
Efficient Maliciously Secure Multiparty
Computation for RAM

Marcel Keller1(B) and Avishay Yanai2

1 University of Bristol, Bristol, UK
M.Keller@bristol.ac.uk

2 Bar-Ilan University, Ramat Gan, Israel
Ay.Yanay@gmail.com

Abstract. A crucial issue, that mostly affects the performance of
actively secure computation of RAM programs, is the task of read-
ing/writing from/to memory in a private and authenticated manner.
Previous works in the active security and multiparty settings are based
purely on the SPDZ (reactive) protocol, hence, memory accesses are
treated just like any input to the computation. However, a garbled-
circuit-based construction (such as BMR), which benefits from a lower
round complexity, must resolve the issue of converting memory data bits
to their corresponding wire keys and vice versa.

In this work we propose three techniques to construct a secure mem-
ory access, each appropriates to a different level of abstraction of the
underlying garbling functionality. We provide a comparison between the
techniques by several metrics. To the best of our knowledge, we are the
first to construct, prove and implement a concretely efficient garbled-
circuit-based actively secure RAM computation with dishonest majority.

Our construction is based on our third (most efficient) technique, clev-
erly utilizing the underlying SPDZ authenticated shares (Damg̊ard et al.,
Crypto 2012), yields lean circuits and a constant number of communi-
cation rounds per physical memory access. Specifically, it requires no
additional circuitry on top of the ORAM’s, incurs only two rounds of
broadcasts between every two memory accesses and has a multiplicative
overhead of 2 on top of the ORAM’s storage size.

Our protocol outperforms the state of the art in this settings when
deployed over WAN. Even when simulating a very conservative RTT of
100 ms our protocol is at least one order of magnitude faster than the
current state of the art protocol of Keller and Scholl (Asiacrypt 2015).

This research was supported by a grant from the Ministry of Science, Technology
and Space, Israel, and the UK Research Initiative in Cyber Security. This work has
been supported in part by EPSRC via grants EP/M012824 and EP/N021940/1, by
the European Research Council under the ERC consolidators grant agreement n.
615172 (HIPS) and by the BIU Center for Research in Applied Cryptography and
Cyber Security in conjunction with the Israel National Cyber Bureau in the Prime
Minister’s Office.

c© International Association for Cryptologic Research 2018
J. B. Nielsen and V. Rijmen (Eds.): EUROCRYPT 2018, LNCS 10822, pp. 91–124, 2018.
https://doi.org/10.1007/978-3-319-78372-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-78372-7_4&domain=pdf
http://orcid.org/0000-0003-2261-9376
http://orcid.org/0000-0003-4060-0150

92 M. Keller and A. Yanai

1 Introduction

1.1 Background

Actively secure multiparty computation (in the dishonest majority setting)
allows n parties to compute an arbitrary function over their private inputs while
preserving the privacy of the parties and the correctness of the computation even
in the presence of a malicious adversary, who might corrupt an arbitrary strict
subset of the parties.

The field of secure two-party (2PC) and multiparty (MPC) computation has
a rich literature, starting with Yao [40] and Goldreich-Micali-Wigderson [16] and
attracted much interest during the past decade due to advances in efficiency and
fast implementations [8,23,26,37,38]. Nevertheless, almost all previous works
require the parties to first “unroll” the function into an arithmetic or Boolean
circuit representation and then securely evaluate the circuit gate by gate. This
is in contrast to modern design of algorithms of practical interest (e.g., binary
search, Dijkstra’s shortest-path algorithm, Gale-Shapley stable matching, etc.)
that are typically represented as Random Access Machine (RAM) programs that
contain branches, recursions, loops etc., which utilize the O(1) access to memory,
rather than circuits. In the following we provide the necessary overview on the
RAM model of computation and how it is securely realized.

RAM Model of Computation. RAM is classically modeled as a protocol that
is carried out between two entities: CPU and MEMORY, which are essentially
a couple of polynomial time Turing machines, such that their storage capacity
is unbalanced, specifically, the CPU usually stores a small amount of data, cor-
responding to the state of the program, which is logarithmic in the amount of
storage in MEMORY required by the program. We denote the CPU’s storage by
d and the MEMORY’s storage by D such that |D| = N and |d| = O(log N). We
denote a memory block at address i by D[i]. During the program execution CPU
typically chooses to perform one instruction I out of a final instructions set IS.
A program Π and an input x are first loaded into the storage of MEMORY and
then the CPU is being triggered to start working. From that point, CPU and
MEMORY are engaged in a protocol with T rounds where T is the running time
of Π. In the t-th round:

1. CPU computes the CPU-step function:

CCPU(statet, b
read
t) = (statet+1, i

read
t , iwritet , bwritet) (1)

by executing instruction It ∈ IS. The input statet is the current state of
the program (registers etc.), breadt is the block that was most recently loaded
from MEMORY. The outputs of the CPU-step are: The new program’s state
statet+1, the address ireadt in D to read from and the address iwritet in D to
write the block bwritet to.

2. CPU sends (ireadt , iwritet , bwritet) to MEMORY. We define accesst � (ireadt , iwritet).
3. MEMORY sends data block D[ireadt] to CPU and assigns D[iwritet] = bwritet .

Efficient Maliciously Secure Multiparty Computation for RAM 93

In every such a round, CPU is said to make a single request, or logical access,
to MEMORY. The output of the protocol, denoted y = Π(D,x), is the result
of the computation of the program Π on input x and memory D, such that
CPU sets y as the last state of the program, stateT+1. The sequence of accesses
{access1, . . . , accessT } is called the access pattern of Π on input x and memory
D (of size N) and denoted AP(Π,D,x). Similarly, the sequence {I1, . . . , IT } is
called the instruction pattern and denoted IP(Π,D,x).

The general methodology of designing secure multiparty computation
directly to RAM programs is by having the parties take both the role of CPU
and MEMORY and sequentially evaluate sufficiently many copies of the CCPU

function. Upon completing the evaluation of one function, the parties access D
according to CCPU’s output (ireadt , iwritet , bwritet) and obtain the input breadt to the
next function.

Obviously, a secure protocol must not reveal D to the parties, otherwise it
would be possible to learn information about the parties’ inputs. Trivially avoid-
ing this is by embedding two sub-procedures inside CCPU, one to encrypt (and
authenticate) bwrite before it is output and one to decrypt (and verify authentica-
tion of) bread before it is used by CCPU. This enhanced function is denoted CCPU+ .
Let C1

CPU+ , . . . ,CT
CPU+ be garbled versions of CCPU+ . The parties feed their inputs

x = x1, . . . , xn into C1
CPU, taking the place of the wires associated with state1

and sequentially evaluate the garbled circuits to obtain y = stateT+1. This way,
even an adversary who can tap (or even tamper) the memory accesses is unable
to manipulate the program so it operates over forged data (since the data blocks
are authenticated), yet, it might reveal information about the parties’ inputs or
program’s state from the access pattern.

ORAM in Secure RAM Computation. Previous works on 2PC and
MPC for RAM programs [1,11,14,18–20,22,24,28–31,39] use Oblivious RAM
(ORAM) as an important building block. Informally speaking, an ORAM scheme
is a technique to transform a program Π with runtime T and initial storage D
to a new program Π ′ with runtime T ′ and initial storage D′ such that the
access pattern AP(Π ′,D′,x) appears independent of both Π and x, yet, both
programs compute the same function, i.e. Π(D,x) = Π ′(D′,x) for all x. All
ORAM schemes that we know of work by first initializing the storage D and
then online simulate each memory access individually (i.e. we don’t know of a
scheme that simulates a bunch of accesses altogether). It was shown feasible,
since the work of Goldreich and Ostrovsky [17], that the simulation of a single
memory access of Π (which denoted by logical access above) incurs poly(log N)
memory accesses in Π ′, denoted physical accesses, which leads to the same run
time overhead, that is T ′ = T · poly(log N). In addition, we can obtain the same
overhead for memory consumption of Π ′, that is N ′ = N · poly(log N).

The general methodology for secure computation of RAM programs using
an ORAM scheme is by having the parties collaboratively compute an ORAM
transformation of Π and D (via any MPC protocol) to obtain Π ′ and D′. This is
a one-time step that incurs a computational and communication complexity that

94 M. Keller and A. Yanai

is proportional to N ′. Then, they engage in a protocol of T ′ steps to compute
Π ′(D′, x) and, as before, obtain the output as stateT ′+1.

This way, to securely compute a program, it is no longer required to unroll it
to a circuit, rather, it is enough to unroll only the ORAM scheme algorithms and
the CPU-step function. Consequently, this approach may lead to concentrated
research efforts to optimize a specific set of ORAM scheme algorithms instead
of looking for optimizations to the circuit version of each individual program.

Oblivious vs. Non-oblivious Computation. We distinguish between obliv-
ious and non-oblivious computation in the following sense: In oblivious compu-
tation the parties learn nothing about the computation (except its output and
runtime). Specifically, the parties learn nothing about either the program Π,
CPU’s state or the input x. This means that an oblivious computation is appli-
cable for private function evaluation (PFE) in which the function itself is kept
secret. On the other hand, non-oblivious computation allows the parties to learn
which instruction is being computed in which time step, in particular, it rules
out algorithms that branch on secret values (otherwise, information about the
secret values might be leaked). As noted in [28], in order to hide the instruction
being computed - in every time step every possible instruction must be executed.
The only implementation of an oblivious computation with active security that
we know of is by Keller [22]. It has a performance of 41Hz (physical memory
accesses per second) in the online phase with 1024×64 bit memory and 2Hz for
220 × 64 bit memory1 for 2 parties running over a local network. On the other
hand, secure non-oblivious computation (denoted “instruction-trace oblivious”
in [28]) is expected to yield a much better throughput, since the parties can
avoid securely evaluating the universal CPU-step circuit, but can instead simply
evaluate a much smaller circuit corresponding to the current instruction.

Notwithstanding the theoretical results in this paper hold for oblivious com-
putation, the implementation results we report hold only for the non-oblivious
settings. This relaxation is justified by the fact that non-oblivious computation
is applicable for plenty of useful algorithms such as graph and search algorithms.

Achieving Efficient Protocols. To achieve an efficient, actively secure RAM
computation the following crucial issues are to be addressed:

1. Round complexity. As explained above, securely evaluating a program requires
T ′ = T · poly(log N) rounds of interaction between CPU and MEMORY, cor-
responding to the T ′ physical memory accesses. Also note that the access
pattern of a program is determined by the input that it is given. Now, con-
sider the CPU-step at time t from Eq. (1), the parties need to read D[ireadt]
and map it to the input wires associated with breadt . However, they do not
know from ahead (i.e. when garbling) which address ireadt would be accessed
in which timestep and thus cannot map the input wire labels of Ct

CPU to the

1 The decrease in throughput reflects the runtime overhead implied by the ORAM, as
mentioned above, this overhead depends on the memory size N .

Efficient Maliciously Secure Multiparty Computation for RAM 95

right memory location. Therefore, achieving a protocol with round complex-
ity independent in T is much more challenging, in fact, there is a line of works
that proposes constant-round secure RAM computation [7,11–14,19,30], how-
ever, it is highly impractical. A more reasonable path, which we follow in this
paper, is to construct a scheme with a constant number of rounds per any
number of parallel physical memory accesses. Although there exist passively
secure implementations [28,29] that are constant-round per physical memory
access, the actively secure implementations that we know of [22,24] have a
round complexity linear in the depth of the CPU-step circuit (which depends
on the ORAM implementation).

2. Private and authenticated memory. A natural approach suitable for securely
handling memory is to choose an ORAM that encrypts its memory contents.
In this approach, the parties must evaluate CPU-step circuits that include
encryption/decryption and authentication/verification sub-circuits. This is
undesirable since the resulting construction is non black-box in its underly-
ing encryption/authentication primitives and, more practically, embedding
encryption and authentication sub-circuits in every CPU-step circuit adds a
large overhead in terms of computation, communication and space complexi-
ties for garbling and evaluating. This would be especially objectionable when
the original RAM’s behavior is non-cryptographic. The circuitry overhead
when using the sub-circuit approach is demonstrated for several memory sizes
in Table 1 where the circuit size is for a typical instruction that requires mem-
ory access2. Circuit size refers to the number of AND gates in the circuit per-
forming a logical access, read and write are the number of bits being accessed
and encryption/authentication size is the number of AND gates that would
be necessary when incorporating the encryption and authentication proce-
dures inside the CPU-step circuit. We measure the overhead using both our
technique (described in Sect. 4.1) and a trivial solution using the AES block
cipher (with circuit size of 6000 AND gates3), assuming blocks of s = 40 bits.
We can see that even with our improvement (due to SPDZ representation
of memory), securing memory accesses incurs an additional circuitry that is
about 45 times larger than the ORAM circuit itself, therefore, we are highly
motivated to find other techniques for transferring memory from storage to
circuits.

3. Memory consumption. In actively secure BMR-based protocols memory used
for storing the garbled circuit grows linearly with the number of gates and
the number of parties. Let G be the number of AND gates, n the number
of participants and κ the security parameter. In the online phase each party
stores 4 ·G ·n ·κ bits that represent the garbled circuit and additional 2 ·G ·κ
bits that represent its own keys (the latter are needed to verify authenticity
of the keys revealed during the evaluation and deciding which garbled entry
to use next). For example, the SHA1 circuit is composed of ∼236K gates,

2 The amount of memory being accessed to satisfy a CPU instruction depends on the
instruction itself, for instance a SIMD instruction access more data than a SISD
instruction.

3 The state-of-the-art construction of an AES circuits incurs only 5200 AND gates.

96 M. Keller and A. Yanai

among them ∼90K are AND gates. The evaluation of SHA1 with κ = 128 by
3 parties incurs memory of size ∼160 Mb and 0.5 Gb when evaluated by 10
parties. While this amount is manageable for a single execution of a circuit,
it is much harder to be maintained when T garbled circuits are evaluated
sequentially in an online phase, as needed in RAM computation. Thus, new
techniques must be developed to address that issue.

Table 1. Proportion of additional circuitry, counted as the number of additional AND
gates, for the purpose of memory encryption and authentication in a logical memory
access.

Mem size Circuit size Read Write Enc/Auth. via Enc/Auth. via

technique, Sect. 4.1 block cipher (AES)

213 94844 31058 29596 2426160 (2600%) 18192000 (19000%)

217 156990 92568 87634 7208080 (4500%) 54060000 (34400%)

221 269300 158508 147982 12259600 (4500%) 91944000 (34100%)

225 423014 249104 231098 19208080 (4500%) 144060000 (34000%)

1.2 Our Contribution

We construct and implement the first actively secure, garbled-circuit-based
ORAM multiparty protocol. Specifically, we present the following contributions:

1. Efficient Secure Memory Access. We propose and compare three tech-
niques to implement memory access in a secure computation for RAM pro-
grams. We briefly describe them in an increasing order of efficiency:
(a) In the first technique, for each memory data item each party stores a

SPDZ share of that data item. We stress that this technique has nothing
to do with the SPDZ protocol, it only uses SPDZ shares representation
to represent the memory content. In each access the data item is being
re-shared using fresh randomness from the parties. Since SPDZ shares
are also authenticated we achieve an authenticated memory as well. The
re-sharing procedure is implemented as a sub-circuit, using only 2 field
multiplications, which are embedded in every CPU-step circuit. For each
s-bit block being accessed, the parties need to communicate O(sn2κ) bits
(by all parties together) to reveal the appropriate keys for the input wires
in the next CPU-step circuit, where κ and s are the computational and
statistical security parameters respectively, s is also the size of a SPDZ
share. This is because every CPU-step receives n shares, each of size s bits,
and for every bit all parties need to broadcast their keys of size κ bits. The
technique requires two rounds of broadcast per physical memory access,
however, as explained above, embedding encryption and authentication
sub-circuits has theoretical and practical disadvantages.

Efficient Maliciously Secure Multiparty Computation for RAM 97

(b) The second technique is inspired by [1,32], in which the memory is imple-
mented via wire soldering. That is, since every wire already carries a
hidden and authentic value through the key that is revealed to the par-
ties, the key itself could be stored in memory. This way, the parties do not
need to transform wire keys to data items back and forth for every access,
instead, they use wire soldering directly from the “writing circuit” to the
“reading circuit”. This “prunes away” the additional circuitry of the first
technique, with the drawback of having each bit in the ORAM memory
represented using a BMR key, i.e. nκ bits (with n the number of parties
and κ the security parameter). This technique, however, is superior in the
other metrics as well, that is, it requires much less triples to be gener-
ated in the offline phase since it does not need the additional circuitry
(which includes many AND gates) and has 2 communication rounds for
each physical memory access, just like the first technique.
Naively generalizing the soldering of [1] to the multiparty settings requires
each party to commit to its keys to all other parties using a xor-
homomorphic commitment scheme. Instead, in this work we obviate the
need of a commitment scheme and show how to use the readily avail-
able keys’ shares. Moreover, we show how to do that black-box in the
BMR garbling functionality, even when using the Free-XOR optimization
[2], by which different garbled circuits are assigned with different global
differences.

(c) The third technique offers a clever improvement to the soldering in that
we solder only one bit, namely, the real value that passes through a wire,
instead of the whole key that represents that value. As such, the solder-
ing requires no offline overhead at all, that is, in contrast to the second
technique, this technique does not invoke the multiplication command of
the underlying MPC. We utilize the fact that the BMR-evaluation pro-
cedure reveals to the parties the external bit of each output wire (that
is associated with a bit to be written to memory) and the fact that the
permutation bits are already shared. This way the parties could obtain a
share to a single bit which is the XOR (addition in the binary field) of
the external and permutation bits.

Nevertheless the third technique is the most promising for it is the most effi-
cient in all parameters (see Table 2 for a comparison), the first and second
techniques are also beneficial since they work in a higher level of abstraction
and assume less about the circuit-garbling functionality. In particular, the
first technique can be used with any underlying circuit-based protocol for
evaluating the CPU-step circuits. The second technique requires an underly-
ing protocol that relies on the idea of two keys per wire, such as the BMR
construction, however it assumes nothing about the way BMR is implemented
(recall that BMR on its own uses another MPC protocol to garble the gates).
On the contrary, the third technique assumes a specific implementation of
BMR, which shares the wires’ permutation bits among the parties. The SPDZ
protocols family satisfies this last requirement and therefore we use it in our
implementation.

98 M. Keller and A. Yanai

2. Reduced Round and Space Complexities. As opposed to [22,24] that
require communication rounds for every layer of CCPU, and [29] that achieves
only passive security, our protocol is constant round per physical memory
access. As mentioned above, the parties can travel from one CPU-step to the
next by simply performing SPDZ openings, which appears more efficient than
using xor-homomorphic commitment to wire labels in a cut-and-choose based
protocol such as [1] (for 2PC).
We show that by representing memory as a “packed shares” the parties need
to store only 2 bits per bit in the ORAM (that is, to operate an ORAM with
N ′-bit storage the previous parties need to store 2N ′ bits). To the best of our
knowledge this is the best concrete overhead that has been achieved to date.
In contrast, other BMR-based protocols, such as one instantiated using our
second technique, requires each party to store nκ bits per bit in the ORAM.
We further devise a way to shrink the storage required by each party in the
online phase. When using a garbling scheme that produces a garbled circuit
of size independent in the number of parties (as recently proposed [3]) our
optimization leads to a decrease in memory consumption of up to 2. We
stress that this improvement is applicable to all BMR-based constructions.
We present and prove security of it in Sect. 6.

3. Implementation. We have implemented the protocol using our most efficient
memory access technique and obtained experimental access times results in
both LAN and simulated WAN environments for two and three participants.
In addition, we provide a comparison with the previous implementation of
Keller and Scholl [6,24] that is based purely on SPDZ. Our experiments show
that [24] performs better over LAN (up to a factor of two for two parties)
while our work does so over WAN (by one order of magnitude for two par-
ties), justifying our efforts to reduce communication rounds. This supports
the analysis that garbled circuits are more suitable for a setting with high
latency because computation on secret values (after obtaining the garbled
circuit) can be entirely done locally. Note, however, that we still require com-
munication for revealing memory addresses and transferring memory values to
garbled circuit wires. This is not the case for the trivial (asymptotically more
expensive) approach where the whole memory is scanned for every access.
We also implemented the latter and found that our protocol breaks even at
a memory size in the 1’000s for the LAN setting and in the 100’000s for the
WAN setting.

We stress that even though [38] also achieves a constant-round multiparty
protocol for circuit-based computation (i.e. not RAM programs) our third and
most efficient technique is not directly applicable to their construction. In partic-
ular, our technique relies on the fact that all parties can identify the correctness
of wire labels without communication. This is the case for BMR because every
party learns both possibilities for κ bits of every wire label. This is only true
for one of two parties in the above work. We therefore leave it as an open prob-
lem how to combine the two techniques and how a possible combination would
compare to our work.

Efficient Maliciously Secure Multiparty Computation for RAM 99

1.3 Related Work

Gordon et al. [18] (who followed the work of Ostrovsky and Shoup [33] that was
tailored specifically for PIR) designed the first general two-party, semi-honest,
secure computation protocol for RAM. Their work focuses on the client-server
settings, where the client has a small input and the server has a large database,
and require the client to maintain only a small storage (i.e. logarithmic in the
size of the database). Their technique relies on the one-time-initialization of the
ORAM, after which, the server stores an encrypted version of the memory, then
the parties iteratively engage in a traditional, circuit-based, secure two-party
computation for every ORAM instruction.

Garbled RAM, introduced by Lu and Ostrovsky [30], is an analogue object
of garbled circuit with respect to RAM programs. Namely, a user can garble
an arbitrary RAM program directly without converting it into a circuit first.
A garbled RAM scheme can be used to garble the memory, the program and
the input in a way that reveals only the evaluation outcome and nothing else.
The main advantage of garbled RAM is that it leads to a constant-round two-
party or multi-party protocols to both semi-honest and malicious settings. This
is reflected in a series of works on variations of garbled RAM [11–14,19], however
all of these works focused on showing feasibility rather than efficiency and are
impractical.

Afshar et al. [1] presented two actively secure protocols for the two-party
settings: One that works in the offline-online model and one for streaming. The
main idea in both of their schemes is encoding RAM memory via wire labels4.
When the program reads from memory location �, it is possible to reuse the
appropriate output wire labels from the most recent circuit to write to location
� (which is not necessarily the previous circuit). Those protocols require the
parties to coordinate before the evaluation of each CPU-step, either by soldering
techniques that require XOR homomorphic commitments for aligning wire labels
(based on [10,32]) or by invocations of oblivious transfer to allow evaluation of
next garbled circuits, in addition to a large amount of symmetric operations
for garbling, encrypting and decrypting s copies of the circuit (since it uses
the cut-and-choose technique). Overall, this would incur an additional overhead
of O(snκ), since for each input wire, of each of the O(s) garbled circuits, each
party would need to commit and open its XOR homomorphic commitment, with
computational security parameter κ. Moreover, the streaming version requires
both the garbler and the evaluator to maintain O(s) copies of the memory. That
work was followed by [20,31] to achieve a constant round protocol for ZKP of
non-algebraic statements in the RAM model, but not for secure computation.

Keller and Scholl [24], showed how to implement two ORAM variants for the
oblivious array and oblivious dictionary data structures, specifically, they com-
pared their implementation for the binary Tree ORAM [34] and the Path ORAM
4 Encoding the state as wire labels is simpler than encoding the memory since it only

requires matching wire labels of output wires of one CPU-step to the input wires of
the next. This can be done in the offline phase, without knowing the program or the
input.

100 M. Keller and A. Yanai

[35] using various optimizations for many parts of the ORAM algorithms. Their
implementation of secure oblivious array and dictionary are purely based on the
SPDZ protocol, hence, they have no use of the techniques we develop in this
paper because the memory in their work is represented exactly the same as the
secret state of the program is represented. Therefore, there is no requirement of
conversion between those two entities (memory and state). Due to their use of
a secret-sharing based MPC using the SPDZ authenticated shares representa-
tion, evaluation of multiplication gates are performed interactively such that the
product results are immediately authenticated, thus, parties can use the memory
as usual shared secrets and verify authenticity only once, when the evaluation
is finished. The drawback in their approach is the high round complexity that
is implied on top of the ORAM round complexity. In our protocol, multiplica-
tions are evaluated inside a circuit and the authentication of the result is not an
integrated part of the multiplication itself (as in the SPDZ protocol).

Doerner and Shelat [9] recently published a two-party passively secure compu-
tation for RAM programs and reported that it outperforms previous works, even
when implemented using the state-of-the-art ORAM schemes, up to large mem-
ory sizes such as 232 elements of 4 bytes. Their Distributed ORAM scheme (AKA
Floram) is derived from the Function Secret Sharing (FSS) for point functions by
Boyle et al. [4,5], which resembles the trivial ORAM that read/write all memory
addresses for every access in order to hide its access pattern, however, this is
resolved since those O(n) accesses are performed by a highly parallelizable local
computation. The main advantage of Floram is that it has only O(1) commu-
nication rounds for both initialization and memory access and does not require
secure computation at all for the initialization. We remark that even though FSS
is feasible in the multiparty setting, it does not offer the same optimizations as
it does to the two party setting, thus, Floram is currently not suitable for the
multiparty setting. In addition, it is not trivial to lift their scheme to have active
security.

2 Preliminaries

Relying on the notation and description of the RAM model of computation
presented in Sect. 1.1, we directly proceed to the definition of Oblivious RAM:

2.1 Oblivious RAM

A polynomial time algorithm C is an Oblivious RAM (ORAM) compiler with
computational overhead c(·) and memory overhead m(·), if C, when given a
security parameter κ and a deterministic RAM program Π with memory D
of size N , outputs a program Π ′ with memory D′ of size N ′ = m(N) · N ,
such that for every input x ∈ {0, 1}∗ the running time of Π ′(D′, x) is bounded
by T ′ = T · c(N) and there is a negligible function μ such that the following
properties hold:

Efficient Maliciously Secure Multiparty Computation for RAM 101

– Correctness. For every memory size N ∈ N and every input x ∈ {0, 1}∗

with probability at least 1−μ(κ), the output of the compiled program equals
the output of the original program, i.e. Π ′(D′, x) = Π(D,x).

– Obliviousness. For every two programs Π1,Π2, every D1,D2 of size N and
every two inputs x1, x2 ∈ {0, 1}∗, if the running times of Π1(D1, x1) and
Π2(D2, x2) are T , then

AP(C(Π1, κ),D1, x1))
c≡ AP(C(Π2, κ),D2, x2))

where AP(·) is the access pattern as defined in Sect. 1.1.

As reflected from the above definition, our ORAM scheme is required to
hide only the addresses that CPU accesses since we handle the privacy and
authenticity of the contents of the memory using other techniques. Also, note
that the definition does not require to hide the runtime of the program.

2.2 Secure Computation in the RAM Model

Informally, a secure protocol for RAM programs must hide both program’s access
pattern and its memory contents from the parties. In addition, it must keep the
memory “fresh”, that is, it prevents the adversary to plug in an outdated memory
block to the current CPU-step circuit.

Protocols in this model [13,14,19] typically induce two flavors of security
definitions, such that their construction could be modular, i.e. first achieve a
construction for the weaker security notion (usually called Unprotected Memory
Access) and then enhance it with an ORAM to achieve full security. Informally,
the definition of full security requires that the access pattern remains hidden,
that is, the ideal adversary only obtains the runtime T of the program Π and
the computation output y. Given only T and y, the simulator must be able to
produce an indistinguishable access pattern. The weaker notion of security, as
known as Unprotected Memory Access (UMA), leaks the memory contents as
well as the access pattern to the adversary. In fact, UMA-secure protocols only
deal with how to authentically pass a memory block written in the past to a
circuit that needs to read it in a later point in time. In this work we use the
same definition for full security, however, we use a different definition, called
Unprotected Access Pattern (UAP) instead of the UMA. The definition of UAP
is stronger than UMA since it requires the memory contents remain hidden
from the adversary (and only the access pattern is leaked). Recall that since our
construction is for the non-oblivious computation (see Sect. 1.1) in both security
notions the adversary receives the instruction pattern as well.

Obviously, using a standard ORAM scheme we can easily transform a proto-
col that is UAP secure to a protocol that is fully secure [19], therefore, we may
focus on the weaker notion (although our implementation achieves full security).
We proceed to define both notions.

Full Security. Following the simulation paradigm [15, Chap. 7] we present the
ideal and real models of executions of RAM programs.

102 M. Keller and A. Yanai

Fig. 1. Ideal execution of Π(N,x) with abort.

Execution in the ideal model. In an ideal execution FRAM (Fig. 1), the parties
submit their inputs to a trusted party which in turn executes the program and
returns the output. Let Π be a program with memory D of size N , which expects
n inputs x = x1, . . . , xn, let A be a non-uniform PPT adversary and let I ⊂ [n]
be the set of indices of parties that A corrupts; we may refer to the set of
corrupted parties by pI . Denote the ideal execution of Π on x, auxiliary input z
to A and security parameter κ by the random variable IDEALFRAM

A(z),I(κ,Π,D,x),
as the output set of the honest parties and the adversary A.

Execution in the real model. In the real model there is no trusted party and the
parties interact directly. The adversary A sends all messages in place of the cor-
rupted parties, and may follow an arbitrary PPT strategy whereas honest parties
follow the protocol. Let Π,D,A, I be as above and let P be a multiparty protocol
for computing Π. The real execution of Π on input x, auxiliary input z to A and
security parameter κ, denoted by the random variable REALP

A(z),I(κ,Π,D,x),
is defined as the outputs set of the honest parties and the adversary A.

Definition 2.1 (Secure computation). Protocol P is said to securely com-
pute Π with abort in the presence of malicious adversary if for every PPT
adversary A in the real model, there exists a PPT adversary S in the ideal
model, such that for every I ∈ [n], every x, z ∈ {0, 1}∗ and for large enough κ,
the following holds

{
IDEALFRAM

S(z),I(κ,Π,D,x)
}

κ,x,z

c≡
{
REALP

A(z),I(κ,Π,D,x)
}

κ,x,z

Unprotected Access Pattern (UAP) Security. This notion allows the
adversary to further inspect the access pattern. The ideal functionality FUAP

is given in Fig. 2 and realized by protocol PUAP (Fig. 7).

Definition 2.2 (Secure computation in the UAP model). Protocol P
is said to securely compute Π in the UAP model with abort in the presence
of malicious adversary if for every PPT adversary A for the real model, there

Efficient Maliciously Secure Multiparty Computation for RAM 103

Fig. 2. Ideal execution of Π(N, x) in the UAP model.

is a PPT adversary S for the ideal model, such that for every I ∈ [n], every
x, z ∈ {0, 1}∗ and for large enough κ

{
IDEALFUAP

S(z),I(κ,Π,D,x)
}

κ,x,z

c≡
{
REALP

A(z),I(κ,Π,D,x)
}

κ,x,z

The transformation (or compilation) from UAP to full security is not in the
scope of this paper and can be found in previous works [11–14,19]. We follow
that path since it makes the security analysis simpler and modular, rather than
proving full security from scratch. Therefore, functionality FUAP in Fig. 2, which
is realized in protocol PUAP (Fig. 7), reveals the access pattern to the parties.
By incorporating an ORAM scheme on top of our protocol that access pattern
would be of no gain to the adversary for the reason that an access pattern of a
program execution using an ORAM is indistinguishable from an access pattern
of a randomly chosen program with the same runtime.

We note that achieving a UAP-secure protocol may be useful on its own
(i.e. without lifting it up to full security) in cases where the original program
Π is oblivious, that is, when the access pattern is permitted to be leaked to the
parties.

3 Executing RAM Programs Using BMR

Our protocol follows the BMR-SPDZ approach [25,27] and adapts the free-XOR
technique for the BMR garbling scheme [2]. For completeness, in the following
we describe the structure of the actively secure additive secret sharing used in
SPDZ-like protocols and outline the BMR-SPDZ approach.

3.1 SPDZ Secret Sharing

SPDZ-like protocols use actively secure additive secret sharing over a finite field,
combined with information theoretic MACs to ensure active security. A shared
secret x ∈ F is represented by

�x� = ([x], [m(x)], [α]) = (x1, . . . , xn,m(x)1, . . . ,m(x)n, α1, . . . , αn)

104 M. Keller and A. Yanai

where m(x) = x ·α is a MAC on message x using a global key α. Party pi holds:
A uniformly random share xi of x, a uniformly random share m(x)i of m(x) and
a uniformly random share αi of α such that

x =
n∑

i=1

xi, m(x) =
n∑

i=1

m(x)i, α =
n∑

i=1

αi

We denote an additive secret shared value x by [x] and its authenticated shared
version by �x�. We also denote pi’s share by �x�i = (xi,m(x)i).

When opening a shared value �x� the parties first broadcast their shares
xi and compute x. To ensure that x is correct, they then check the MAC by
committing to and opening m(x)i − x · αi and checking these shares sum up to
zero.

3.2 The BMR-SPDZ Protocol

Unlike the two-party settings, in which we have one garbler and one evaluator,
in the multiparty settings all parties are both garblers and evaluators such that
no strict subset of parties can either influence or learn anything about the values
that the wires carry. In the following we present the key points in the BMR-SPDZ
approach:

Keys. Every party chooses a random key for each wire in the circuit, that is,
party pi chooses key ki

w ∈ F2κ for wire w. This key is named “0-key” and
denoted ki

w,0 where ki
w,0 is essentially the i-th coordinate of a full 0-key, kw,0 =

(k1
w,0, . . . , k

n
w,0) ∈ (F2κ)n.

Global difference. To enable free-XOR, each party chooses its own global-
difference, that is, party pi randomly chooses Δi such that the difference between
its 0-key and its 1-key is Δi. Formally, ki

w,1 = ki
w,0 ⊕Δi for every w and i. Simi-

larly Δi is the i-th coordinate of the full difference Δ = (Δ1, . . . ,Δn). The value
Δi is known only to party pi and no strict subset of the parties (that does not
include pi) can learn it. For wire w we get that kw,1 = kw,0⊕Δ where ⊕ operates
component-wise.

Permutation bits. In the course of the evaluation the parties obtain kw,b with
either b = 0 or b = 1 for every wire w. Party pi could easily check whether b = 0
or b = 1 by extracting the ith element from kw,b and compare it to ki

w,0 and ki
w,1.

If b = 0 we say that the external value of wire w, denoted Λw is 0, otherwise, if
b = 1, then Λw = 1. Since the real value that is carried by wire w, denoted by
ρw, must be kept secret, the external value Λw must reveal nothing about it. To
this end, a random permutation bit, λw, is assigned to each wire w in order to
mask ρw by setting Λw = λw ⊕ ρw.

Inputs. Let w be an input wire that is associated with input xi of party pi, then
the parties open λw to party pi only. Then pi broadcasts Λw and ki

w,Λw
where

Efficient Maliciously Secure Multiparty Computation for RAM 105

Λw = ρw ⊕λw and ρw is its input to wire w. Then, party pj , for all j, broadcasts
its Λw-key kj

w,Λw
such that all parties obtain kw,Λw

= (k1
w,Λw

, . . . , kn
w,Λw

).

Outputs. If w is an output wire then the parties open the permutation bit λw to
everyone. This way, upon obtaining key kw,Λw

the parties learn the real value of
w by ρw = Λw ⊕ λw.

Encrypting a key. In the process of garbling, the parties encrypt the key of a
gate’s output wire using the keys of its input wires. Let m = m1, . . . ,mn be the
key to be encrypted and k�, kr with kb = k1

b , . . . , kn
b be encryption keys of the

left and right input wires, where party pi has mi, ki
�, k

i
r. The parties produce the

ciphertext c = c1, . . . , cn as follows: mj is encrypted using k�, kr to result cj such
that even a single missing coordinate of k� and kr prevents one from decrypting
cj . To encrypt mj , party pi provides Fki

�
(j), Fki

r
(j), where F is a pseudorandom

generator and then, using a protocol for secure computation the parties evaluate
and output:

cj = Enck�,kr
(mj) =

(n⊕
i=1

Fki
�
(j)

)
⊕

(n⊕
i=1

Fki
r
(j)

)
⊕ mj

Note that the keys ki
�, k

i
r are necessary for the decryption of cj for every i, j ∈ [n].

Garbled gate. A garbled version of an AND gate g with input wires u, v and
output wire w, is simply a 4-entries table, each entry is an encryption of either
kw,0 or kw,1, this depends on the permutation bits λu, λv and λw. We want to
enable the evaluator, who holds ku,Λu

and kv,Λv
(which are translated to ρu

and ρv respectively) to decrypt the ciphertext in the (2Λu + Λv)-th entry of
the table and obtain kw,Λw

such that ρw = ρu · ρv. That is, we want to have
λw ⊕ Λw = (λu ⊕ Λu) · (λv ⊕ Λv), thus, the (2Λu + Λv)-th entry conceals kw,Λw

where
Λw = (λu ⊕ Λu) · (λv ⊕ Λv) ⊕ λw

and since kw,1 = kw,0 ⊕ Δ we get that the entry conceals

kw,0 + Λw · Δ = kw,0 +
(
(λu ⊕ Λu) · (λv ⊕ Λv) ⊕ λw

) · Δ

We conclude by presenting functionality FBMR (Fig. 3) for a construction of
a garbled circuit. Note that the only difference between FBMR to the standard
description of this functionality [2,25] is that here the functionality lets the
parties learn a share to the permutation bits λw. This is necessary in order to
obtain a neat security proof of the construction. Protocol PBMR (Fig. 5) realizes
FBMR in the FMPC-hybrid model (Fig. 11 in the appendix). Given a garbled circuit
the parties evaluate it using the EBMR procedure described in Fig. 4.

In the presentation of the protocol (Fig. 5) and to the rest of the paper, we
denote by 〈x〉 the handler (varid) of a variable x that is stored by FMPC.

106 M. Keller and A. Yanai

Fig. 3. The BMR functionality.

3.3 Towards RAM Computation

To be able to securely compute RAM programs (in the UAP model) the parties
garble T circuits GC1, . . . , GCT and then evaluate them sequentially. To this
end, we must specify how the parties obtain the keys intended for the input wires
of each garbled circuit (these are the input wires associated with values statet

and breadt). This task is divided in two: First, the input wires of GCt associated
with statet must carry the same values as the output wires associated with statet

in GCt−1. Second, we need to support secure memory access, that is, the input
wires of GCt associated with breadt must carry the same values as the output
wires associated with bwritet′ in GCt′

, where t′ is the most recent timestep in which
address ireadt−1 was modified. The first task could be easily achieved by changing
PBMR to choose the same keys for both output and input wires that are associated
to the same state in every two consecutive garbled circuits, however, this would
be non-black-box in FBMR (since the functionality chooses its keys independently
for every circuit). For a black-box solution we can use the techniques described
in Sects. 4.2 and 4.3. We stress, though, that the two tasks are orthogonal and

Efficient Maliciously Secure Multiparty Computation for RAM 107

Fig. 4. Evaluation of a BMR garbled circuit.

Fig. 5. Realizing FBMR in the FMPC-hybrid model.

the techniques chosen to complete them are independent. Therefore, in the rest
of the presentation we focus on realizing secure memory access (the second task)
while taking for granted the traveling of the CPU’s state (i.e. we may write “the
parties obtain the input wires of statet” without specifying how).

108 M. Keller and A. Yanai

4 Accessing Memory

In this section we present the three techniques to achieve secure memory accesses
and show how to realize FUAP in the FBMR-hybrid model using the third one.
We compare the performance of the techniques in Table 2. The values within the
table are explained alongside the description of the techniques.

In the presentation below, we group some set of input/output wires together,
according to their purpose as follows: Win refers to the input wires of GC1, which
correspond to the parties’ inputs where W i

in,j corresponds to the j-th bit of input
xi. W t

read, W t
write,W

t
addr,rd,W

t
addr,wr refer to the input breadt , output bwritet , addresses

ireadt , iwritet respectively in GCt. In addition, W t
state refers to the input state and

W t
state′ refers to the output state in GCt.

4.1 Memory via Embedded Authentication Sub-circuit

This technique assumes that the values breadt , bwritet are elements from the same
field that SPDZ use as the underlying MPC protocol. This way, if SPDZ statis-
tical parameter is s then the memory is divided into data items of s bits. We
enhance CCPU with two procedures: Verify and AuthShare and denote the result

Table 2. Performance of the three techniques with n parties. κ and s are the compu-
tational and statistical security parameters. The columns specify the following param-
eters: Number of input wires required in the CPU-step circuit for every input bit (of
the ORAM) that is being read by that circuit. Amount of communication required
for each memory access, this is measured in bits per input wire per party. Number of
communication rounds required from the moment the parties obtained keys of output
wires of GCt to the moment they obtain keys to the input wires of GCt+1. Commu-
nication rounds could be used for secret opening, broadcasting a value or performing
multiplication over shares; among the three, only multiplication requires more work to
be done in the offline phase, specifically, multiplication requires sacrificing a multipli-
cation triple. This is reflected in the Triples column, note that we multiply a vector
of n keys rather than a single key. Memory overhead specifies how many bits do we
store in the memory for a single bit of ORAM memory (again, this is per party. The
total memory size that the parties store should be multiplied by n). The last column
specifies whether a change in the garbled circuit is needed.

Input wires Communication Rounds Triples Memory

overhead

Requires change

in CCPU

Embedded

subcircuit

(Sect. 4.1)

4n 4κ 2 O(ns2) 2 +2s2 AND gates

+4sn input

wires per data

item

Soldering

(Sect. 4.2)

1 (3n + 1)κ 2 2n nκ No

Shared bits

(Sect. 4.3)

1 2s 2 0 2 No

Efficient Maliciously Secure Multiparty Computation for RAM 109

Fig. 6. Enhanced CPU-step circuit CCPU+

by CCPU+ (see Fig. 6). Note that each party has 4s input wires for the purpose
of authentication and sharing (assuming that the global MAC key is part of the
state).

Privacy. The parties maintain their memory in the form of SPDZ shares, thus,
to input content from location iread in memory, every party inputs its SPDZ
share of this content from its own storage D[iread]. Then the secret is being
constructed within the CPU-step circuit. Since this is an additive secret sharing
scheme, the content is being constructed using only XOR gates, which requires
no communication.

Verify Authenticity. We enhance the CPU-step with a sub-circuit that verifies
the authenticity of the secret bread, the sub-circuit is denoted Verify(�v�) where
v refers to bread. Party pi inputs (vi,m(v)i, αi) and the sub-circuit computes5:

v =
n∑

i=1

vi, m(v) =
n∑

i=1

m(v)i, α =
n∑

i=1

αi

and outputs ver = 1 if m(v) − (α · v) = 0 (meaning verification succeeded)
and 0 otherwise (meaning verification has not succeeded), which incurs s2 AND
gates for a single multiplication operation in addition to 2s − 1 AND gates for
deciding whether ver is 1 or 0. Note that this multiplication is over a polynomial
ring over F2, thus the addition involves only XOR. Furthermore, we check the
result directly for zero and skip the reduction modulo an irreducible polynomial
(mapping from F2[X] to F2s), hence the 2s − 1 AND gates for comparison.

Security. Obviously, since nothing is revealed except from the fact of the authen-
ticity being correct, the adversary cannot extract any information regarding the
value.
5 Remember that xi denotes the share of party pi and not an exponentiation operation.

110 M. Keller and A. Yanai

Authenticated Share. The CPU-step produces the value bwrite to be written
to the memory, which obviously could not be output in the clear, rather, it is
shared between all parties. The sub-circuit AuthShare(v, [α], [r1], [r2]) is given the
value v to share (which refers to the value bwrite), the global MAC key α and two
freshly chosen r1, r2 ∈ F2s from the parties such that party pi inputs (αi, ri

1, r
i
2).

The circuit computes

r1 =
n∑

i=1

ri
1, r2 =

n∑
i=1

ri
2, α =

n∑
i=1

αi

and outputs val = (v + r1) and mac = (α · v + r2). To obtain the SPDZ sharing
�v�, party p1 stores v1 = (val− r11) and m(v)1 = (mac− r12) and all other parties
pj store vj = (−rj

1) and m(v)j = (−rj
2).

Security. First note that
∑n

i=1 vi = val − r11 − ∑n
j=2 rj

1 = v and
∑n

i=1 m(v)i =
mac−r12−

∑n
j=2 rj

2 = m(v) = α·v as required. The values v and its authentication
m(v) are independently masked using a truly random values and thus are hidden
from any strict subset of parties.

Performance. For every data item in F2s the parties store its MAC as well, which
leads to an overhead of 2 in the memory size. To obtain the key of an input wire
of the next circuit each party needs to broadcast its BMR key, which is of size
κ. Since for every read of data item each party inputs 4 F2s elements (assuming
that the global key α is part of the state), the communication complexity is 4κn
bits per input bit. The additional circuitry for authentication (and verification)
is of size 2s2+2s−1 (for two multiplications of elements from F2s and additional
zero testing), note in Table 2 the required number of multiplications triples is
multiplied by n since each AND gate manipulates keys vectors of n coordinates.
To obtain the keys for the next CPU-step circuit 2 communication rounds are
required, one to broadcast the external value of the input wire (which is done
by the party whose input is associated with) and the other is to broadcast the
appropriate keys by all parties. Note that we cannot save a communication round
by broadcasting the external value when writing (rather than when reading) since
the external value that the parties broadcast depends on the input wire of the
circuit that is going to read it in a later, unknown point in time.

4.2 Memory via Wire Soldering

The General Technique. Wire soldering allows the parties to reuse an out-
put wire key of one gate as an input wire key of another gate even if these
two gates were not meant to be connected in garbling time. The notion of wire
soldering for secure computation was introduced in [32] for the two-party set-
tings and implemented using an additively homomorphic commitment scheme
(com, dec), that is, com(a)+com(b) = com(a+b). Let u and v be wires with keys
ku,0, ku,1, kv,0, kv,1 and permutation bits λu, λv. By soldering v to u we would

Efficient Maliciously Secure Multiparty Computation for RAM 111

like to achieve the following feature: Obtaining key ku,Λu
that carries a real value

ρu = λu ⊕Λu, enables to obtain the key kv,Λv
, which carries the same real value

ρv = λv ⊕ Λv = ρu. It follows that if λu = λv the soldering information reveals
kv,Λu

(i.e. Λu = Λv), otherwise, if Λu 	= Λv, it reveals kv,(1−Λu).
In a circuit-based 2PC (with garbler and evaluator) this is done by having

the garbler send the commitments com(ku,0), com(ku,1), com(kv,0), com(kv,1);
if λu = λv the garbler also sends the decommitments s0 = dec(ku,0 ⊕ kv,0) and
s1 = dec(ku,1⊕kv,1), otherwise (if λu 	= λv) the garbler sends s0 = dec(ku,0⊕kv,1)
and s1 = dec(ku,1⊕kv,0). Given the key ku,Λu

, the evaluator computes ku,Λu
⊕sΛu

to obtain the correct key for wire kv,Λv
. To prove that the garbler hasn’t inverted

the truth value of the wires by choosing the wrong case above, it must also
decommit to the XOR of the permutation bits (λu⊕λv). Note that the evaluator
learns whether Λu = Λv and thus also learns whether λu = λv, however, that
doesn’t reveal anything about the real value ρu = ρv that is carried over those
wires.

Soldering in Our Scheme. When PBMR (Fig. 5) uses SPDZ to garble the
circuit party pi not only obtains its own keys ki

w,b in the clear, but also obtains a
SPDZ sharing for both a whole keys kw,b and the permutation bits λw for every
w ∈ W and b ∈ {0, 1}, thus, the parties could use FMPC to perform arithmetic
operations over them.

Let u and v be wires with keys ku,0, ku,1 = ku,0 ⊕ Δu and kv,0, kv,1 = kv,0 ⊕
Δv and permutation bits λu, λv ∈ {0, 1}. The parties perform the procedure
Solder(u, v) defined as follows: If Λu = 0 the parties collaboratively compute

s0u→v =

(
(λu ⊕ (1 − λv)) · (ku,0 ⊕ kv,0)

)
⊕

(
(λu ⊕ λv) · (ku,0 ⊕ kv,1)

)

and output s0u→v to everyone.
Otherwise, if Λu = 1 the parties collaboratively compute

s1u→v =

(
(λu ⊕ (1 − λv)) · (ku,1 ⊕ kv,1)

)
⊕

(
(λu ⊕ λv) · (ku,1 ⊕ kv,0)

)

and output s1u→v to everyone.
The information sΛu

u→v allows the parties to solder wire v to wire u. Notice
that this technique involves only one multiplication layer, since the parties simul-
taneously compute both multiplications and then locally add results in F2κ .

Observe that our variation of the soldering is applicable to the multiparty set-
tings as well, in addition, due to the already exist SPDZ shares to the full wires’
keys, we don’t need to rely on additional homomorphic commitment scheme and
its expensive overhead. Moreover, the original soldering was thought to be a way
to connect two wires within the same circuit (using a single global difference)
while in here we show that it is applicable for wires of different circuits as well
(that were garbled independently and with two global differences Δu,Δv).

112 M. Keller and A. Yanai

To see why it works, without loss of generality, consider Λu = 0. If λu = λv,
then given key ku,0 that carries value ρu = λu, the parties compute

ku,0 ⊕ s0u→v = ku,0 ⊕ (
1 · (ku,0 ⊕ kv,1)

) ⊕ (
0 · (ku,0 ⊕ kv,0)

)

= kv,0

such that ku,0 and kv,0 encapsulate the same real value as required. If λu 	= λv

we get

ku,0 ⊕ s0u→v = ku,0 ⊕ (
0 · (ku,0 ⊕ kv,0)

) ⊕ (
1 · (ku,0 ⊕ kv,1)

)

= kv,1

such that ku,0 and kv,1 encapsulate the same real value as required. The same
analysis holds when Λu = 1.

Performance. To obtain the key of the next circuit the parties simultaneously
compute 2 multiplications (of n keys) over the shares in one round and then
open the result in the second round, hence 2n multiplication triples are required
in the offline phase. Multiplication requires the communication of 3nκ bits per
party, opening requires κ, a total of (3n + 1)κ per party per input bit.

4.3 Memory via Free Conversion Between Keys and Shared Real
Values

In this section we present a new technique, which outperforms both the embed-
ding and soldering techniques in both the communication and memory size over-
heads. Essentially, it allows to freely convert between BMR wire keys and SPDZ
secret shares of the real values that those keys represent. As before, it is not
necessary to know which SPDZ share to convert from and to in garbling time.
This allows reactive memory accesses in the sense that, during evaluation, the
parties can evaluate previously garbled circuits on values read from memory at
an address that was only just revealed during the evaluation phase. The latter
is crucial for implementing ORAM.

Using this technique the parties need to compute only (local) additions and
some SPDZ openings in order to move from the evaluation of one circuit to the
next. In more detail, converting from wire keys to SPDZ shares can be done
without communication at all, while the other direction requires two rounds
of SPDZ opening. In any case, no multiplication is necessary, hence, no offline
overhead (for triple generation) is implied. Similarly, the information required is
a by-product of the BMR offline phase, hence there is no extra cost there.

When reading a bit from memory the parties need to know the external
value of the wire associated with it. For a circuit-input-wire, which is associated
with a particular party, that party knows the wire’s permutation and external
value, hence, it can broadcast the external value to the parties, who then can
broadcast their appropriate share of the BMR key. In contrast, when reading
from memory, the external value of the wire is shared (it is nobody’s input) and

Efficient Maliciously Secure Multiparty Computation for RAM 113

reconstructed, then the parties broadcast their keys as before. The keys that the
parties broadcast are stored by each party along with the garbled circuit, in the
same streaming manner, and are not part of the program’s memory.

Packing secret bits. Naively storing each external value as a SPDZ secret share
would require s2 bits in memory for every s-bit data block. We can reduce this
overhead by packing s secret shares of bits into an s-bit secret share such that it
requires only 2s bits in memory for every s-bit data block (s bits for the share
itself and another s bits for its MAC). Packing s bits �b0�, . . . , �bs−1� is done
by computing �B� =

∑
i∈[s] bi · 2i where the 2i part is constant, so we obtain

�B� by local computation only. Now, we can make operations over bits easily by
inputting the entire data item and using the specific required bit. “Extracting”
the j-th bit, �bj�, from �B� can be done locally as well as described below.

Writing to Memory. Recall that after issuing the Garble instruction in FBMR

the parties hold shares to all the permutation bits of all wires. Recall that the
wires groups W t

addr,wr and W t
write refer to the wires associated with the address

to be written and the value to be written to that address respectively. In the
protocol, the parties open the permutation bits for wires W t

addr,wr but not for
wires W t

write, this means that they learn iwritet in the clear, but learn nothing about
bwritet , rather, they only obtain the keys and their external values associated with
it. That is, for w ∈ W t

write, the parties obtain kw,Λw
and Λw. To store the real

value that is carried by wire w in memory address i the parties only need to
compute �ρw� = Λw + �λw�. Then pi stores D[i] ← �ρw�i. Furthermore, every
party pi can check whether kw,Λw

is correct because they have obtained both
kw,0 and kw,1 = kw,0 ⊕ Δi during Garble. This is equivalent to checking the
correctness of output wires. In order to achieve optimal memory usage, s bits
w0, . . . , ws−1 can be combined by (locally) computing

∑s−1
i=0 Xi�ρwi

� where X
denotes a generator of the multiplicative group of a field of size 2s.

Reading from Memory. Let ireadt−1 be the address from which the parties are
instructed to read when evaluating GCt−1 and let w ∈ W t

read. We assume for
a moment that secret shares packing technique above has not been applied
when storing. Therefore, D[ireadt−1] contains a share of the bit �ρw′� that was most
recently written to ireadt−1 at a previous timestep t′ with wire w′ ∈ W t′

write. Party pi

holds both ki
w,0 and ki

w,1, but need to broadcast only one of them. Specifically,
broadcast ki

w,Λw
for Λw = ρw ⊕ λw. Now, since we require that ρw = ρw′ then

the parties open Λw = �ρw�+ �λw� = �ρw′�+ �λw� and broadcast kw,Λw
. Finally,

if the parties have stored
∑s−1

i=0 Xi�ρwi
� at a particular memory address, �ρwi

�

can be computed by opening
∑s−1

i=0 Xi�ρwi
�+

∑s−1
i=0 Xi�λwi

�. This works because
any field of size 2s has characteristic two, thus addition corresponds to bitwise
XOR.

114 M. Keller and A. Yanai

5 Realizing Functionality FUAP

Protocol PUAP in Fig. 7 realizes FUAP in the FBMR-hybrid model.

Fig. 7. Realizing FUAP in the FBMR-hybrid model.

5.1 Security of Protocol PUAP

The security of our construction relies on the security of the underlying BMR
and SPDZ protocols and the security of the transformation between the garbled
wires and SPDZ shares. Informally, the latter can be seen as follows: Neither
transformation reveals any secret information because one direction (writing to
memory) is done locally, and the other one (reading form memory) only reveals
an external value and the corresponding wire label, both of which hide the real
value that is carried over the wire according to the security of the BMR protocol.
For malicious security, consider that revealing the external value is done using
SPDZ, which guarantees correctness by checking the MAC. Furthermore, if any

Efficient Maliciously Secure Multiparty Computation for RAM 115

party broadcasts a faulty share of the BMR key, this is guaranteed to lead to an
invalid output key (and thus easy detection by honest parties) by the properties
of the BMR protocol. More formally, we prove the following theorem:

Theorem 5.1. Protocol PUAP (Fig. 7) realizes functionality FUAP (Fig. 2) in the
FBMR-hybrid model.

Proof. Let A be an adversary controlling a subset of the parties, denoted A =
{pi1 , . . . , pic

} and denote by Ā = [n] � A the subset of the honest parties.
We present a simulator S who participates in the ideal execution FUAP by

taking the role of A and in an internal execution of PUAP with A, in which S takes
the role of Ā and the functionality FBMR. The simulator S uses another simulator
SBMR that when given the adversary’s input/output to/from a circuit, and both
keys to all wires in the garbled circuit, produces a view that is indistinguishable
to the view of the adversary’s evaluation of the circuit in the real execution (such
a simulator was presented in [25]).

The simulator S does as follows:

1. Extract A’s inputs
(a) In the internal execution, garble T copies of CCPU exactly as described

in FBMR. In particular, for every input wire w ∈ GC1 associated with a
corrupted party pc ∈ A output λw in the clear to pc.

(b) Upon issuing the Input command in the internal execution, for an input
wire w associated with a corrupted party pc ∈ A, receive pc’s external
value Λw and compute pc’s input to wire w by ρw = Λw ⊕ λw (the
simulator S knows λw because it was garbling the circuit on behalf of
FBMR).

2. Engage in the ideal execution FUAP by inputting the values extracted above as
the corrupted parties’ input and obtain y = Π(D,x) along with AP(Π,D,x).

3. Open all garbled circuits GC1, . . . , GCT toward the adversary.
4. Evaluation

(a) Invoke SBMR with A’s inputs that were extracted earlier, the garbled
circuit GC1 and the adversary’s output from GC1: access1 = (iread1 , iwrite1).6

Output whatever SBMR produced.
(b) Note that A have no inputs to circuits GC2, . . . , GCT , thus, for every

such circuit we invoke SBMR with no inputs at all. Then, for every input
wire of the garbled circuit, S checks which of its keys kw,0 or kw,1 was
produced as the simulated view, and then supply the correct share of the
external value of that key (S can do this since it knows the global MAC
key used for the SPDZ shares). Formally: For t = 2 to T :
i. Output accesst−1 = ireadt−1, i

write
t−1 in the clear.

ii. Invoke SBMR with GCt. If t = T then supply SBMR with y as well.
iii. For every input wire w of GCt, extract from the produced view the

key kw,Λw
used in the evaluation.

6 Note that access1 is the output to all parties, not only the adversary’s, however, for
the simulation purpose we use this as the adversary’s output.

116 M. Keller and A. Yanai

iv. For every input wire w of GCt simulate the opening of �Λw� = �λw ⊕
ρw� (from Step 3 in PUAP) as follows: Let the shares of A be ΛA

w, then
S chooses random shares Λh

w for every honest party ph ∈ Ā such that
Λw = ΛA

w +
∑

h∈Ā Λh
w and use them to open Λw.

v. Output the view produced by SBMR in Step 4(b)ii above.

Claim. For every PPT A and for every x the output of S above is indistinguish-
able to the view of A in the real execution of PUAP.

Proof. We define hybrid Hybt to be as follows: The adversary view in the real
execution of PUAP for timesteps 1, . . . , t, followed by the simulated view for
timesteps t + 1, . . . , T as described in Step 4b of the simulation above. Thus,
HybT is exactly the real execution of PUAP and Hyb0 is exactly the output of
S described above. Assume by contradiction that there exists a PPT D who can
distinguish between HybT and Hyb0 with non negligible probability, then we
construct D′ who distinguishes between a real execution of PBMR to the output
of SBMR (for a single circuit) as follows: By the existence of D it is implied that
there exists t′ for which D distinguishes between Hybt and Hybt+1 with non
negligible probability. Then, given a circuit C and a view V which is either the
view of the adversary in a real execution of PBMR or the output of SBMR, D′

generates a real view of the execution of PUAP for timesteps 1, . . . , t, then plugs
V together with the opening of external values of the input wires of C, and then
complete the simulation according to Step 4b above. Finally, hands the result
view to D and outputs whatever D outputs. Observe that if V is a view of a
real execution then the above is distributed exactly as Hybt, otherwise, it is
distributed exactly as Hybt+1. It follows that D′ distinguishes between the real
execution of PBMR and the output of SBMR with non negligible probability, by
contradiction of the security of PBMR.

6 Optimizing BMR Evaluation

The free-XOR technique of [2] makes space and communication complexities
linear in the number of AND gates (XOR gates are almost for free7). In this
section we show how to further decrease memory consumption in the online
phase by a factor of up to 2. Even though our technique could be applied to a
plain BMR protocol, we present the idea over a scheme that uses the free-XOR.
We stress that it is not limited to secure RAM computation but also applicable
in BMR-based protocols, even with only a single execution.

The Evaluate instruction in FBMR (Fig. 3) that is invoked in the online phase
traverses the circuit in a topological order and obtains a single output key kw ∈
(F2κ)n for every wire w in the circuit, until it reaches the output wires. To check
the authenticity of kw, party pi extracts the ith element, ki

w ∈ F2κ , and verifies
that it is one of the keys given to him by FMPC in the offline phase, that is,
ki

w ∈ {ki
w,0, k

i
w1

}. In case that ki
w 	∈ {k0

w, k1
w} then pi notifies all parties with

7 They require only a simple XOR operation.

Efficient Maliciously Secure Multiparty Computation for RAM 117

regard to the corrupted garbled circuit and aborts. Using our technique, it is
possible for pi to discard its keys {ki

w,0, k
i
w1

} of all wires right after the garbled
circuit construction is complete (in the offline phase), instead, it has to store
only a single bit per wire. Since the garbled gate is of size 4nk and the original
verification procedure requires memory of size 2k (i.e. party pi stores the two
keys of the output wire of the gate), this results with a decrease of memory
consumption by a factor of 1

2n . However, a great improvement is achieved for a
more recent construction [3]. In that construction the size of a garbled gate is
4k (i.e. it is independent of the number of parties n), thus, memory saving is
significant.

Using our technique, the evaluator is saved from loading and comparing 1.5
keys per wire in average (since in half of the wires the verification passes after
the first comparison). This loading8 and comparison time became substantial as
the computation of AES has been considerably improved9.

6.1 The Technique

Circuit garbling is done in the offline phase of the protocol using the FMPC

functionality (Fig. 11). Let lsb(x) denote the least significant bit of x. We instruct
FMPC to choose Δ = (Δ1, . . . ,Δn) such that lsb(Δi) = 1 for every i ∈ [n]. The
result is that lsb(ki

w,0) 	= lsb(ki
w,1) for all w and i. When garbling is completed

using Δ as described, party pi stores the bit δi
w = lsb(ki

w,0) for every wire w. In
addition party pi discards all keys ki

w,0 and ki
w,1 for all but the output wires.

The evaluation of the circuit is done exactly as before, however, instead of
verifying the key validity of the output wire of every gate, this is done only for
output gates. For an inner gate with output wire w, party pi obtains the external
value Λw by computing Λw = lsb(ki

w) ⊕ δi
w. This way the parties learn that the

key ki
w obtained by evaluating a gate is actually the Λ-key. For output gates

(i.e. gates whose output wire is also a circuit-output wire), party pi verifies that
ki

w ∈ {ki
w,0, k

i
w,1} as before.

Forcing the last bit of a random element is featured in SPDZ-like implementa-
tion of FMPC (e.g. [23]) since they are inherently bit wise, so we can generate k − 1
random bits and then compose the field element accordingly so its last bit is 1.

6.2 Security

Notice that we use the exact same garbling procedure as in [2] except that here
the last bit of every Δi is known to the adversary (i.e. lsb(Δi) = 1) whereas in
their scheme all bits of Δ are random. The security of our scheme can be easily
reduced to the security of [2]. Our simulator is the same simulator as in [2].
Let the distinguisher’s advantage in distinguishing between the real execution

8 Loading time depends on the implementation, i.e. whether using dereferences or not.
9 Using the AES-NI instruction set from Intel’s Sandy Bridge microarchitecture and

on, a RoundKey instruction takes a single CPU cycle and latency of 8, that is, one
could reach a throughput of up to 8 RoundKey operations with the same key at the
same CPU cycle [21, Chap. 5.10].

118 M. Keller and A. Yanai

of our scheme to the ideal execution be ε. Then, the advantage of the same
distinguisher in distinguishing between the real execution and the simulation of
[2] is ε′ = ε · 1

2h for h honest parties. This holds because the probability of having
lsb(Δi) = 1 in the free-XOR scheme is 1

2 for an honest party pi. Recall that in
the original scheme, the security depends on h keys of length k. Thus, increasing
the advantage of the adversary by 2h is negligible. Assuming that [2] is secure
we conclude that our scheme is secure as well.

7 Implementation

In this section we report our results of the first (to the best of our knowledge)
implementation of a garbled-circuit-based secure RAM computation for setting
with active security and dishonest majority. We chose to implement our third
technique (Sect. 4.3) as it is the most efficient technique for memory access. We
have combined our new BMR implementation with the existing SPDZ system
[6], and used it to implement an oblivious array10 using Circuit ORAM [36]. The
code is written in C++ using the AES-NI and AVX2 instruction sets.

Experiments. Our timing results below refer to the following experiments:

1. Circuit ORAM [36] using the BMR-SPDZ protocol with the scheme in
Sect. 4.3, labeled as ‘BMR, Circuit ORAM’ in the figures below.

2. Circuit ORAM [36] using a pure SPDZ implementation, labeled as ‘Pure
SPDZ, Circuit ORAM’.

3. Path ORAM [35] using a pure SPDZ implementation [24], labeled as ‘Pure
SPDZ, Path ORAM’.

4. Trivial ORAM, i.e. linear scanning of the entire memory for every access,
labeled as ‘BMR, linear scan’.

The Path ORAM intends to optimize the bandwidth cost and bandwidth
blowup where bandwidth cost refers to the average number of bits transferred
for accessing a single block and bandwidth blowup is defined as bandwidth cost
divided by the block size (i.e., the bit-length of a data block)11. The results by
Keller and Scholl [24] are reported using Path ORAM, which seems preferable
when round complexity is not a concern. For the sake of comparison, we have
also implemented Circuit ORAM using pure SPDZ. Comparing experiments (1),
(2) and (3) in Figs. 8 and 9, our approach outperforms the pure SPDZ when the
parties are connected over a WAN, independently of the choice of the ORAM
scheme. Furthermore, experiment (4) allows to find the breakeven points, that is,

10 “Oblivious array” is the name given in [24] to the basic oblivious random memory
access, which allows reading and writing with a secret index. This is in distinction
to “oblivious dictionary” that allows reading according to a secret ‘key’ in a key-
value (dictionary) data structure, where the key may be larger than the size of the
memory.

11 As defined in [36, A.2] under ORAM metrics.

Efficient Maliciously Secure Multiparty Computation for RAM 119

to figure out up to what memory size the linear scan performs better than apply-
ing an ORAM algorithm. Given the simplicity of a linear scan, it is clear that it
is faster for small enough sizes.

All experiments were performed for both LAN and WAN environment to test
the influence of our approach of reducing the round complexity. We stress that
our implementation is the first in this setting even when considering 2 parties
only. Nevertheless, we report timing results for a protocol with 3 participants as
well.

Parameters. Our security parameters are κ = 128 and s = 40. In all experi-
ments, the oblivious arrays are made up of 32-bit entries, and all figures refer to
the array size as the number of such entries. Therefore, our figures range from
1024 · 32 ≈ 32 kB to 225 · 32 ≈ 1.1 GB.

Our ORAM implementations (Circuit ORAM and Path ORAM) require
up to three recursions such that intermediate ORAMs use 128-bit entries, and
we use a linear scan for less than 256 such entries.

All reported results are measured per logical access to the memory (array),
which, as explained before, may incorporate many physical accesses.

Environment. Our implementations were done using 4th generation Intel Core
i7 with 8 cores running at 3.5 GHz, 16 GB RAM, and SSD (to store the garbled
circuits) connected over a LAN (bandwidth of 1 Gbit/s and RTT of 0.1–0.2 ms).

Furthermore, we have simulated a WAN setting on the same machines by
extending the round trip time to 100 ms and restricting the throughput to
50 Mbit/s. Figure 8 shows our results for the two settings with two parties while
Fig. 9 shows our results for three parties. They confirm that using garbled cir-
cuits (BMR) is beneficial with high network latencies. With BMR, combining
Circuit ORAM with our memory access surpasses linear scanning below a size
of one million.

Offline Cost. Finally, for a more complete picture, we have estimated the offline
cost in the LAN setting. Figure 10 shows the cost for one access of Circuit ORAM

103 104 105 106 107

101

102

Oblivious array size

L
og
ic
al
ac
ce
ss
es

pe
r
se
co
nd

BMR, Circuit ORAM
Pure SPDZ, Path ORAM [24]
Pure SPDZ, Circuit ORAM

BMR, linear scan

103 104 105 106 107
10−2

10−1

100

101

102

Oblivious array size

L
og
ic
al
ac
ce
ss
es

pe
r
se
co
nd

BMR, Circuit ORAM
Pure SPDZ, Path ORAM
Pure SPDZ, Circuit ORAM
BMR, linear scan

Fig. 8. Two parties over LAN (left) and over WAN (right).

120 M. Keller and A. Yanai

103 104 105 106 107

101

102

Oblivious array size

L
og

ic
al
ac
ce
ss
es

pe
r
se
co
nd

BMR, Circuit ORAM
Pure SPDZ, Path ORAM [24]
Pure SPDZ, Circuit ORAM
BMR, linear scan

103 104 105 106 107
10−2

10−1

100

101

102

Oblivious array size

L
og

ic
al
ac
ce
ss
es

pe
r
se
co
nd

BMR, Circuit ORAM
Pure SPDZ, Path ORAM
Pure SPDZ, Circuit ORAM
BMR, linear scan

Fig. 9. Three parties over LAN (left) and over WAN (right).

103 104 105 106 107
10−2

10−1

100

101

102

103

Oblivious array size

Se
co
nd

s
pe
r
lo
gi
ca
la
cc
es
s

Local-AES Online-SPDZ Offline-SPDZ

Fig. 10. Offline time per logical access with Circuit ORAM and BMR.

implemented in BMR. All figures are based on the number of AND gates in
the circuit computing Circuit ORAM because the preprocessing information
required for soldering is essentially a by-product of the circuit generation.

To get a better picture of the offline performance of our protocol, we separated
it into three parts:

– Offline-SPDZ. This is the offline phase of the SPDZ protocol, which is inde-
pendent of the circuit the parties wish to evaluate. In this phase the parties
produce the multiplication triples that would be required for the garbling. The
numbers in this part are based on a production of 4828 triples per second as
reported by Keller et al. [23].

– Local-AES. Local computation of AES ciphers. The parties use the results
of that computation as input to the Online-SPDZ part, which use them in
order to construct the garbled circuit.

Efficient Maliciously Secure Multiparty Computation for RAM 121

– Online-SPDZ. This is the online phase of the SPDZ protocol, in which the
parties evaluate a circuit that garbles the actual circuit they want to evaluate
in the BMR online phase.

In the figure we can easily observe that Offline-SPDZ dominates the cost by
3–4 orders of magnitudes because of the communication cost of MASCOT [23].

A The Generic Reactive MPC Functionality

The following functionality is used by protocols that follow the BMR-SPDZ approach.

Fig. 11. The generic reactive MPC functionality

122 M. Keller and A. Yanai

References

1. Afshar, A., Hu, Z., Mohassel, P., Rosulek, M.: How to efficiently evaluate RAM
programs with malicious security. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 702–729. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46800-5 27

2. Ben-Efraim, A., Lindell, Y., Omri, E.: Optimizing semi-honest secure multiparty
computation for the internet, pp. 578–590 (2016)

3. Ben-Efraim, A., Lindell, Y., Omri, E.: Efficient scalable constant-round MPC via
garbled circuits. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10625, pp. 471–498. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9 17

4. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46803-6 12

5. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and exten-
sions, pp. 1292–1303 (2016)

6. Bristol Cryptography Group: SPDZ software (2016). https://www.cs.bris.ac.uk/
Research/CryptographySecurity/SPDZ/

7. Canetti, R., Holmgren, J.: Fully succinct garbled RAM, pp. 169–178 (2016)
8. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation

from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

9. Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: CCS (2017)
10. Frederiksen, T.K., Jakobsen, T.P., Nielsen, J.B., Nordholt, P.S., Orlandi, C.:

MiniLEGO: efficient secure two-party computation from general assumptions. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 537–
556. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 32

11. Garg, S., Gupta, D., Miao, P., Pandey, O.: Secure multiparty RAM computation
in constant rounds. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp.
491–520. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-
4 19

12. Garg, S., Lu, S., Ostrovsky, R.: Black-box garbled RAM, pp. 210–229 (2015)
13. Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way functions,

pp. 449–458 (2015)
14. Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled

RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 405–422. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 23

15. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge
University Press, New York (2004)

16. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: STOC, pp. 218–229
(1987)

17. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43(3), 431–473 (1996)

18. Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis,
Y.: Secure two-party computation in sublinear (amortized) time, pp. 513–524
(2012)

https://doi.org/10.1007/978-3-662-46800-5_27
https://doi.org/10.1007/978-3-662-46800-5_27
https://doi.org/10.1007/978-3-319-70697-9_17
https://doi.org/10.1007/978-3-319-70697-9_17
https://doi.org/10.1007/978-3-662-46803-6_12
https://www.cs.bris.ac.uk/Research/CryptographySecurity/SPDZ/
https://www.cs.bris.ac.uk/Research/CryptographySecurity/SPDZ/
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-38348-9_32
https://doi.org/10.1007/978-3-662-53641-4_19
https://doi.org/10.1007/978-3-662-53641-4_19
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-642-55220-5_23

Efficient Maliciously Secure Multiparty Computation for RAM 123

19. Hazay, C., Yanai, A.: Constant-round maliciously secure two-party computation
in the RAM model. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp.
521–553. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-
4 20

20. Hu, Z., Mohassel, P., Rosulek, M.: Efficient zero-knowledge proofs of non-algebraic
statements with sublinear amortized cost. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9216, pp. 150–169. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 8

21. Intel: Intel 64 and IA-32 Architectures Optimization Reference Manual
(2016). http://www.intel.com/content/www/us/en/architecture-and-technology/
64-ia-32-architectures-optimization-manual.html

22. Keller, M.: The oblivious machine - or: how to put the C into MPC. Cryptology
ePrint Archive, Report 2015/467 (2015). http://eprint.iacr.org/2015/467

23. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure
computation with oblivious transfer, pp. 830–842 (2016)

24. Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 506–525. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8 27

25. Lindell, Y., Pinkas, B., Smart, N.P., Yanai, A.: Efficient constant round multi-
party computation combining BMR and SPDZ. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 319–338. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 16

26. Lindell, Y., Riva, B.: Blazing fast 2PC in the offline/online setting with security
for malicious adversaries. In: CCS, pp. 579–590 (2015)

27. Lindell, Y., Smart, N.P., Soria-Vazquez, E.: More efficient constant-round multi-
party computation from BMR and SHE. In: Hirt, M., Smith, A. (eds.) TCC 2016.
LNCS, vol. 9985, pp. 554–581. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53641-4 21

28. Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.W.: Automating efficient RAM-
model secure computation, pp. 623–638 (2014)

29. Liu, C., Wang, X.S., Nayak, K., Huang, Y., Shi, E.: ObliVM: a programming
framework for secure computation, pp. 359–376 (2015)

30. Lu, S., Ostrovsky, R.: How to garble RAM programs? In: Johansson, T., Nguyen,
P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 719–734. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-38348-9 42

31. Mohassel, P., Rosulek, M., Scafuro, A.: Sublinear zero-knowledge arguments for
RAM programs. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10210, pp. 501–531. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-56620-7 18

32. Nielsen, J.B., Orlandi, C.: LEGO for two-party secure computation. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 368–386. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00457-5 22

33. Ostrovsky, R., Shoup, V.: Private information storage (extended abstract), pp.
294–303 (1997)

34. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN)3)
worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 197–214. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25385-0 11

35. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C.W., Ren, L., Yu, X., Devadas, S.:
Path ORAM: an extremely simple oblivious RAM protocol, pp. 299–310 (2013)

https://doi.org/10.1007/978-3-662-53641-4_20
https://doi.org/10.1007/978-3-662-53641-4_20
https://doi.org/10.1007/978-3-662-48000-7_8
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://eprint.iacr.org/2015/467
https://doi.org/10.1007/978-3-662-45608-8_27
https://doi.org/10.1007/978-3-662-48000-7_16
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/978-3-662-53641-4_21
https://doi.org/10.1007/978-3-642-38348-9_42
https://doi.org/10.1007/978-3-319-56620-7_18
https://doi.org/10.1007/978-3-319-56620-7_18
https://doi.org/10.1007/978-3-642-00457-5_22
https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1007/978-3-642-25385-0_11

124 M. Keller and A. Yanai

36. Wang, X., Chan, T.-H.H., Shi, E.: Circuit ORAM: On tightness of the Goldreich-
Ostrovsky lower bound, pp. 850–861 (2015)

37. Wang, X., Malozemoff, A.J., Katz, J.: Faster secure two-party computation in the
single-execution setting. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10212, pp. 399–424. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7 14

38. Wang, X., Ranellucci, S., Katz, J.: Authenticated garbling and efficient maliciously
secure two-party computation. In: CCS, pp. 21–37 (2017)

39. Wang, X.S., Gordon, S.D., McIntosh, A., Katz, J.: Secure computation of MIPS
machine code. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.)
ESORICS 2016. LNCS, vol. 9879, pp. 99–117. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-45741-3 6

40. Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS,
pp. 162–167 (1986)

https://doi.org/10.1007/978-3-319-56617-7_14
https://doi.org/10.1007/978-3-319-56617-7_14
https://doi.org/10.1007/978-3-319-45741-3_6
https://doi.org/10.1007/978-3-319-45741-3_6

	Efficient Maliciously Secure Multiparty Computation for RAM
	1 Introduction
	1.1 Background
	1.2 Our Contribution
	1.3 Related Work

	2 Preliminaries
	2.1 Oblivious RAM
	2.2 Secure Computation in the RAM Model

	3 Executing RAM Programs Using BMR
	3.1 SPDZ Secret Sharing
	3.2 The BMR-SPDZ Protocol
	3.3 Towards RAM Computation

	4 Accessing Memory
	4.1 Memory via Embedded Authentication Sub-circuit
	4.2 Memory via Wire Soldering
	4.3 Memory via Free Conversion Between Keys and Shared Real Values

	5 Realizing Functionality .
	5.1 Security of Protocol .

	6 Optimizing BMR Evaluation
	6.1 The Technique
	6.2 Security

	7 Implementation
	A The Generic Reactive MPC Functionality
	References

