similar to the notion of a crash fault
in the classical distributed systems terminology. In our paper, though, we
treat sleeping nodes as being honest rather than attributing them towards
the faulty budget.

12 R. Pass and E. Shi

– At any time during the protocol execution, Z can issue a wake instruction
to an honest, sleeping node. At this point, this node immediately wakes up
and continues to participate in the protocol. When an honest, sleeping node
wakes up, pending messages that the node should have received while sleeping
and additionally some adversarialy inserted messages may be delivered to the
waking node.

– At any time during the protocol execution, Z can issue a kill instruction to
a corrupt node. At this point, the corrupt node is removed from the protocol
execution and is no longer considered as an online node—but note that the
adversary A still knows the internal states of a killed node prior to its being
killed.

Formally, we use the terminology online nodes to refer to the set of nodes
that are (i) either honest and not sleeping; or (ii) corrupt but not having been
killed.

Communication model. We assume that honest and online nodes can send mes-
sages to all other honest and online nodes. The adversary A is in charge of
scheduling message delivery. A cannot modify the contents of messages broad-
cast by honest nodes, but it can reorder and delay messages sent by honest
and online nodes, possibly subject to constraints on the maximum delays to be
defined later. The adversary A is allowed to send messages to a subset of honest
and online nodes but not all of them. The identity of the sender is not known
to the recipient3.

Formally, we say that (A,Z) respects Δ-bounded delay iff Z inputs Δ to all
honest nodes when they are spawned, and moreover the following holds:

Δ-bounded delay. Suppose an honest (and online) node sends a message at
time t, then in any round r ≥ t+Δ, any honest node that is online in round r
will have received the message, including nodes that may possibly have been
sleeping but just woke up in round r, as well as nodes which may have just
been spawned at the beginning of round r.

Throughout this paper, we assume that Z inputs the maximum delay param-
eter Δ to all honest nodes upon spawning (as noted in the above definition of
Δ-bounded delay)—this means that the protocol has a-priori knowledge of an
upper bound on the network’s maximum delay. This is akin to the synchronous
communication model in the classical distributed systems literature.

2.1 Classical, Sleepy, and Permissionless Models

The above generic model does not impose any constraints on when nodes are
spawned, how many nodes are spawned, and which nodes are allowed to join
the protocol. Thus the generic model can capture permissionless executions.

3 Later in the paper, for instantiations in the permissioned model under a PKI, authen-
ticated channels are implied by the PKI.

Thunderella: Blockchains with Optimistic Instant Confirmation 13

In this generic model, we can also model classical and sleepy executions by
imposing constraints on (A,Z). The classical setting is what the vast majority
of distributed systems literature focuses on. In a classical execution, (A,Z) is
required to spawn all nodes, numbered 1..n, upfront; further, honest nodes are
assumed to be always online (i.e., (A,Z)) are not allowed to issue sleep or wake
instructions. The sleepy model was first proposed by Pass and Shi [40], which
is meant to be “in-between” a fully permissionless and a classical permissioned
model. In a sleepy execution, the set of allowed players are determined upfront
and number 1..n; however, nodes can join late, they can also fall asleep and later
wake up again. Nodes that fall asleep are not treated as corrupt and when they
wake up, the security properties we define such as consistency and liveness must
ensue for them.

We use the terms (n, ρ,Δ)-permissionless environment, (n, ρ,Δ)-sleepy envi-
ronment, or (n, f,Δ)-classical environment to capture the execution environment
we care about and the parameters respected by (A,Z) (where ρ is a corruption
fraction but f is the absolute number of corrupt nodes). We defer the formal
definition of these terms to the online full version [36].

2.2 State Machine Replication

State machine replication has been a central abstraction in the 30 years of dis-
tributed systems literature. In a state machine replication protocol, a set of nodes
seek to agree on an ever-growing log over time. We require two critical security
properties: (1) consistency, i.e., all honest nodes’ logs agree with each other
although some nodes may progress faster than others; (2) liveness, i.e., transac-
tions received by honest nodes as input get confirmed in all honest nodes’ logs
quickly. We now define what it formally means for a protocol to realize a “state
machine replication” abstraction.

Syntax. In a state machine replication protocol, in every round, an honest and
online node receives as input a set of transactions txs from Z at the beginning
of the round, and outputs a LOG collected thus far to Z at the end of the round.

Security definitions. Let Tconfirm(κ, n, ρ,Δ, δ) and Twarmup(κ, n, ρ,Δ, δ) be poly-
nomial functions in the security parameter κ and possibly other parameters of
the view such as the number of nodes n, the corrupt fraction ρ, the actual max-
imum network delay δ, the network delay upper bound Δ that is provided by Z
to the protocol as input, etc.

Definition 1 (Security of a state machine replication protocol). We
say that a state machine replication protocol Π satisfies consistency (or
(Tconfirm, Twarmup)-liveness resp.) w.r.t. some (A,Z), iff there exists a negligible
function negl(·), such that for any κ ∈ N, except with negl(κ) probability over the
choice of view ← EXECΠ(A,Z, κ), consistency (or (Tconfirm, Twarmup)-liveness
resp.) is satisfied:

14 R. Pass and E. Shi

– Consistency: A view satisfies consistency iff the following holds:
• Common prefix. Suppose that in view, an honest node i outputs LOG to

Z at time t, and an honest node j outputs LOG′ to Z at time t′ (i and
j may be the same or different), it holds that either LOG ≺ LOG′ or
LOG′ ≺ LOG. Here the relation ≺ means “is a prefix of”. By convention
we assume that ∅ ≺ x and x ≺ x for any x.

• Self-consistency. Suppose that in view, a node i is honest and online at
time t and t′ ≥ t, and outputs LOG and LOG′ at times t and t′ respectively,
it holds that LOG ≺ LOG′.

– Liveness: A view satisfies (Tconfirm, Twarmup)-liveness iff the following holds: if
in some round Twarmup < t ≤ |view|−Tconfirm, some node honest and online in
round t either received from Z an input set txs that contains some transaction
m or has m in its output log to Z in round t, then, for any node i honest and
online at any time t′ ≥ t + Tconfirm, let LOG be the output of node i at time
t′, it holds that m ∈ LOG.
Intuitively, liveness says that transactions input to an honest node get
included in honest nodes’ LOGs within Tconfirm time; and further, if a transac-
tion appears in some honest node’s LOG, it will appear in every honest node’s
LOG within Tconfirm time.

2.3 Abstract Blockchain Protocols

A blockchain protocol can be regarded as a way to realize state machine repli-
cation. We now formally define what it means for a protocol to realize to a
blockchain abstraction. In our paper, our end goal is to realize state machine
replication and we leverage an abstract blockchain as an underlying building
block. We note that while the blockchain abstraction may superficially resemble
that of state machine replication, the blockchain abstraction in fact allows us to
additionally express (1) a rough notion of time through chain growth; and (2)
fairness properties [37] through chain quality.

Syntax and Security Definitions

Syntax. An abstract blockchain protocol satisfies the following syntax. In each
round, every node that is honest and online in this round receives from Z a set
of transactions txs at the beginning of the round; and outputs to Z an abstract
blockchain chain at the end of the round. An abstract blockchain denoted chain
is an ordered sequence of blocks of the following format:

chain := {txsi}i∈[|chain|]

where each txsi is an application-specific payload such as a set of transactions.

Thunderella: Blockchains with Optimistic Instant Confirmation 15

Blockchain notations. We use the notation chain to denote an abstract
blockchain. The notation chain[: −] denotes the entire chain except the trailing
	 blocks; chain[:] denotes the entire chain upto the block at length 	; chain[−	 :]
denotes the trailing 	 blocks of chain; and chain[:] denotes all blocks at length
	 or greater.

Henceforth we say that chain is “an honest chain in view”, iff chain is some
honest (and online) node’s output to the environment Z in some round in view.
We use the notation chaint

i(view) to denote node i’s chain in round t in view—
since the context is clear, we often omit writing the view explicitly in the above
notation.

Security definitions. A blockchain protocol should satisfy chain growth, chain
quality, and consistency. Intuitively, chain growth requires that honest nodes’
blockchains grow steadily, neither too fast nor too slow. Chain quality requires
that in any honest node’s chain, any sufficiently long window of consecutive
blocks contains a certain fraction of blocks that are mined by honest nodes.
Consistency requires that all honest nodes’ chains agree with each other except
for the trailing few blocks. We will formally define these security properties
below.

Definition 2 (Security of an abstract blockchain protocol). We say that
a blockchain protocol Πblockchain satisfies (T, g0, g1)-chain growth, (T, μ)-chain
quality, and T -consistency w.r.t. some (A,Z), iff there exists a negligible function
negl(·), such that for every κ ∈ N, except with negl(κ) probability over the choice
of view ← EXECΠblockchain(A,Z, κ), the following hold for view:

– (T, g0, g1)-chain growth. A view satisfies (T, g0, g1)-chain growth iff the follow-
ing hold:

• Consistent length: If in round r some honest chain is of length 	, then in
round r + Δ, all honest chains must be of length at least 	.

• Growth lower bound: For any r and t such that g0(t − r) ≥ T , let chainr

and chaint denote two honest chains in round r and t respectively, it holds
that

|chaint| − |chainr| ≥ �g0(t − r)�
• Growth upper bound: For any r and t such that g1(t − r) ≥ T , let chainr

and chaint denote two honest chains in round r and t respectively, it holds
that

|chaint| − |chainr| ≤ �g1(t − r)
– (T,L, μ)-chain quality. A view satisfies (T,L, μ)-chain quality iff the following

holds: for any honest chain denoted chain in view, for any T consecutive blocks
chain[j + 1..j + T], more than μ fraction of the blocks in chain[j + 1..j + T]
are mined by honest nodes at most L blocks ago—here we say that a block
chain[i] is “mined by an honest node at most L blocks ago” iff there is a set
txs such that txs ⊆ chain[i] and moreover Z input txs to some honest node
when its last output to Z contains the prefix chain[: i − L] (here if i − L < 0,
we round it to 0).

16 R. Pass and E. Shi

– T-consistency. A view satisfies T -consistency iff the following hold: for any
two honest chains chainr and chaint in round r and t ≥ r respectively, it holds
that

chainr[: −T] ≺ chaint

We stress that since chainr and chaint can possibly belong to the same node,
the above definition also implies “future self consistency” except for the trail-
ing T blocks.

Liveness as a derived property. Intuitively, liveness requires that if honest nodes
receive a transaction m as input, then m appear in honest chains very soon.
More formally, we say that a blockchain protocol Πblockchain satisfies (K,T)-
liveness w.r.t. some (A,Z) iff there exists a negligible function negl(·) such that
for every κ ∈ N, except with negl(κ) probability over the choice of view ←
EXECΠblockchain(A,Z, κ), the following holds:

– Suppose that in any round r ≥ t, Z always inputs a set that contains some
m to every honest and online node i unless m ∈ chainr

i [: −T]. Then, for any
honest chain denoted chain in view whose length is at least 	+K +T , it holds
that chain[: 	+K] contains m where 	 denotes the shortest honest chain length
at time t.

The liveness of a blockchain protocol is directly implied by chain growth and
chain quality as stated in the following lemma.

Lemma 1 (Liveness). Suppose that a blockchain protocol Πblockchain satis-
fies (K, g0, g1)-chain growth, (K ′, L, μ) chain quality and T -consistency w.r.t.
some (A,Z) for positive parameters K, g0, g1,K

′, L, μ and T , then it holds that
Πblockchain satisfies (2K + 2g1 + K ′ + L, T)-liveness w.r.t. (A,Z).

Proof. We ignore the negligible fraction of views where relevant bad events take
place. Let r′ be the earliest round in which some honest chain reaches length
at least 	 + K + g1 + K ′ + L + T , and let chain∗ be an honest chain in round
r′ of length at least 	 + K + g1 + K ′ + L + T . By chain quality, in the window
chain∗[+ K + g1 + L + 1 : 	 + K + g1 + K ′ + L], there must be an honest block
denoted B such that Z input (a subset of) the contents of B to some honest
node i in round r ≤ r′ when its chain contains the prefix chain∗[: 	+K +g1 +1].
By chain growth upper bound, the longest honest chain in round t must be of
length at most 	 + K + g1, and thus B must be input to some honest and online
node i by Z in some round r where t ≤ r ≤ r′. By assumption, B must contain
m unless chainr

i [: −T] already contains m. By consistency, it must be that chain∗

and chainr
i are no longer than 	 + 2(K + g1) + K ′ + L + T . By consistency, for

any honest chain ch in view of length at least 	 + 2(K + g1) + K ′ + L + T , it
must be that chainr

i [: −T] ≺ ch[: 	+2(K + g1)+K ′ +L] and chain∗[: −T] ≺ ch[:
	 + 2(K + g1) + K ′ + L], and thus ch[: 	 + 2(K + g1) + K ′ + L] must contain m.

Thunderella: Blockchains with Optimistic Instant Confirmation 17

Blockchain Implies State Machine Replication. Given any blockchain
protocol Πblockchain, it is easy to construct a state machine replication protocol
where (1) nodes run an instance of Πblockchain; (2) an honest node broadcasts all
newly seen transactions to each other; and (3) in every round, nodes remove the
trailing T blocks from the present chain (where T is the consistency parameter)
and output the truncated chain to the environment Z [38,40]. It is not difficult
to see that consistency (of the resulting state machine replication protocol) fol-
lows directly from consistency of the blockchain; and liveness follows from chain
quality and chain growth. The above intuition has been formalized in earlier
works [38,40].

2.4 Preliminaries: Responsiveness

Responsiveness. Recall that throughout this paper we always assume that
(A,Z) respects Δ-bounded delay for some Δ, i.e., Z informs the protocol of a
delay upper bound Δ upfront and all honest messages are then delivered within
Δ number of rounds. A state machine replication protocol is said to be responsive
if the transaction confirmation time is independent of the a-priori known upper
bound Δ of the network’s delay, but depends only on the actual maximum
network delay. To put our results in perspective, we formally define the notion
of responsiveness below and state a known lower bound result suggesting the
impossibility of responsiveness against 1

3 fraction of corruption. In the remainder
of the paper, we will show that if one optimistically hopes for responsiveness
only in lucky situations, then we can have protocols that retains consistency and
liveness even under more than 1

3 corruption. In practice, this means that we can
have protocols that are responsive most of the time, and even when more than
1
3 nodes are corrupt, the protocol can still guarantee consistency and liveness
although performance would degrade when under attaack.

Responsiveness. We define a technical notion called responsiveness for a state
machine replication protocol. Intuitively, responsiveness requires that except for
a (possibly non-responsive) warmup period in the beginning, all transactions
input afterwards will perceive transaction confirmation delay that is independent
of the a-priori set upper bound Δ on the network’s delay. As shown in earlier
works [15,38], responsive state machine replication is impossible if 1

3 or more
fraction of the nodes are corrupt (even in a permissioned, classical environment
with static corruptions, and even assuming that a proof-of-work oracle exists).

Definition 3 (Responsive state machine replication [38]). Suppose that
(A,Z) respects Δ-bounded delay for some Δ. We say that a state machine
replication protocol Π satisfies (Tconfirm, Twarmup-responsiveness w.r.t. (A,Z) iff
Π satisfies (Tconfirm, Twarmup)-liveness w.r.t. (A,Z), and moreover the function
Tconfirm does not depend on the a-prior delay upper bound Δ.

We say that a protocol Π satisfies consistency (or responsiveness resp.)
in (n, f,Δ)-classical, static environments iff for every p.p.t. (A,Z) pair that

18 R. Pass and E. Shi

respects (n, f,Δ)-classical execution and static corruption, Π satisfies consis-
tency (or responsiveness resp.) w.r.t. (A,Z). We can similarly define (n, ρ,Δ)-
sleepy, static environments and (n, ρ,Δ)-permissionless, static environments.

Theorem 4 (Impossibility of responsiveness against 1
3 corruption [38]).

For any n and f such that n ≤ 3f and for any polynomial Tconfirm in κ and δ,
and Twarmup in κ,Δ, and δ, there exists some polynomial function Δ in κ such
that no state machine replication protocol no state machine replication protocol
can simultaneously achieve consistency and (Tconfirm, Twarmup)-responsiveness in
(n, f,Δ)-classical, static environments even assuming the existence of a proof-
of-work oracle.

The proof of the above theorem was presented by Pass and Shi in a recent
work [38] where they modified the classical lower bound proof by Dwork et al. [15]
and made it work even in the proof-of-work setting.

Recall that permissioned-classical is expressed as constraints on (A,Z) in our
formal framework. This means that a lower bound for n ≤ 3f in the classical
setting immediately implies a lower bound in more permissive settings where
(A,Z) need not respect the permissioned-classical constraints as long as n ≤ 3f
(or the equivalent holds). In other words, the above impossibility also applies to
sleepy and permissionless settings (we defer formal theorem statements for these
settings to the online full version [36]).

Interestingly, how to achieve responsive state machine replication against
fewer than 1

3 fraction of corruption is also known in the in the permissioned
setting assuming the existence of a PKI [9], as well as in the permissionless setting
assuming proof-of-work [38] (and under additional technical assumptions).

3 Basic Thunderella Protocol with a Static Committee

We first describe the basic Thunderella protocol assuming a static committee
that is known a-priori to all nodes. We will discuss how to perform commit-
tee reconfiguration in the online full version [36]. For conceptual simplicity, we
describe a version of the protocol where the blockchain is also collecting trans-
actions constantly in the background—in practical implementations, it will not
be too difficult to optimize our theoretical construction further such that the
blockchain need not store an additional copy of all transactions under optimistic
conditions.

As mentioned, in general, the Thunderella paradigm can be instantiated with
any suitable asynchronous protocol to serve as the optimistic path and any
suitable synchronous protocol to serve as the fallback path. However, we believe
that a particular attractive instantiation is to use a simple voting-based protocol
for the optimistic path and a blockchain as the fallback. Thus for concreteness,
we will describe Thunderella for this specific instantiation.

Thunderella: Blockchains with Optimistic Instant Confirmation 19

Terminology. Our basic approach assumes three logical entities:

– miners of the underlying blockchain Πblockchain;
– a leader; and
– a committee denoted committee.

To retain consistency and worst-case liveness (i.e., confirmation in the speed
of the underlying Πblockchain), we need to assume that (1) the underlying
blockchain Πblockchain retains security (and this would translate to different
compliance rules depending on how we instantiate the underlying blockchain);
(2) α fraction of the committee are assumed to remain honest (but not neces-
sarily online) where α is a knob that effectively allows us to trade-off security
and performance as is explained later. Notably, the leader need not be trusted
for consistency and worst-case liveness.

For concreteness, in our description we will often assume that α = 1
2 , but

in fact our approach generalizes to any choice where 0 < α < 1; and when-
ever appropriate, we will remark how to generalize the scheme’s parameters for
arbitrary α.

For simplicity, in this section we start out by assuming a static committee. In
a permissioned setting, this committee can be the set of all nodes. In a permis-
sionless setting where the set of players are not known in advance, we can elect
the committee dynamically from the underlying blockchain using known tech-
niques [37,38] or have stake-holders act as the committee [6,11,32]—however we
defer the discussion of committee election and reconfiguration to the online full
version [36]. Although we assume a static committee in this section, our basic
protocol supports leader reconfiguration. In our presentation below we focus on
describing the mechanism that enables leader reconfiguration without specifying
concretely what leader re-election policy to adopt—exactly what policy to adopt
depends on the application context and we thus defer the discussion of policies
to the online full version [36].

3.1 Our Basic Protocol in a Nutshell

We first describe the intuition behind our basic protocol. For simplicity, we focus
our description on what happens within a single epoch in which the identity of
the leader is common knowledge.

Optimistic Fast Path. The optimistic fast path consists of a single round of
voting to confirm each transaction (or batch). The leader serves as a coordina-
tor and sequences transactions in the optimistic path. It tags each freshly seen
transaction (or a batch) with a sequence number that increments over time, and
the resulting tuple (seq, tx) is referred to as a notarization request. Whenever
the committee members hear a notarization request (seq, tx) from the leader, it
will sign the tuple (seq, tx) as long as it has not signed any tuple for seq before.
For consistency, it is important that an honest committee member signs only
one unique tuple (seq, tx) for every sequence number seq.

20 R. Pass and E. Shi

Whenever an honest node observes that a notarization request (seq, tx) has
collected votes from more than 3

4 of the committee, (seq, tx) is considered nota-
rized. Although any notarized transaction is ready to be confirmed, an honest
node is only allowed to output a notarized (seq, tx) tuple iff for every s < seq, a
tuple (s,) has already been output. In other words, the output sequence is not
allowed to skip any sequence numbers (since transactions must be processed in
a linearized order). Henceforth, we referred to a sequence of notarized transac-
tions with contiguous, non-skipping sequence numbers as a lucky sequence. In
other words, honest nodes always output the maximal lucky sequence they have
observed.

It is not hard to see that the optimistic, fast path satisfies the following prop-
erties as long as the majority of the online committee members are honest (below,
we focus our discussion for the specific case α = 1

2 , although the argument can
easily be generalized to arbitrary choices of α):

– The following agreement property is satisfied even when the leader is corrupt
and the committee may not be online: if any two honest nodes have output
(seq, tx) and (seq, tx′) respectively, it must be that tx = tx′ (except with
negligible probability over the choice of view).

– The following liveness property is satisfied only when the leader is honest and
online and moreover more than 3

4 of the committee are honest and online (i.e.,
when the optimistic conditions hold): every transaction input to an honest
node will appear in all nodes’ output logs in O(1) actual roundtrips—in other
words, when optimistic conditions hold, not only do we achieve liveness but
we in fact also achieve responsiveness.

Note that when the optimistic conditions do not hold, liveness is not guaran-
teed for the optimistic path. For example, a corrupt leader can propose different
transactions to different nodes for the same sequence number, and thus no trans-
action will collect enough votes to become notarized. Further, progress can also
be hampered if not enough committee members are honest and online to vote.

Summarizing the above, if the leader is honest and online and moreover more
than 3

4 fraction of the committee are honest and online, all nodes will confirm
transactions responsively in the optimistic path. However, to make our protocol
complete, we need to deal with the case when either the leader is corrupt (or not
online), or the committee is not more than 3

4 honest and online—in the latter
case, we wish to fall back to the worst-case guarantees offered by the underlying
blockchain. Below we describe how such fallback can be achieved.

Falling Back to the Blockchain. In the fallback slow path, nodes will confirm
transactions using the slow blockchain. The most non-trivial part of our protocol
is how to switch between the optimistic path and the fallback path. To this end,
we must answer the following two questions.

1. How do nodes decide when to fall back to the slow path?
2. Once the above decision is made, what is the mechanism for achieving this

fallback?

Thunderella: Blockchains with Optimistic Instant Confirmation 21

When to fall back. The idea is to use the underlying blockchain to collect evi-
dence of the optimistic path not working (e.g., either due to corrupt or crashed
leader or due to not sufficiently many committee members being honest and
online). Such evidence must be robust such that the adversary cannot raise false
alarms when the optimistic path is actually working.

For conceptual simplicity, we can imagine the following: (1) whenever hon-
est nodes mine a block, they incorporate into the block their entire view so
far, including all unnotarized transactions and notarized transactions they have
seen—in the actual protocol, the transactions stored in the blockchain can be
easily deduplicated and compressed; (2) honest nodes always gossip their views
to each other, such that if one honest node sees some (notarized or unnotarized)
transaction by round r, then all honest nodes will have seen it by round r + Δ.
Thus by the liveness property of the underlying blockchain, if any (notarized
or unnotarized) transaction is observed by any honest node in round r, then in
roughly εκ blocks of time, the transaction will appear in the blockchain.

Now, we may use the following criterion to detect when the optimistic path
is not working:

Fallback condition: Assume that chain is the stabilized prefix of some honest
node’s blockchain. If some unnotarized transaction tx appears in the block
chain[] but tx still has not become part of a lucky sequence contained in
chain[: 	 + κ] where κ is a security parameter4, then we conclude that the
optimistic path has failed, and that a fallback is necessary.

Note that if the optimistic conditions hold, then the leader would have
observed the unnotarized tx when its blockchain is roughly 	 in length, and
the committee would have notarized tx quickly; thus tx will soon become part of
a lucky sequence contained in every node’s blockchain. If this has not happened
within κ blocks of time, then the optimistic conditions must no longer hold.

We also note that using the above mechanism, all honest nodes will decide
to fall back within Δ rounds from each other. We now reach our next question:
what mechanism do we rely on for the falling back?

How to fall back. The challenge is that when honest nodes decide to fall back
(within Δ rounds from each other), although their optimistic logs are prefixes of
each other, the logs could be of different lengths. One decision to make during
the fallback is where (i.e., at which sequence number) to end the optimistic log
before switching to blockchain mode—importantly, for consistency, honest nodes
must agree on this decision. We point out that agreeing on this decision actually
requires a full agreement instance—unlike the optimistic path where we punted
on liveness, here this decision must be made with both consistency and liveness.

Thus the most natural idea is to rely on the underlying blockchain to reach
agreement regarding this decision. To this end, we introduce the notion of a grace
period that serves as a cool-down period before we eventually fall back into slow
mode. The grace period consists of κ number of consecutive blocks where κ is
4 Transactions of a lucky sequence are allowed to appear out of order in the blockchain.

22 R. Pass and E. Shi

a security parameter. Let chain denote the stabilized part of an honest node’s
blockchain and suppose that 	∗ is the first block such that chain[: 	∗] triggers the
“fallback condition” as described above. Then, the grace period will consist of
the blocks chain[∗ + 1 : 	 + κ]. Informally speaking, the grace period is utilized
in the following manner:

– Let LOG∗ be an honest node’s output log at the moment that the grace period
starts (thus LOG∗ must be a lucky sequence);

– Let chain be the stabilized prefix of this honest node’s chain:
• If the grace period has not ended in chain, then the node outputs the

longer of (1) LOG∗; and (2) the maximal lucky sequence contained in
chain. Note that in this case, the node does not output any additional
transactions that are not part of the lucky sequence.

• Else if the grace period has ended in chain, then the node first outputs the
maximal lucky sequence contained in chain; then it outputs every other
transaction (notarized or unnotarized) contained in chain (in the order
that they are included in chain). In other words, after the grace period is
over, the nodes start confirming transactions based on the blockchain.

Let LOGmax denote the maximal lucky sequence contained in an honest node’s
blockchain by the end of the grace period. Effectively, in the above mechanism,
nodes agree on LOGmax before falling to blockchain mode. Importantly, the fol-
lowing informal claim must hold:

Claim (Informal). Except with negligible probability, LOGmax must be at least
as long as any honest node’s output log when the node detects the start of the
grace period.

To see why, recall that as mentioned earlier, all honest nodes gossip always
their protocol views to each other; and honest nodes always embed their entire
protocol view into any block they mine (in the actual protocol, the messages can
be compressed). Thus, by liveness, any honest node’s output log when the grace
period starts will be in the blockchain κ blocks later.

Initiating a New Optimistic Epoch. So far, we have described our protocol
from the perspective of a single epoch in which the leader is common knowledge.
Whenever the protocol is in a slow path, however, we would like to allow the
nodes to try to reinitiate an optimistic epoch and try to be fast again. This
is easy to achieve since our underlying blockchain is always up and live! Thus
one can simply rely on the underlying blockchain to implement any policy-based
decision to reinitiate a new epoch. For example, the blockchain can be used
to agree on (1) at which block length to reinitiate a new epoch; and (2) who
will act as the leader in the new epoch. Our Thunderella framework leaves it
to the application layer to specify such policy decisions (e.g., such policies can
be implemented through generic smart contracts running atop the underlying
blockchain).

Thunderella: Blockchains with Optimistic Instant Confirmation 23

Our detailed description in the remainder of this section is aware of the
existence of multiple epochs, and thus transactions’ sequence numbers are tagged
with the epoch number to avoid namespace collision.

3.2 Detailed Protocol Description

We now formally describe our basic Thunderella protocol with a static commit-
tee. Our description and proofs are modularized. Specifically, we first describe
the minimal set of protocol instructions necessary for guaranteeing consistency
(Sect. 3.2)—in an actual implementation, security audit should be prioritized
for this part of the protocol. We then describe other surrounding mechanisms
(e.g., how to concretely instantiate the chain state function and how the leader
proposes transactions) that allow us to additionally achieve worst-case liveness
(Sect. 3.2) and optimistic responsiveness (Sect. 3.2).

Concrete blockchain parameters. For concreteness, henceforth in this section we
assume a blockchain protocol denoted Πblockchain that achieves (0.05κ, g0, g1 =
1

cΔ)-chain growth for some positive g0 and some positive constant c, (0.05κ, 1, μ)-
chain quality where μ is positive, 0.05κ-consistency, and (0.05κ, 0.05κ)-liveness
w.r.t. to any p.p.t. (A,Z) that is compliant w.r.t. Πblockchain. For our later
concrete instantiations in permissionless and permissioned settings, existing
blockchains constructions [19,35,40] would satisfy the necessary security prop-
erties given the above these parameters. Although we assume these concrete
parameters, our Thunderella framework can easily be generalized to other
parameters.

Useful Definitions. Henceforth, let Σ = (Gen,Sign,Vf) denote a digital signa-
ture scheme.

Notarized transactions. We say that a tuple (e, s,m, V) is a notarized transaction
for epoch e and sequence number s w.r.t. committee iff

– For each (pk, σ) ∈ V , pk ∈ committee and moreover σ is a valid signature
for (e, s,m) under pk—in this case, we also say that (pk, σ) is a valid vote for
(e, s,m).

– There are more than 3
4 · ∣

∣committee
∣
∣ votes in V with distinct pks.

If (e, s,m, V) is a notarized transaction, we also say that V is a valid nota-
rization for (e, s,m).

Remark 1. Note that the above definition works for α = 1
2 . For a general α ∈

(0, 1], we can simply replace the constant 3
4 with 1 − α

2 .

Blockchain states. We assume that there is a deterministic and efficiently com-
putable function Γ such that given an abstract blockchain chain, the function
Γ divides chain into multiple epochs interspersed with interims. Each epoch is
a sequence of consecutive blocks in chain, and f also outputs a unique epoch

24 R. Pass and E. Shi

number e for each epoch. A sequence of consecutive blocks that do not belong to
any epoch are called interim blocks. Each epoch always contains two sub-phases,
an optimistic period followed by a grace period, each of which contains at least κ
consecutive blocks and thus each epoch contains at least 2κ consecutive blocks
(unless end of chain is reached).

Formally, we say that Γ (κ, ·, ·) is a chain-state function iff for any chain and
0 ≤ 	 ≤ |chain|, Γ (κ, chain,) outputs one of the following:

– some (e, optimistic): in this case we say that chain[] is an optimistic block
belonging to epoch e (w.r.t. Γ (κ, ·, ·));

– some (e, grace): in this case we say that chain[] is a grace block belonging
to epoch e (w.r.t. Γ (κ, ·, ·));

– or interim: in this case we say that chain[] is an interim block (w.r.t.
Γ (κ, ·, ·)).
We say that a chain-state function Γ (κ, ·, ·) is admissible iff for any chain:

1. for any 0 ≤ 	 ≤ 	′ ≤ |chain|, if chain[] belongs to epoch e and chain[′] belongs
to epoch e′, then e′ ≥ e;

2. for every e: all blocks corresponding to epoch e in chain must appear in a
consecutive window, and moreover, all optimistic blocks for epoch e must
appear before grace blocks for epoch e;

3. for every epoch e appearing in chain: there must be at least κ grace blocks
belonging to epoch e in chain unless chain ends at an epoch-e block.

4. for every chain and every 0 ≤ 	 ≤ |chain|, Γ (κ, chain,) depends only on
chain[:] but not chain[+ 1 :].

Lucky sequence. A sequence of notarized transactions {(ei, si,mi, Vi)}i∈[m] is
said to be a lucky sequence for epoch e iff for all i ∈ [m], ei = e and si = i.

Blockchain linearization. Given an abstract blockchain chain, we do not simply
output all transactions in chain in the most natural way. Instead, we adopt an
algorithm denoted linearizeΓ (κ,·,·)(chain) for chain linearization. Henceforth we
often write linearize(chain) for simplicity without explicitly denoting the chain-
state function Γ (κ, ·, ·).

Our chain linearization algorithm linearize(chain) is defined as follows: scan
through the chain from left to right, and output the following:

1. For each epoch chain[: 	′] encountered with the epoch number e, output the
following in order:

– first extract the maximal lucky sequence TXs for epoch e from chain[: 	′]
and output strip(TXs) where strip(·) will be defined below;

– if chain[] is not the end of chain, let TXs′ be all remaining records in
chain[: 	′] not contained in TXs, output strip(TXs′);

2. For each interim chain[: 	′] encountered, extract all transactions TXs from
chain[: 	′] and output strip(TXs).

Thunderella: Blockchains with Optimistic Instant Confirmation 25

In the above, the function strip(·) removes signatures from notarized transac-
tions: for a notarized transaction strip(e, s,m, V) := (e, s,m); for an unnotarized
transaction we define strip(m) := m. If the input to strip(·) is a sequence of
transactions, the same operation is applied to each transaction.

Πthunder : Core Protocol for Consistency

Additional notation. A node’s view consists of every message (including
blockchains) it has received from Z or over the network. Henceforth we say
that a notarized transaction (e, s,m, V) is in a node’s view iff (e, s,m) exists in
the node’s view, and every (pk, σ) ∈ V exists in the node’s view (not necessarily
appearing together in the node’s view). Multiple notarized transactions can exist
for a unique (e, s,m) by taking different subsets of V —but in our presentation
below, we always take V to be all the valid votes for (e, s,m) in a node’s view,
such that if for some tuple (e, s,m) there is a notarized transaction (e, s,m, V)
in a node’s view, then the choice is unique.

Assumptions. Although not explicitly noted, henceforth in all of our protocols,
we assume that whenever an honest node receives any message on the network,
if the message has not been broadcast before, the honest node broadcasts the
message.

Protocol Πthunder. Below we describe the Π
Γ (κ,·,·)
thunder protocol that is parametrized

by an admissible chain-state function Γ (κ, ·, ·). Henceforth in our scheme, we
often omit explicitly writing the chain-state function Γ (κ, ·, ·).

– Initialize.
• Call (pk, sk) ← Σ.Gen(κ) to generate a signing key pair. Output pk to Z.
• Wait to receive committee from Z, and henceforth, validity of votes and

acceptability of chains will be defined w.r.t. committee.
• Fork an instance of the Πblockchain protocol with appropriate parameters

determined by ρ, n and Δ5.
– Notarize. Upon receiving notarization request (e, s,m) from Z: if pk ∈
committee and no signature has been produced for (e, s) earlier, compute
σ := Σ.Signsk(e, s,m) and broadcast ((e, s,m), σ).

– Propose. Every round, let chain be the output from the Πblockchain instance.
• Let TXs be a set containing (1) every notarized transaction (e, s,m, V)

in the node’s view such that no notarized transaction (e, s,m,) has
appeared in chain[: −0.5κ]; and (2) every unnotarized transaction m in
the node’s view such that no m or notarized transaction (e, s,m,) has
appeared in chain[: −0.5κ].

• Propose TXs to Πblockchain.

5 Unless otherwise noted, all messages sent from the Πblockchain instance or destined for
Πblockchain are automatically passed through, but these messages also count towards
the view of the current Πthunder protocol instance.

26 R. Pass and E. Shi

– Output. In every round, let chain be the output from Πblockchain.
• If chain[−0.5κ] is an optimistic block belonging to epoch e:

(a) let chain[−] be the starting block for epoch e in chain where 	 ≥ 0.5κ.
(b) extract the maximal lucky sequence TXs for epoch e from the node’s

view so far.
(c) let LOG := linearize(chain[: −(+ 1)])||strip(TXs).

• Else, let LOG := linearize(chain[: −0.5κ]).
• Let LOG be the previous output to Z: if LOG is longer than LOG, output
LOG; else output LOG to Z.

– Mempool. Upon receiving any other message from the network or Z, record
the tuple.

Compliant executions. We say that (A,Z) is compliant w.r.t. Π
Γ (κ,·,·)
thunder iff

– (A,Z) is compliant w.r.t. Πblockchain;

– in every view in the support of EXECΠ
Γ (κ,·,·)
thunder (A,Z, κ), Z always inputs the

same committee to all honest nodes;
– in every view in the support of EXECΠ

Γ (κ,·,·)
thunder (A,Z, κ), more than 1

2 fraction
(or in general, more than α fraction) of the distinct public keys in committee
are output by nodes that remain honest (but not necessarily online) forever.

The following theorem says that for any chain-state function f that is admis-
sible, Πf

thunder satisfies consistency under compliant executions.

Theorem 5 (Consistency). Let Γ (κ, ·, ·) be any admissible chain-state func-
tion. Then, Π

Γ (κ,·,·)
thunder satisfies consistency as defined in Sect. 2.2 w.r.t. any p.p.t.

(A,Z) that is compliant w.r.t. Π
Γ (κ,·,·)
thunder.

The proof of this theorem is presented in the online full version [36]

Concrete Chain-State Function and Worst-Case Liveness. We will
adopt the following chain-state function Γ pred(κ, ·, ·) that is parametrized by
a polynomial-time boolean predicate pred henceforth referred to as the “next-
epoch” function. Basically, the job of pred is to examine the prefix of some
blockchain and decide whether we want to advance to a larger epoch. Specifi-
cally, for some chain prefix chain[: i] if pred(chain[: i], e) = 1 then the blockchain
wants to advance to epoch e if it is not already in epoch e—if there are multiple
such e’s such that the above holds, then the blockchain wants to go the largest
such epoch.

At this moment, we define the chain state function Γ while leaving the pred
unspecified. We will show that worst-case liveness is satisfied in compliant execu-
tions regardless of the concrete policy pred. Intuitively, our concrete chain state
function is very simple: If the blockchain is currently in some epoch e, then the
chain will stay in epoch e unless one of the following things happen:

Thunderella: Blockchains with Optimistic Instant Confirmation 27

1. either pred (applied to the prefix of the blockchain) wants to go to a larger
epoch; or

2. during the current epoch some transaction did not get confirmed for a long
time.

If one of the above did happen, then the chain gracefully transitions to an interim
ensuring that there are at least κ optimistic blocks for the current epoch e fol-
lowed by at least κ grace blocks for epoch e. If the blockchain is in an interim
and pred wants to go to a next epoch, then we advance to the next epoch imme-
diately. We note that for consistency and worst-case liveness, we in fact only
need that there are at least κ grace blocks for each epoch (but not necessarily κ
or more optimistic blocks). Here we additionally require that there are at least κ
optimistic blocks for each epoch too—this gives the new epoch some time such
that the blockchain can pick up possibly stale transactions that ought to have
been confirmed such that we do not exit from the current epoch too soon.

More formally, for any chain, Γ pred(κ, chain, ·) is inductively defined as the
following:

– The chain[0] := genesis block is considered an interim block;
– If chain[i] is an interim block, let e be the largest epoch number such that
pred(chain[: i + 1], e) = 1, but no prefix of chain[: i] was ever in epoch e:

• If such an epoch e is found: then chain[i+1..i+κ] are all optimistic blocks
for epoch e′ (and if |chain| < i + κ, then all of chain[i + 1 :] are optimistic
blocks for epoch e′).

• Else chain[i + 1] is also an interim block;
– If chain[i] is the 	-th optimistic block of some epoch e where 	 ≥ κ:

• If one of the following two conditions C1 or C2 hold, then chain[i+1..i+κ]
are all grace blocks for epoch e, and chain[i + κ + 1] is an interim block
(and if |chain| ≤ i+κ then all of chain[i+1 :] are grace blocks for epoch e):
C1: some m or some notarized transaction (, ,m,) appears in chain[:

i − 0.5κ] but linearize(chain[: i]) does not contain m or (, ,m), i.e., if
some transaction has not occurred in any lucky sequence even after a
sufficiently long time;

C2: there exists some e′ > e such that pred(chain[: i + 1], e′) = 1, i.e., if
the next-epoch policy function wants to switch to a larger epoch than
the current one.

• Else chain[i + 1] is an optimistic block of epoch e.

Theorem 6 (Worst-case liveness). Let Γ (κ, ·, ·) := Γ pred(·, ·, ·) be the chain-
state function as specified above for any polynomial-time boolean predicate pred.
Let g0 denote the underlying Πblockchain’s chain growth lower bound parameter,
and let Tconfirm(κ) := 3κ

g0
. For any p.p.t. (A,Z) that is compliant w.r.t. Π

Γ (κ,·,·)
thunder,

there exists a negligible function negl(·) such that for every κ ∈ N, except with

negl(κ) probability over the choice of view ← EXECΠ
Γ (κ,·,·)
thunder (A,Z, κ), the following

holds: suppose that Z inputs a transaction m to an honest node in round r, then
in any round r′ ≥ r + Tconfirm(κ), all honest and online nodes’ output LOG to Z
will contain some (, ,m) or m.

The proof of the above theorem is deferred to the supplemental material.

28 R. Pass and E. Shi

Coordination Protocol Πella and Optimistic Responsiveness. We now
describe the full protocol Π

Γ (κ,·,·)
ella that spells out the leader-based coordina-

tion mechanism on top of Πthunder as well as the next-epoch function pred. We
will then show under exactly what optimistic conditions our protocol achieves
responsiveness.

Description of protocol Πella. Πella calls Π
Γ pred(κ,·,·)
thunder where the chain state function

Γ (κ, ·, ·) := Γ pred(κ, ·, ·) is as defined in Sect. 3.2. We spell out the next-epoch
function pred and the rest of Πella below.

– Next-epoch function. The policy function pred(chain, e) takes in an abstract
blockchain denoted chain and an epoch number e. If there exists a notarized
transaction for epoch e in chain, then output 1; else output 0.

– Initialize: fork an instance of the Π
Γ (κ,·,·)
thunder protocol.

– Leader switch: upon input leader(e, i): if no leader has been recorded for
epoch e, record i as the leader for epoch e, and do the following:

• if current node is i: send a notarization request for a special epoch-start
transaction (e, s = 1, start), and let s = 2;

• for every notarization request (e, s,m) received earlier from node i, act as
if (e, s,m) has just been received from i.

– Notarization: upon receiving notarization request (e, s,m) from i: if i has been
recorded as the leader for epoch e, forward the notarization request (e, s,m)
to Π

Γ (κ,·,·)
thunder; else ignore the request.

– Leader: every round: let e be the largest epoch recorded thus far and if current
node is recorded as the leader for epoch e:

• for every m in view such that no m or (, ,m) appears in linearize(chain[:
−κ]), if a notarization request has not been broadcast for m earlier, then
broadcast the notarization request (e, s,m) and let s := s + 1.

– Other messages: pass through all other messages between Π
Γ (κ,·,·)
thunder and Z;

similarly pass through all other messages between Π
Γ (κ,·,·)
thunder and the network.

Compliant executions. To guarantee consistency and worst-case liveness, basi-
cally we just need the same conditions as our earlier Π

Γ (κ,·,·)
thunder. We say that (A,Z)

is compliant w.r.t. Π
Γ (κ,·,·)
ella iff (A,Z) is compliant w.r.t. Π

Γ (κ,·,·)
thunder.

Lucky epoch. Below we will describe exactly under what optimistic conditions
can we achieve responsiveness. Roughly speaking, whenever a lucky epoch begins,
after a short warmup time, we can achieve responsiveness. Specifically, during a
lucky epoch, the epoch’s leader is online and honest and more than 3

4 fraction
or in general, 1 − α

2 fraction of the committee remain honest and online.
Formally, given a view, we say that [Tstart, Tend] belongs to a lucky epoch

corresponding to epoch e and leader i iff the following hold:

– In any round r ≥ Tstart +Δ, any honest and online node should have received
leader(e, i) where i is the common leader that all honest nodes receive for
epoch e. Further, prior to Tstart, no honest node has received from Z any
leader(e′,) instruction where e′ ≥ e.

Thunderella: Blockchains with Optimistic Instant Confirmation 29

– the leader (i.e., node i) is honest and online at in any round t ∈ [Tstart,
Tend + 3Δ];

– more than 3
4 fraction (or in general, more than 1 − α

2 fraction) of committee
are honest and online6 in any round t ∈ [Tstart, Tend + 3Δ].

Optimistic responsiveness in lucky epochs. We say that a protocol Π satisfies
(Twarmup, Topt)-optimistic responsiveness in lucky epochs w.r.t. (A,Z) iff except

with negl(κ) probability over the choice of view ← EXECΠ
Γ (κ,·,·)
ella (A,Z, κ): for any

duration [Tstart, Tend] in view that belongs to a lucky epoch, [Tstart+Twarmup, Tend]
is a Topt-responsive period in view.

Theorem 7 (Optimistic case responsiveness). Let g0 be the underlying
Πblockchain’s chain growth lower bound parameter. For every p.p.t. (A,Z) that
is compliant w.r.t. Π

Γ (κ,·,·)
ella , Π

Γ (κ,·,·)
ella satisfies (Twarmup, Topt)-optimistic respon-

siveness in lucky epochs for Twarmup = O(κ
g0

), and Topt = 3δ where δ is the
actual maximum network delay in view.

The proof of the above theorem is deferred to the online full version [36]. We
note that Theorem 7 implies the following: informally speaking, if throughout
the execution more than 3

4 fraction of the committee remain honest and online
and moreover, the initial epoch’s leader remains honest and online, then once
nodes enter the initial epoch, after a short warmup period, our protocol Πella

will achieve responsiveness throughout the remainder of the execution (assuming
that the underlying blockchain is secure).

Remark 2 (Leader re-election mechanism). In our scheme earlier, we left it
unspecified how the environment Z will decide when to issue leader-switch
instructions of the form leader(e, i) that will cause nodes to start a new leader
epoch. This is an application-specific policy decision. At this point, our paper
focuses on providing a general framework that enables any application-specific
policy decisions. In the online full version [36], we will give some suggestions on
leader re-election policies that are useful in practice.

Deferred materials. We defer the full proofs, the lower bounds, as well as how
to concretely instantiate the Thunderella framework in permissioned and permis-
sionless environments allowing committee reconfiguration and leader rotation in
the online full version [36]. We now conclude with the related work.

4 Related Work

State machine replication: classical and blockchain-style approaches. State
machine replication or atomic broadcast (referred to as consensus for short in this
paper) is a central abstraction of distributed systems, and has been extensively
6 We say that a public key pk ∈ committee is honest and online in round r if some

node that is honest and online in round r output pk to Z earlier.

30 R. Pass and E. Shi

investigated and widely adopted in real-world systems. Roughly speaking, there
are two, technically speaking, fundamentally different approaches towards real-
izing state machine replication, classical-style consensus [9,14,15,25,30,31], and
blockchain-style consensus [11,19,26,34,35,40]. For a while, it has been vaguely
understood by the community that blockchain-style protocols and classical ones
achieve different properties—but the community has only recently begun to for-
mally understand and articulate these differences.

The recent work by Pass and Shi [40] point out one fundamental differ-
ence between classical style and blockchain-style consensus. Most classical proto-
cols [9,14,15,25,30,31], synchronous and asynchronous ones alike, rely on nodes
having collected sufficiently many votes to make progress; thus these protocols
would fail in a model where participation is sporadic and the exact number of
players that do show up cannot be predicted upfront. More specifically, classical
models of consensus would pessimistically treat nodes that do not show up as
faulty (also referred to as crash fault); and if too many nodes do not show up,
the protocol fails to make progress. In comparison, blockchain-style protocols
can make progress regardless of how many players actually show up. Moreover,
blockchain-style consensus has also been shown to be secure in a setting where
the number of players can vary over time [18].

Classical deployments of consensus protocols are typically in a relatively
small-scale and permissioned setting. Consensus in the permissionless setting
was first empirically demonstrated to be possible due to Bitcoin’s ingenious
Nakamoto blockchain [34]. While the original Nakamoto blockchain relies on
proofs-of-work to solve the Sybil attack in the permissionless setting, other pro-
posals have been suggested since then for securely establishing identities in a
permissionless setting—for example, proof-of-stake [2,3,7,10,11,26,27,32,41] is
a most-oft cited approach where the stake-holders of a cryptocurrency system
are responsible for voting on transactions. Recent works [32] have also explored
adopting classical style consensus in a permissionless setting where approaches
such as proof-of-stake can be used to establish identities.

Other closely related works. Our work is also reminisient of recent works that
combine classical consensus and blockchains [12,28,38] although these works are
of a different nature as we explain below. Among these works, Hybrid Consen-
sus [38] is the only known formally correct approach, and moreover the only
known approach that achieves responsiveness. From a theoretical perspective,
our results are incomparable to Hybrid Consensus: we tolerate up to 1

2 corrup-
tion in the worst-case and offer responsiveness only in the optimistic case but not
in the worst case; in comparison, Hybrid Consensus achieves responsiveness even
in the worst case—but in exchange, their protocol can only tolerate up to 1

3 cor-
ruption, and this turns out to be inherent for any worst-case responsive protocol
even when assuming proof-of-work [15,38]. From a practical perspective, Thun-
derella is more likely to be the protocol of choice in a real-world implementation
partly due to its simplicity—in comparison, Hybrid Consensus requires a full-
fledged classical protocol such as PBFT and Byzantine Paxos as a subroutine,
and thus inherits the complexity of these protocols.

Thunderella: Blockchains with Optimistic Instant Confirmation 31

A line of research [8,13,16,21,22,33] has investigated Byzantine agreement
protocols capable of early-stopping when conditions are more benign than the
worst-case faulty pattern: e.g., the actual number of faulty nodes turns out to
be smaller than the worst-case resilience bound. However, these works are of a
different nature than ours as we explain below. First, these earlier works focus on
stopping in a fewer number of synchronous rounds, and it is not part of their goal
to achieve responsiveness. Second, although some known lower bounds [13] show
that the number of actual rounds must be proportional to the actual number
of faulty processors—note that these lower bounds work only for deterministic
protocols, and thus they are not applicable in our setting.

Finally, the idea of combining asynchrony and synchrony was described in
earlier works [4]; other works have also proposed frameworks for composing mul-
tiple BFT protocols [20]. However, to the best of our knowledge, none of the ear-
lier works combined a synchronous fallback path and an asynchronous optimistic
path in the manner that we do, allowing us to tolerate more than 1

3 corruptions
in the worst-case while still be responsive most of the time in practice.

Acknowledgments. We thank Jian Xie and Youcai Qian for inspiring conversations.
We also thank Lorenzo Alvisi and Robbert van Renesse for helpful discussions and
moral support. This work is supported in part by NSF grants CNS-1217821, CNS-
1314857, CNS-1514261, CNS-1544613, CNS-1561209, CNS-1601879, CNS-1617676,
AFOSR Award FA9550-15-1-0262, an Office of Naval Research Young Investigator Pro-
gram Award, a Microsoft Faculty Fellowship, a Packard Fellowship, a Sloan Fellowship,
Google Faculty Research Awards, and a VMWare Research Award.

References

1. Attiya, H., Dwork, C., Lynch, N., Stockmeyer, L.: Bounds on the time to reach
agreement in the presence of timing uncertainty. J. ACM 41(1), 122–152 (1994)

2. Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of work. In:
Financial Cryptography Bitcoin Workshop (2016)

3. Bentov, I., Lee, C., Mizrahi, A., Rosenfeld, M.: Proof of activity: extending bitcoin’s
proof of work via proof of stake. In: NetEcon (2014)

4. Birman, K.P., Joseph, T.A.: Exploiting virtual synchrony in distributed systems.
In: SOSP (1987)

5. Burrows, M.: The chubby lock service for loosely-coupled distributed systems. In:
OSDI (2006)

6. Buterin, V. (2017). https://medium.com/@VitalikButerin/minimal-slashing-
conditions-20f0b500fc6c

7. Buterin, V., Zamfir, V.: Casper (2015). https://blog.ethereum.org/2015/08/01/
introducing-casper-friendly-ghost/

8. Castañeda, A., Gonczarowski, Y.A., Moses, Y.: Unbeatable consensus. In: DISC
(2014)

9. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: OSDI (1999)
10. User “cunicula”, Rosenfeld, M.: Proof of stake brainstorming, August 2011.

https://bitcointalk.org/index.php?topic=37194.0
11. Daian, P., Pass, R., Shi, E.: Snow white: provably secure proofs of stake. Cryptology

ePrint Archive, Report 2016/919 (2016)

https://medium.com/@VitalikButerin/minimal-slashing-conditions-20f0b500fc6c
https://medium.com/@VitalikButerin/minimal-slashing-conditions-20f0b500fc6c
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
https://bitcointalk.org/index.php?topic=37194.0

32 R. Pass and E. Shi

12. Decker, C., Seidel, J., Wattenhofer, R.: Bitcoin meets strong consistency. In:
ICDCN (2016)

13. Dolev, D., Reischuk, R., Raymond Strong, H.: Early stopping in byzantine agree-
ment. J. ACM 37(4), 720–741 (1990)

14. Dolev, D., Raymond Strong, H.: Authenticated algorithms for byzantine agree-
ment. SIAM J. Comput. SIAMCOMP 12(4), 656–666 (1983)

15. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35, 288–323 (1988)

16. Dwork, C., Moses, Y.: Knowledge and common knowledge in a byzantine environ-
ment I: crash failures. In: TARK, pp. 149–169 (1986)

17. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. In: FC
(2014)

18. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable difficulty. Cryptology ePrint Archive, 2016/1048 (2016)

19. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

20. Guerraoui, R., Knežević, N., Quéma, V., Vukolić, M.: The next 700 BFT protocols.
In: Proceedings of the 5th European Conference on Computer Systems, EuroSys
2010, pp. 363–376. ACM, New York (2010)

21. Halpern, J.Y., Moses, Y., Waarts, O.: A characterization of eventual Byzantine
agreement. SIAM J. Comput. 31(3), 838–865 (2001)

22. Herlihy, M., Moses, Y., Tuttle, M.R.: Transforming worst-case optimal solutions
for simultaneous tasks into all-case optimal solutions. In: PODC (2011)

23. Herzberg, A., Kutten, S.: Early detection of message forwarding faults. SIAM J.
Comput. 30(4), 1169–1196 (2000)

24. Junqueira, F.P., Reed, B.C., Serafini, M.: Zab: high-performance broadcast for
primary-backup systems. In: DSN (2011)

25. Katz, J., Koo, C.-Y.: On expected constant-round protocols for Byzantine agree-
ment. J. Comput. Syst. Sci. 75(2), 91–112 (2009)

26. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

27. King, S., Nadal, S.: PPCoin: peer-to-peer crypto-currency with proof-of-stake
(2012). https://peercoin.net/assets/paper/peercoin-paper.pdf

28. Kokoris-Kogias, E., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.:
Enhancing bitcoin security and performance with strong consistency via collec-
tive signing. CoRR, abs/1602.06997 (2016)

29. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.L.: Zyzzyva: speculative
byzantine fault tolerance. In: SOSP (2007)

30. Lamport, L.: Fast paxos. Distrib. Comput. 19(2), 79–103 (2006)
31. Lamport, L., Malkhi, D., Zhou, L.: Vertical paxos and primary-backup replication.

In: PODC, pp. 312–313 (2009)
32. Micali, S.: Algorand: the efficient and democratic ledger (2016). https://arxiv.org/

abs/1607.01341
33. Moses, Y., Raynal, M.: No double discount: condition-based simultaneity yields

limited gain. Inf. Comput. 214, 47–58 (2012)
34. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)

https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://peercoin.net/assets/paper/peercoin-paper.pdf
https://arxiv.org/abs/1607.01341
https://arxiv.org/abs/1607.01341

Thunderella: Blockchains with Optimistic Instant Confirmation 33

35. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asyn-
chronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56614-6 22

36. Pass, R., Shi, E.: Thunderella: blockchains with optimistic instant confirmation.
https://eprint.iacr.org/2017/913

37. Pass, R., Shi, E.: Fruitchains: a fair blockchain. In: PODC (2017)
38. Pass, R., Shi, E.: Hybrid consensus: efficient consensus in the permissionless model.

In: DISC (2017)
39. Pass, R., Shi, E.: Rethinking large-scale consensus (invited paper). In: CSF (2017)
40. Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T.

(eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 380–409. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 14

41. User “QuantumMechanic”: Proof of stake instead of proof of work, July 2011.
https://bitcointalk.org/index.php?topic=27787.0

42. Song, Y.J., van Renesse, R.: Bosco: one-step byzantine asynchronous consensus.
In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 438–450. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-87779-0 30

https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://eprint.iacr.org/2017/913
https://doi.org/10.1007/978-3-319-70697-9_14
https://bitcointalk.org/index.php?topic=27787.0
https://doi.org/10.1007/978-3-540-87779-0_30

	Thunderella: Blockchains with Optimistic Instant Confirmation
	1 Introduction
	1.1 The Thunderella Paradigm

	2 Definitions
	2.1 Classical, Sleepy, and Permissionless Models
	2.2 State Machine Replication
	2.3 Abstract Blockchain Protocols
	2.4 Preliminaries: Responsiveness

	3 Basic Thunderella Protocol with a Static Committee
	3.1 Our Basic Protocol in a Nutshell
	3.2 Detailed Protocol Description

	4 Related Work
	References

