
Fast Garbling of Circuits over
3-Valued Logic

Yehuda Lindell and Avishay Yanai(B)

Bar-Ilan University, Ramat Gan, Israel
yehuda.lindell@biu.ac.il, ay.yanay@gmail.com

Abstract. In the setting of secure computation, a set of parties wish to
compute a joint function of their private inputs without revealing any-
thing but the output. Garbled circuits, first introduced by Yao, are a
central tool in the construction of protocols for secure two-party com-
putation (and other tasks like secure outsourced computation), and are
the fastest known method for constant-round protocols. In this paper,
we initiate a study of garbling multivalent-logic circuits, which are cir-
cuits whose wires may carry values from some finite/infinite set of values
(rather than only True and False). In particular, we focus on the three-
valued logic system of Kleene, in which the admissible values are True,
False, and Unknown. This logic system is used in practice in SQL where
some of the values may be missing. Thus, efficient constant-round secure
computation of SQL over a distributed database requires the ability to
efficiently garble circuits over 3-valued logic. However, as we show, the
two natural (naive) methods of garbling 3-valued logic are very expensive.

In this paper, we present a general approach for garbling three-valued
logic, which is based on first encoding the 3-value logic into Boolean
logic, then using standard garbling techniques, and final decoding back
into 3-value logic. Interestingly, we find that the specific encoding chosen
can have a significant impact on efficiency. Accordingly, the aim is to find
Boolean encodings of 3-value logic that enable efficient Boolean garbling
(i.e., minimize the number of AND gates). We also show that Boolean
AND gates can be garbled at the same cost of garbling XOR gates in the
3-value logic setting. Thus, it is unlikely that an analogue of free-XOR
exists for 3-value logic garbling (since this would imply free-AND in the
Boolean setting).

1 Introduction

1.1 Background – Three-Valued Logic

In classical (Boolean) propositional logic, statements are assigned a “truth-
value” that can be either True or False, but not both. Logical operators are

Y. Lindell and A. Yanai—Supported by the European Research Council under the
ERC consolidators grant agreement no. 615172 (HIPS) and by the BIU Center for
Research in Applied Cryptography and Cyber Security in conjunction with the Israel
National Cyber Bureau in the Prime Minister’s Office.

c© International Association for Cryptologic Research 2018
M. Abdalla and R. Dahab (Eds.): PKC 2018, LNCS 10769, pp. 620–643, 2018.
https://doi.org/10.1007/978-3-319-76578-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76578-5_21&domain=pdf
http://orcid.org/0000-0003-4060-0150

Fast Garbling of Circuits over 3-Valued Logic 621

used to make up a complex statement out of other, one or more, simpler state-
ments such that the truth value of the complex statement is derived from the
simpler ones and the logical operators that connects them. For instance, given
that the statement A is True and the statement B is True we infer that the
statement C =“A and B” (denoted by C = A ∧ B) is True as well.

Another branch of propositional logic is the multivalent logic system. Mul-
tivalent logic systems consider more than two truth-values, that is, they may
admit anything from three to an infinite number of possible truth-values. Among
those, the simplest and most studied sort is the three-valued logic (or ternary
logic), which is a system that admits three truth-values, e.g., “truth”, “falsity”
and “indeterminancy”. Such a system seems to suit many real life situations,
for instance, statements about the future or paradoxical statements like “this
statement is not correct”, which must have an indeterminate truth-value. Note
that in different applications, the third truth-value could be interpreted differ-
ently, hence, different inference rules are derived1. The most common three-
valued logic system is Kleene’s Logic [6], in which statements are assigned with
either True, False or Unknown. For clarity, whenever we use the term three-
valued logic or 3VL we actually refer to Kleene’s Logic. We remark that although
other three-valued logic system exist, in this paper we focus only on Kleene’s
logic since its use in real life is the most prevalent; see the application example
in Sect. 1.2.

The admission of Unknown requires one to expand the set of inference rules, to
enable the computation of the truth-value of a complex statement from simpler
statements, even if one or more of them are Unknown. In Kleene’s logic, the
inference process complies with the way we usually make conclusions: It yields
Unknown whenever at least one statement that is necessary for deciding True or
False is assigned with Unknown. For example, the AND of True and Unknown is
Unknown since if the Unknown were False then the result would be false. However,
the OR of True and Unknown is True since it equals True irrespective of the
Unknown variable’s value.

The 3VL inference rules are presented in Table 1 in the form of truth tables.
In the rest of the paper whenever we refer to the Boolean version of AND, OR,

Table 1. Definition of the functions ∧3 (AND), ∨3 (OR), ⊕3 (XOR) and ¬3 (NOT)
using truth tables. Note these functions are symmetric, that is, the order of the inputs
makes no difference.

∧3 T U F

T T U F

U U U F

F F F F

∨3 T U F

T T T T

U T U U

F T U F

⊕3 T U F

T F U T

U U U U

F T U F

¬3

T F

U U

F T

1 In fact, even the two traditional truth-values True and False could have other meaning
in different three-valued logic systems.

622 Y. Lindell and A. Yanai

XOR and NOT we use the usual notation ∧,∨,⊕,¬ and when we use their 3VL
version we subscript it with the number 3, e.g. ∧3,∨3,⊕3,¬3. We denote by T, F
and U , the 3VL values True, False and Unknown, respectively.

1.2 Applications in SQL

In SQL specifications [5] the NULL marker indicates the absence of a value, or
alternatively, that the value is neither True nor False, but Unknown. Because of
this, comparisons with NULL never result in either True or False, but always in the
third logical value: Unknown. For example, the statement “SELECT 10 = NULL”
results in Unknown. However, certain operations on Unknown can return values
if the absent value is not relevant to the outcome of the operation. Consider the
following example:

SELECT ∗ FROM T1 WHERE (age > 30 OR height < 140) AND weight > 110

Now, consider an entry where the person’s age is missing. In this case, if the
person’s height is 150 then the OR subexpression evaluates to Unknown and so
the entire result is Unknown, hence, this entry is not retrieved. In contrast, if the
person’s height is 120, then the OR subexpression evaluates to True, and so the
result is True if weight > 110, and False if weight ≤ 110.

We remark that the main SQL implementations [2,9,10] (Oracle, Microsoft
and MySQL) conform to the Kleene’s three-valued logic described above. As
such, if secure computation is to be used to carry out secure SQL on distributed
(or shared) databases, then efficient solutions for dealing with three-valued logic
need to be developed.

1.3 Naively Garbling a 3VL Gate

We begin by describing the straightforward (naive) approach to garbling a 3VL
gate. Let g3 be a 3VL gate with input wires x, y and output wire z, where each
wire takes one of 3 values, denoted T , F and U . The basic garbling scheme of
Yao [8,13] works by associating a random key with each possible value on each
wire, and then encrypting each possible output value under all combinations
of input values that map to that output value. Specifically, for each wire α ∈
{x, y, z}, choose random keys kT

α , kF
α , kU

α . Then, for every combination of βx, βy ∈
{T, F, U}, encrypt k

g(βx,βy)
z using keys kβx

x , k
βy
y and define the garbled table to

be a random permutation of the ciphertexts. See Fig. 1 for a definition of such a
garbled gate.2

2 Note that in a two-party protocol like Yao’s, the parties then run 1-out-of-3 oblivious
transfers in order for the evaluator to learn the keys that are associated with its input.

Fast Garbling of Circuits over 3-Valued Logic 623

Fig. 1. Garbling a 3VL gate
directly using 9 rows.

This approach yields a garbled gate of 9
entries. Using the standard garbled row reduc-
tion technique [11], it is possible to reduce the
size of the gate to 8 entries. This means that
8 ciphertexts need to be communicated for each
gate in the circuit. However, this garbling scheme
requires four times more bandwidth for three-
valued logic gates than the state-of-the-art for
their Boolean ∧ counterparts [12]. Furthermore,
using the free-XOR paradigm [7] (as is also
utilized in [12]), XOR gates are free in the
Boolean case but require significant bandwidth
and computation in the three-valued logic case.
(We remark that [7,12] do require non-standard
assumptions; however, these techniques do not
translate to the 3VL case and so cannot be used,
even under these assumptions.)

Before proceeding, we note that another nat-
ural way of working is to translate each variable in the 3VL circuit into two
Boolean variables: the first variable takes values T, F (true/false), and the sec-
ond variable takes values K,U (known/unknown). This method fits into our
general paradigm for solving the problem and so will be described later; as we
will show, this specific method is not very efficient.

1.4 Our Results

The aim of this paper is to find ways of garbling three-valued logic functions
that are significantly more efficient than the naive method described in Sect. 1.3.
Our methods all involve first encoding a 3VL function as a Boolean function and
then utilizing the state-of-the-art garbling schemes for Boolean functions. These
schemes have the property that AND gates are garbled using two ciphertexts,
and XOR gates are garbled for free [7,12]. Thus, our aim is to find Boolean
encodings of 3VL functions that can be computed using few AND gates (and
potentially many XOR gates).

In order to achieve our aim, we begin by formalizing the notion of a 3VL-
Boolean encoding which includes a way of encoding 3VL-input into Boolean
values, and a way of computing the 3VL function using a Boolean circuit applied
to the encoded input. Such an encoding reduces the problem of evaluating 3VL
functions to the problem of evaluating Boolean functions. Our formalization is
general, and can be used to model other multivalent logic systems, like that used
in fuzzy logic.

Next, we construct efficient 3VL-Boolean encodings, where by efficient, we
mean encodings that can be computed using few Boolean AND gates. Interest-
ingly, we show that the way that 3VL-variables are encoded as Boolean variables
has a great influence on the efficiency of the Boolean computation. We describe
three different encodings: The first encoding is the natural one, and it works by

624 Y. Lindell and A. Yanai

defining two Boolean variables xT and xU for every 3VL-variable x such that
xU = 1 if and only if x = U , and xT = 1 if x = T and xT = 0 if x = F . This is
“natural” in the sense that one Boolean variable is used to indicate whether the
3VL-value is known or not, and the other variable is used to indicate whether the
3VL-value is true or false in the case that it is known. We show that under this
encoding, 3VL-AND gates can be computed at the cost of 6 Boolean AND gates,
and 3VL-XOR gates can be computed at the cost of 1 Boolean AND gate. We
then proceed to present two alternative encodings; the first achieves a cost of 4
Boolean AND gates for every 3VL-AND gate and 1 Boolean AND gate for every
3VL-XOR gate, whereas the second achieves a cost of 2 Boolean AND gates
both for every 3VL-AND gate and every 3VL-XOR gate. These encodings differ
in their cost tradeoff, and the choice of which to use depends on the number of
AND gates and XOR gates in the 3VL-circuit.

Given these encodings, we show how any protocol for securely computing
Boolean circuits, for semi-honest or malicious adversaries, can be used to securely
compute 3VL circuits, at almost the same cost. Our construction is black-box
in the underlying protocol, and is very simple.

Finally, observe that all our encodings have the property that 3VL-XOR gates
are computed using at least 1 Boolean AND-gate. This means that none of our
encodings enjoy the free-XOR optimization [7] which is extremely important in
practice. We show that this is actually somewhat inherent. In particular, we show
that it is possible to garble a Boolean AND gate at the same cost of garbling
a 3VL XOR gate. Thus, free-3VL-XOR would imply free-Boolean-AND, which
would be a breakthrough for Boolean garbling. Formally, we show that free-3VL-
XOR is impossible in the linear garbling model of [12].

Brute-force search for encodings. It is theoretically possible to search for effi-
cient 3VL-Boolean encodings by simply trying all functions with a small number
of AND gates, for every possible encoding. Indeed, for up to one AND gate it
is possible since the search space is approximately 220 possibilites. However, if
up to two AND gates are allowed, then the search space already exceeds 250

possibilities. We ran a brute-force search for up to one AND gate, and rediscov-
ered our 3VL-XOR computation that uses a single AND gate (in fact, we found
multiple ways of doing this). However, our search showed that there does not
exist a way of computing 3VL-AND using a single AND gate, for any encoding.
See AppendixA for more details on the brute-force search algorithm that we
used.

2 Encoding 3VL Functions as Boolean Functions

2.1 Notation

We denote by T, V, U the 3VL values True,False and Unknown, respectively, and
by 1, 0 the Boolean values True and False. We denote by F3 the set of all 3VL
functions (i.e. all functions of the form {T, F, U}∗ → {T, F, U}∗) and by F2 be
the set of all Boolean functions (i.e. all functions of the form {0, 1}∗ → {0, 1}∗).

Fast Garbling of Circuits over 3-Valued Logic 625

In addition, we denote by F3(�,m) and F2(�,m) the set of all 3VL and Boolean
functions, respectively, that are given � inputs and produce m outputs. We denote
by xi the ith element in x both for x ∈ {T, F, U}∗ and x ∈ {0, 1}∗.

2.2 3VL-Boolean Encoding

As we have mentioned, in order to utilize the efficiency of modern garbling
techniques, we reduce the problem of garbling 3VL circuits to the problem of
garbling Boolean circuits, by encoding 3VL functions as Boolean functions. Infor-
mally speaking, a 3VL-Boolean encoding is a way of mapping 3VL inputs into
Boolean inputs, computing a Boolean function on the mapped inputs, and map-
ping the Boolean outputs back to a 3VL output. This method is depicted in
Fig. 2. The naive approach appears on the left and involves directly garbling a
3VL circuit, as described in Sect. 1.3. Our approach appears on the right and
works by applying a transformation Tr3→2 to map the 3VL input to a Boolean
input, then computing an appropriately defined Boolean function, and finally
applying a transformation Tr2→3 to map the output back. The Boolean function
is also defined by a transformation, so that a 3VL function f3 is transformed to
a Boolean function f2 via the transformation TrF , that is, f2 = TrF (f3), and
this is what is computed. As such, as we will see, it suffices to garble the Boolean
function f2, and if this function has few AND gates then it will be efficient for
this purpose.

Fig. 2. Naive approach on the left side and our new approach on the right side.

Observe that since we map inputs from three-valued logic to Boolean logic,
the set sizes of all possible inputs are different. Thus, we define encodings via
relations and not via bijective mappings. Of course, the actual transformations
Tr3→2 and Tr2→3 are functions. However, the mapping between inputs and out-
puts may be expressed as relations; e.g., when mapping a single 3VL variable to
two Boolean variables, it may be the case that one of the 3VL variables can be
expressed as two possible Boolean pairs. This enables more generality, and can
help in computation, as we will see below.

Although one could define a very general encoding from 3VL to Boolean
values, we will specifically consider encodings that map every single 3VL variable
to exactly two Boolean variables. We consider this specific case since it simplifies
our definitions, and all our encodings have this property.

626 Y. Lindell and A. Yanai

The formal definition. Let f : {T, F, U}m → {T, F, U}n be a 3VL function. We
begin by defining the appropriate relations and transformations.

1. A value encoding is a relation R3→2 ⊆ {T, F, U}×{0, 1}2 that is left-total and
injective.3 For � ∈ N, let R�

3→2 ⊆ {T, F, U}� × {0, 1}2� be the relation defined
by extending R3→2 per coordinate.4

2. A valid input transformation is an injective function Trm3→2 : {T, F, U}m →
{0, 1}2m such that Trm3→2 ⊆ Rm

3→2. Note that since R3→2 is a relation, there
may be multiple different input transformations.

3. A function transformation Trm,n
F : F3(m,n) → F2(2m, 2n) is a function that

converts 3VL functions to Boolean functions with appropriate input-output
lengths.

4. The output transformation Trn2→3 : {0, 1}2n → {T, F, U}n is the inverse of
R3→2. That is, Tr12→3((b1, b2)) = x for every (x, (b1, b2)) ∈ R3→2. Note that
since R3→2 is injective, this transformation is unique.

Observe that R3→2 is required to be injective since otherwise a Boolean value
y could represent two possible 3VL values x, z, and so the output cannot be
uniquely mapped back from a Boolean value to a 3VL value. Furthermore, note
that by requiring Trm3→2 ⊆ Rm

3→2, we have that the transformation constitutes a
valid encoding according to the relation.

Informally, a 3VL-Boolean encoding is such that the process of transforming
the inputs, computing the transformed Boolean function, and transforming the
outputs back, correctly computes the 3VL function. Our definition of an encoding
includes the value encoding and function transformation only, and we require
that it works correctly for all input transformations; we discuss why this is the
case below.

Definition 2.1. Let m,n ∈ N; let R3→2 be a value encoding, and let Trm,n
F

be a function transformation. Then, the pair (Rm
3→2,Tr

m,n
F) is a 3VL-Boolean

Encoding of F3(m,n) if for every f3 ∈ F3(m,n), every valid input transformation
Trm3→2, and every x ∈ {T, F, U}m:

Trn2→3

(
f2

(
Trm3→2(x)

))
= f3(x) (1)

where f2 = Trm,n
F (f3).

The above definition simply states that computing via the transformations
yields correct output. However, as we have mentioned, we require that this works
for all input transformations and not just for a specific one. It may seem more
natural to define a 3VL-Boolean encoding in which the input transformation
Trm3→2 is fixed, rather than requiring that Eq. (1) holds for every valid input

3 A relation R from X to Y is left-total if for all x ∈ X there exists y ∈ Y such that
(x, y) ∈ R. R is injective if for every x, z ∈ X and y ∈ Y , if (x, y) ∈ R and (z, y) ∈ R
then x = z.

4 That is,
(
(A1, . . . , A�), ((b1, b2), . . . , (b2�−1, b2�))

) ∈ R�
3→2 if and only if for every

1 ≤ i ≤� it holds that (Ai, (b2i−1, b2i)) ∈ R3→2.

Fast Garbling of Circuits over 3-Valued Logic 627

transformation. However, in actuality, it is quite natural to require that the
transformed function work for every input transformation since this means that
it works for every possible mapping of three-valued inputs to their Boolean coun-
terparts. More significantly, this property is essential for proving the composi-
tion theorem of Sect. 2.3 that enables us to compose different function encodings
together. As we will see, this is important since it enables us to define indepen-
dent encodings for different types of gates, and then compose them together to
compute any function.

2.3 Composition of 3VL Functions

In this section, we prove that encodings can be composed together. Specifically,
we prove that for any two 3VL functions g3 and f3 and any 3VL input x, com-
puting g ◦ f(x) yields the same value as when g, f, x are separately transformed
into g′, f ′, x′ using any valid 3VL-Boolean encoding, and then the output of
g′ ◦ f ′(x′) is transformed back to its 3VL representation. As we will see, this
is very important since it enables us to define independent encodings on differ-
ent types of gates, and then compose them together to compute any function.
Formally:

Theorem 2.2. Let m, �, n be natural numbers, and let R3→2 be a value encod-
ing. Let E1 =

(
R3→2,Tr

m,�
F

)
and E2 =

(
R3→2,Tr

�,n
F

)
be two 3VL-Boolean

encodings (with the same relation R3→2). Then, for every f3 ∈ F3(m, �), every
g3 ∈ F3(�, n), every input transformation Trm3→2, and every x ∈ {T, F, U}m:

Trn2→3

(
g2

(
f2

(
Trm3→2(x)

))
)

= g3(f3(x)),

where f2 = Trm,�
F (f3) and g2 = Tr�,nF (g3). Equivalently,

(
R3→2,Tr

�,n
F ◦ Trm,�

F

)
is

a 3VL-Boolean encoding of F3(m,n).

Before proving the theorem, we present the following claim which simply
express that if the output transformation of an encoding maps a Boolean value
Ỹ to some 3VL value y then there must exist a input transformation that maps
y to Ỹ . Formally:

Claim 2.1. Let R3→2 be a valid value encoding and let Tr3→2,Tr2→3 be a valid
input and output transformations respectively such that for Ỹ ∈ {0, 1}2 it holds
that Tr2→3(Ỹ) = y and Tr3→2(y) = Y . Then there exists a valid input transfor-
mation T̃r3→2 (with respect to R3→2) such that T̃r3→2(y) = Ỹ .

Proof: If Y = Ỹ then there is nothing to prove, i.e. T̃r3→2 = Tr3→2. Consider
the case of Y �= Ỹ : This means that R3→2 maps the 3VL value y to both Boolean
pairs Y and Ỹ . Denote the other two 3VL values by y′ and y′′ and similarly the

628 Y. Lindell and A. Yanai

remaining Boolean pairs by Y ′ and Y ′′ such that R3→2(y′) = Y ′. It is immediate
that the two valid transformations (with respect to R3→2) are

Tr3→2 = {y′ �→ Y ′, y′′ �→ Y ′′, y �→ Y } and

T̃r3→2 =
{

y′ �→ Y ′, y′′ �→ Y ′′, y �→ Ỹ
}

�

Proof: [of Theorem 2.2]. By the validity of encodings E1,E2 (Definition 2.1)
it follows that for value encoding R3→2 and every valid input transformations
Tr�3→2,Tr

m
3→2, every f3 ∈ F3(m, �), g3 ∈ F3(�, n) and every x ∈ {T, F, U}m:

g3 (f3 (x)) = Trn2→3

(
g2

(
Tr�3→2

(
Tr�2→3 (f2 (Trm3→2 (x)))

)))
(2)

where f2 = Trm,�
F (f3) and g2 = Tr�,nF (g3). This is true due to the following: Let

yf = Tr�2→3 (f2 (Trm3→2 (x))). By Definition 2.1 yf is guaranteed to be equal to

f3(x) and yg = Trn2→3

(
g2

(
Tr�3→2 (yf)

))
is guaranteed to be equal to g3(yf).

Concluding that the right hand-side of Eq. 2 equals g3(f3(x)). In the following
we show that we can remove the two intermediate transformations Tr�3→2,Tr

�
2→3

from the Eq. (2) and obtain the same result: Let

Y = f2(Trm3→2(x)) and
ŷ = Tr�2→3(Y)

Let T̂r
�

3→2 be a valid input transformation (with respect to R3→2) such that

T̂r
�

3→2(ŷ) = Y (there must exist such a transformation from Claim2.1). We get:

g3(f3(x)) = Trn2→3

(
g2

(
Tr�3→2

(
Tr�2→3 (f2 (Trm3→2 (x)))

)))

= Trn2→3

(
g2

(
Tr�3→2

(
Tr�2→3(Y)

)))

= Trn2→3

(
g2

(
Tr�3→2 (ŷ)

))

= Trn2→3

(
g2

(
T̂r

�

3→2 (ŷ)
))

= Trn2→3 (g2 (Y))
= Trn2→3 (g2 (f2(Trm3→2(x))))

as required. The 2nd equation follows from the definition of Y ; the 3rd follows
from definition of ŷ; the 4th follows from the fact that E2 is a valid encoding
and must work for every valid input transformation, in particular it must work
with T̂r

�

3→2; the 5th follows from the way we chose T̂r
�

3→2, i.e. T̂r
�

3→2(ŷ) = Y and
the 6th equation follows from the definition of Y . Concluding the correctness of
the theorem. �

Fast Garbling of Circuits over 3-Valued Logic 629

We remark that it is crucial that the two encodings in Theorem2.2 be over
the same relation and that the encodings be such that they work for all input
transformations (as required in Definition 2.1). In order to see why, consider for a
moment what could happen if the definition of an encoding considered a specific
input transformation and was only guaranteed to work for this transformation.
Next, assume that f2 outputs a Boolean pair that is not in the range of the
input transformation specified for E2. In this case, g2 may not work correctly
and so the composition may fail. We remark that this exact case occurred in
natural constructions that we considered in the process of this research. This
explains why correctness is required for all possible input transformations in
Definition 2.1.

Using Theorem 2.2. This composition theorem is important since it means that
we can construct separate encodings for each gate type and then these can be
combined in the natural way. That is, it suffices to separately find (efficient)
function transformations for the functions ∧3,¬3 and ⊕3 and then every 3VL
function can be computed by combining the Boolean transformations of these
gates. Note that since ¬3 is typically free and De Morgan’s law holds for this
three-valued logic as well, we do not need to separately transform ∨3.

2.4 More Generalized Encodings

In order to simplify notation, we have defined encodings to be of the form that
every 3VL value x ∈ {T, F, U} is mapped to a pair of Boolean bits; indeed,
all of our encodings in this paper are of this form. However, we stress that our
formalization is general enough to allow other approaches as well. In particular,
it is possible to generalize our definition to allow more general encodings from
x ∈ {T, F, U}m to y ∈ {0, 1}� that could result in � < 2m. In addition, it is
conceivable that mapping x ∈ {T, F, U} to more than 2 bits may yield more
efficient function transformations with respect to the number of Boolean gates
required to compute them. These and other possible encodings can easily be
captured by a straightforward generalization of our definition.

3 A Natural 3VL-Boolean Encoding

In this section we present our first 3VL-Boolean encoding which we call the
“natural” encoding. This encoding is natural in the sense that a 3VL value x is
simply transformed to a pair of 2 Boolean values (xU , xT), such that xU signals
whether the value is known or unknown, and xT signals whether the value is
true or false (assuming that it is known). Formally, we define

R3→2 =
{(

T, (0, 1)
)
,

(
F, (0, 0)

)
,

(
U, (1, 0)

)
,

(
U, (1, 1)

)}
,

and so U is associated with two possible values (1, 0), (1, 1), and T and F are
each associated with a single value. Note that R3→2 is left-total and injective

630 Y. Lindell and A. Yanai

as required by the definition. We now define the input transformation function
Tr3→2 which is defined by mapping T and F to their unique images, and maps
U to one of (1, 0) or (0, 1). For concreteness, we define:

(xU , xT) = Tr3→2(x) =

⎧
⎪⎨

⎪⎩

(0, 1) x = T

(0, 0) x = F

(1, 0) x = U

.

We proceed to define the function transformation TrF . As we have discussed,
it is possible to define many such transformations, and our aim is to find an
“efficient one” with as few AND gates as possible. Below, we present the most
efficient transformations of ∧3,⊕3,¬3 that we have found for this encoding. As
mentioned in Sect. 2.3, these suffice for computing any function (and ∨3 can be
computed using ∧3 and ¬3 by De Morgan’s law).

Let x, y ∈ {T, F, U} be the input values, and let z be the output value.
We denote Tr3→2(x) = (xU , xT) meaning that (xU , xT) is the Boolean encoding
of x; likewise for y and z. We define the transformations below. All of these
transformations work by computing zT as the standard logical operation over
the xT , yT variables (since these indicate T/F), and compute the zU based on
the reasoning as to when the output is unknown. We have:

1. TrF (∧3) outputs the function ∧2(xU , xT , yU , yT) = (zU , zT), defined by

zU = (xU ∧ yU) ∨ (xU ∧ yT) ∨ (xT ∧ yU) and zT = xT ∧ yT .

As mentioned above, zT = xT ∧ yT which gives the correct result and will
determine the value if it is known. Regarding zU , observe that zU = 1 if both
x and y equal U or if one of them is U and the other is T (which are the exact
cases that the result is unknown). Furthermore, if either of x or y equals F
(and so the result should be known), then zU = 0, as required.

2. TrF (⊕3) outputs the function ⊕2(xU , xT , yU , yT) = (zU , zT), defined by

zU = xU ∨ yU and zT = xT ⊕ yT .

Once again, zT = xT ⊕ yT which is correct if the value is known. Regarding
zU , recall that for XOR, if either input is unknown then the result is unknown.
Thus, zU = xU ∨ yU .

3. TrF (¬3) outputs the function ¬2(xU , xT) = (zU , zT), defined by

zU = xU and zT = ¬xT ,

which is correct since zT is computed as above, and zU = xU since the output
of a negation gate is unknown if and only if the input is unknown.

Correctness. The formal proof that this is a valid encoding is demonstrated
simply via the truth tables of each encoding. This can be found in AppendixC.1.

Fast Garbling of Circuits over 3-Valued Logic 631

Efficiency. The transformations above have the following cost: ∧3 can be com-
puted at the cost of 6 Boolean ∧ and ∨ gates (5 for computing zU and one for
computing zT), ⊕3 can be computed at the cost of a single Boolean ∨ and a
single Boolean ⊕ gate, and ¬3 can be computed at the cost of a single Boolean
¬ gate. (We ignore ¬ gates from here on since they are free in all known garbling
schemes.)

Concretely, when using the garbling scheme of [12] that incorporates free-
XOR and requires two ciphertexts for ∨ and ∧, we have that the cost of garbling
∨3 is 12 ciphertexts, and the cost of garbling ⊕3 is 2 ciphertexts. In comparison,
recall that the naive garbling scheme of Sect. 1.3 required 8 ciphertexts for both
∨3 and ⊕3. In order to see which is better, let C be a 3VL circuit and denote
by C∧ and C⊕ the number of ∧3 and ⊕3 gates in C, respectively. Then, the
natural 3VL-Boolean encoding is better than the naive approach of Sect. 1.3 if
and only if

12 · C∧ + 2 · C⊕ < 8 · C∧ + 8 · C⊕,

which holds if and only if C∧ < 1.5 · C⊕. This provides a clear tradeoff between
the methods. We now proceed to present encodings that are strictly more efficient
than both the natural 3VL Boolean encoding and the naive garbling of Sect. 1.3.

4 A More Efficient Encoding Using a Functional Relation

In this section we present a 3VL-Boolean encoding, in which the relation R3→2 is
functional.5 Since R3→2 is already left-total and injective, this implies that R3→2

is in fact a 1-1 function. We define R3→2 =
{(

T, (1, 1)
)
,

(
F, (0, 0)

)
,

(
U, (1, 0)

)}
.

Since R3→2 is a 1-1 function, there is only one possible input transformation
(xT , xF) = Tr3→2 = R−1

3→2. The intuition behind this encoding is as follows: The
value x ∈ {T, F, U} is mapped to a pair (xT , xF) so that if x is true or false
then xT = xF , appropriately (i.e., if x = T then xT = xF = 1, and if x = F
then xT = xF = 0). In contrast, if x is unknown, then xT and xF take different
values of 1 and 0, respectively, representing an “unknown” state (both 1 and 0).
We denote the Boolean values xT and xF because in case that x = U then xT

is assigned with True and xF is assigned with False.
As we will see, it is possible to compute ∧3, ⊕3 and ¬3 gates under this

encoding at a cost that is strictly more efficient than the natural encoding of
Sect. 3. In order to show this, in Sect. 4.1, we begin by presenting a simple trans-
formation TrF for ∧3 and ¬3 gates. These are clearly complete, and furthermore
are the most common connectives used in the context of SQL (as above, ¬3

is “free” and so ∨3 can be transformed at the same cost as ∧3). However, for
the general case, an efficient transformation for ⊕3 gates is also desired since
the naive method of computing ⊕ from ∧,∨,¬ is quite expensive. We therefore
show how to also deal with ⊕3 gates in Sect. 4.2.

5 Relation R from X to Y is functional if for all x ∈ X and y, z ∈ Y it holds that if
(x, y) ∈ R and (x, z) ∈ R then y = z. Stated differently, R is a function.

632 Y. Lindell and A. Yanai

4.1 An Efficient Function Transformation for ∧3,¬3 Gates

We now show how to transform ∧3 and ¬3 gates into Boolean forms at a very
low cost: ∧3 gates can be transformed at the cost of just two Boolean ∧ gates,
and ¬3 gates can be transformed at the cost of two Boolean ¬ gates (which are
free in all garbling schemes).

1. TrF (∧3) outputs the function ∧2(xT , xF , yT , yF) = (zT , zF), defined by

zT = xT ∧ yT and zF = xF ∧ yF .

2. TrF (¬3) outputs the function ¬2(xT , xF) = (zT , zF), defined by

zT = ¬xF and zF = ¬xT .

We now prove that these transformations are correct. We begin with TrF (∧3):

1. If x ∧ y = T then x = y = T and so xT = xF = yT = yF = 1. Thus,
zT = zF = 1 which means that z = Tr2→3(zT , zF) = Tr2→3(1, 1) = T , as
required.

2. If x ∧ y = F , then either x = F which means that xT = xF = 0, or y = F
which means that yT = yF = 0, or both. This implies that zT = zF = 0 and
so z = Tr2→3(zT , zF) = Tr2→3(0, 0) = F , as required.

3. Finally, if x ∧ y = U , then we have three possible cases:
(a) Case 1: x = y = U : In this case, xT = yT = 1 and xF = yF = 0, and thus

zT = 1, zF = 0 and z = Tr2→3(zT , zF) = Tr2→3(1, 0) = U , as required.
(b) Case 2: x = T and y = U : In this case, xT = xF = yT = 1 and yF = 0,

and thus zT = 1 and zF = 0, implying that z = U , as required.
(c) Case 3: x = U and y = T : This case is symmetric to the previous case

and so also results in U , as required.

It remains to prove that TrF (¬3) is correct:

1. If x = T , then xT = xF = 1 and so zT = zF = 0. Thus, z = Tr2→3(0, 0) = F ,
as required.

2. If x = F , then xT = xF = 0 and so zT = zF = 1. Thus, z = Tr2→3(1, 1) = T ,
as required.

3. If x = U , then xT = 1 and xF = 0 and so zT = ¬xF = 1 and zF = ¬xT = 0.
Thus, z = Tr2→3(1, 0) = U , as required.

Efficiency. The transformations above are very efficient and require 2 Boolean
AND gates for every 3VL-AND (or 3VL-OR) gate, and 2 Boolean NOT gates for
each 3VL-NOT gate. Using the garbling scheme of [12], this means 4 ciphertext
for each ∧3,∨3 gate, and 0 ciphertexts for ¬3 gates. This is far more efficient
than any of the previous encodings. However, as we have mentioned above, we
still need to show how to compute ⊕3 gates.

4.2 An Efficient Function Transformation for ⊕3 Gates

We now present the transformation for ⊕3 gates for the above functional relation.
We begin by remarking that the method above for ∧3 gates does not work for
⊕3 gates.

Fast Garbling of Circuits over 3-Valued Logic 633

Fig. 3. The result of the transformation of ⊕3 by (zT , zF) =
(xT ⊕ yT , xF ⊕ yF)

For example, if we
define zT = xT ⊕ yT

and zF = xF ⊕ yF ,
then the result is cor-
rect as long as neither
of x or y are unknown:
If both are unknown
then x = y, and thus
zT = zF = 0. The
result of transforming
(zT , zF) = (0, 0) back
to a 3VL is F rather
than U . If only one is
unknown then x �= y,
and thus zT = 0 and zF = 1). The result of transforming (zT , zF) = (0, 1) is
undefined since the pair (0, 1) is not in the range of R3→2. In general, the truth
table for the transformation zT = xT ⊕ yT and zF = xF ⊕ yF appears in Fig. 3;
the blue lines are where this transformation is incorrect.

Our transformation must therefore “fix” the incorrect rows in Fig. 3.
We define TrF (⊕3) that outputs the function ⊕2(xT , xF , yT , yF) = (zT , zF)
defined by

z′
T = (xT ⊕ yT) ⊕ (

(xT ⊕ xF) ∧ (yT ⊕ yF)
)

and z′
F = xF ⊕ yF

aux = ¬z′
T ∧ z′

F

zT = z′
T ⊕ aux and zF = z′

F ⊕ aux

Observe that the value (z′
T , z′

F) is just the transformation in Fig. 3, with the
addition that z′

T is adjusted so that it is flipped in the case that both x = y = U
(since in that case xT �= xF and yT �= yF). This therefore fixes the 5th row in
Fig. 3 (i.e., the input case of x = y = U). Note that it doesn’t affect any other
input cases since (xT ⊕ xF) ∧ (yT ⊕ yF) equals 0 in all other cases.

In order to fix the 6th and 8th rows in Fig. 3, it is necessary to adjust the
output in the case that (0, 1) is received, and only in this case (note that this is
only received in rows 6 and 8). Note that the aux variable is assigned value 1 if
and only if z′

T = 0 and z′
F = 1. Thus, defining zT = z′

T ⊕ aux and zF = z′
F ⊕ aux

adjusts (z′
T , z′

F) = (0, 1) to (zT , zF) = (1, 0) which represents U as required.
Furthermore, no other input cases are modified and so the resulting function is
correct.

Correctness. The formal proof that this is a valid encoding is demonstrated
simply via the truth tables of each encoding. This can be found in AppendixC.2.

Efficiency. The transformation of ⊕3 incurs a cost of two Boolean ∧ gates and
6 Boolean ⊕ gates. Utilizing free-XOR and the garbling scheme of [12], we have
that 4 ciphertexts are required for garbling ⊕3 gates.

634 Y. Lindell and A. Yanai

Combining this with Sect. 4.1, we have a cost of 4 ciphertexts for ∧3 and ⊕3

gates, and 0 ciphertexts for ¬3 gates. This is far more efficient than the naive
garbling of Sect. 1.3 for all gate types. Next, recall that the natural encoding of
Sect. 3 required 12 ciphertexts for ∧3 gates and 2 ciphertexts for ⊕3 gates. Thus,
denoting by C∧ and C⊕ the number of ∧3 and ⊕3 gates, respectively, in a 3VL
circuit C, we have that the scheme in this section is more efficient if and only if
4 · C∧ + 4 · C⊕ < 12 · C∧ + 2 · C⊕, which holds if and only if C⊕ < 4 · C∧. Thus,
the natural encoding is only better if the number of ⊕3 gates is over four times
the number of ∧3 gates in the circuit. In Sect. 5, we present transformations that
perform better in some of these cases.

5 Encoding Using a Non-functional Relation

In this section, we present an alternative encoding that is more expensive for
∧3 gates but cheaper for ⊕3 gates, in comparison to the encoding of Sect. 4.
The value encoding that we use in this section is the same as in Sect. 4, except
that we also include (0, 1) in the range; thus the relation is no longer functional.
Since the motivation regarding the relation is the same as in Sect. 4, we proceed
directly to define the relation:

R3→2 =
{(

T, (1, 1)
)
,

(
F, (0, 0)

)
,

(
U, (0, 1)

)
,

(
U, (1, 0)

)}
.

Thus, R3→2 maps the 3VL value U to both Boolean pairs (0, 1) and (1, 0). As
such, there are two admissible input transformation functions Tr3→2. Both of
them map T to (1, 1) and map (0, 0) to F ; one of them maps U to (1, 0) the
other maps U to (0, 1). Recall that our function transformation needs to work
for both, in order for the composition theorem to hold.

We use the same notation of (xT , xF) as in Sect. 4 for the Boolean pairs in
the range of R3→2. The motivation is the same as before; if x = T or x = F
then both values are the same; if x = U then the “true” bit xT is different from
the “false” bit xF .

The transformation TrF for each gate type is given below.

1. TrF (∧3) outputs the function ∧2(xT , xF , yT , yF) = (zT , zF), defined by:

zT = xT ∧ yT

zF = (xF ∧ yF) ⊕
(

(xT ⊕ xF) ∧ (yT ⊕ yF) ∧ (¬(xF ⊕ yT)
)
)

Recall that in Sect. 4, it sufficed to define zT = xT ∧ yT and zF = xF ∧ yF .
However, this does not yield a correct result in this encoding in the case that
x and y are both unknown, and x is encoded as (0, 1) and y is encoded as
(1, 0). Specifically, in this case, z is computed as F instead of as U . We fix
this case by changing the second bit of z (i.e., zF) when the encodings are of
this form. Observe that the expression (xT ⊕ xF) ∧ (yT ⊕ yF) ∧ (¬(xF ⊕ yT))
evaluates to 1 if and only if xT �= xF and yT �= yF and xF = yT , which is
exactly the case that one of the value is encoded as (1, 0) and the other is
encoded as (0, 1).

Fast Garbling of Circuits over 3-Valued Logic 635

2. TrF (⊕3) outputs the function ⊕2(xT , xF , yT , yF) = (zT , zF), defined by:

zT = (xT ⊕ yT) ⊕ (
(xT ⊕ xF) ∧ (yT ⊕ yF)

)

zF = xF ⊕ yF

This is the same transformation of ⊕3 described in Sect. 4.2 for the functional
encoding of Sect. 4, except that here there is no need to switch the left and
right bits of the result in the case that they are (0, 1). This is due to the fact
that (0, 1) is a valid encoding of U under R3→2 used here.

3. TrF (¬3) outputs the function ∨2(xT , xF) = (zT , zF), defined by:

zT = ¬xT and zF = ¬xF

This is almost the same as the transformation of ¬3 in Sect. 4.1, excepts that
we do not exchange the order of the bits. Again, this is due to the fact that
both (1, 0) and (0, 1) are valid encodings of 0 and so the negation of U by
just complementing both bits results in U and is correct.

Correctness. The formal proof that this is a valid encoding is demonstrated
simply via the truth tables of each encoding. This can be found in AppendixC.3.

Efficiency. The Boolean function TrF (∧3) requires 4 AND gates, which trans-
lates to 8 ciphertexts using the garbling of [12]. The Boolean function TrF (⊕3)
requires only one AND gate, which translates to two ciphertexts using the gar-
bling of [12]. Denote by C∧ and C⊕ the number of ∧3 and ⊕3 gates in the 3VL
circuit, then the encoding of this section is better than that of Sect. 4 if and only
if 8 ·C∧ +2 ·C⊕ < 4 ·C∧ +4 ·C⊕ which holds if and only if C⊕ > 2 ·C∧. Observe
also that the encoding in this section is always at least as good as the natural
encoding of Sect. 3; in particular, it has the same cost for ⊕3 gates and is strictly
cheaper for ∧3 gates.

6 Efficiency Summary of the Different Methods

We have presented a naive garbling method and three different encodings. We
summarize the efficiency of these different methods, as a function of the number
of ciphertexts needed when garbling, in Table 2.

Table 2. A summary of the garbling efficiency of the different methods

Encoding Ciphertexts for ∧3 Ciphertexts for ⊕3 Best in range

Section 1.3 – Naive 8 8 None

Section 3 – Natural 12 2 None

Section 4 – Functional 4 4 C⊕ < 2 · C∧
Section 5 – Non-functional 8 2 C⊕ > 2 · C∧

636 Y. Lindell and A. Yanai

7 A Black-Box Protocol for Computing 3VL Circuits

In this section, we show how to securely compute 3VL circuits. Of course, one
could design a protocol from scratch using a garbled 3VL circuit. However, our
goal is to be able to use any protocol that can be used to securely evaluate a
Boolean circuit, and to directly inherit its security properties. This approach is
simpler, and allows us to leverage existing protocol optimizations for the Boolean
case.

Before proceeding, we explain why there is an issue here. Seemingly, one
could compile any 3VL-circuit into a Boolean circuit using our method above,
and then run the secure computation protocol on the Boolean circuit to obtain
the output. As we will see, this is actually not secure. Fortunately, however, it
is very easy to fix. We now explain why this is not secure:

1. Output leakage: The first problem that arises is due to the fact that Defi-
nition 2.1 allows R3→2 to be a non-functional relation. This implies that a
value x ∈ {T, F, U} might be mapped to two or more Boolean representa-
tions. Now, if a secure protocol is run on the Boolean circuit, this implies
that a single 3VL output could be represented in more than one way. This
could potentially leak information that is not revealed by the function itself.
In AppendixB, we show a concrete scenario where this does actually reveal
more information than allowed. We stress that this leakage can occur even if
the parties are semi-honest.
This leakage can be avoided by simply transforming y to a unique, prede-
termined Boolean value y∗ at the end of the circuit computation and before
outputs are revealed. This is done by incorporating an “output translation”
gadget into the circuit for every output wire.

2. Insecurity due to malicious inputs. Recall that the relation R3→2 does not
have to be defined over the entire range of {0, 1} × {0, 1}, and this is indeed
the case for the relation that we use in Sect. 4. In such a case, if the malicious
party inputs a Boolean input that is not legal (i.e., is not in the range of
R3→2), then this can result in an incorrect result (or worse).
This cheating can be prevented by incorporating an “input translation” gad-
get for every input wire of the circuit that deterministically translates all
possible Boolean inputs (even invalid ones) into valid inputs that appear in
the range of R3→2. This prevents a malicious adversary from inputting incor-
rect values (to be more exact, it can input incorrect values but they will
anyway be translated into valid ones).

The key observation from above is that the solutions to both problems involve
modifications to the circuit only. Thus, any protocols that is secure for arbitrary
Boolean circuits can be used to securely compute 3VL circuits. Furthermore,
these input and output gadgets are very small (at least for all of our encodings)
and thus do not add any significant overhead.

Fast Garbling of Circuits over 3-Valued Logic 637

We have the following theorem6:

Theorem 7.1. Let π be a protocol for securely computing any Boolean circuit,
let f3 be a 3VL function with an associated 3VL circuit C, and let C ′ be a
Boolean circuit that is derived from C via a valid 3VL-Boolean encoding. Then,
Denote by C ′

1 the circuit obtained by adding output-translation gadgets to C ′,
and denote by C ′

2 the circuit obtained by adding input-translation and output-
translation gadget to C ′.

1. If π is secure in the presence of semi-honest adversaries, then protocol π with
circuit C ′

1 securely computes the 3VL function f3 in the presence of semi-
honest adversaries.

2. If π is secure in the presence of malicious (resp., covert) adversaries, then
protocol π with circuit C ′

2 securely computes the 3VL function f3 in the pres-
ence of malicious (resp., covert) adversaries.

Secure computation. The above theorem holds for any protocol for secure com-
putation. This includes protocols based on Yao and garbled circuits [8,13], as
well as other protocols like that of [4].

8 Lower Bounds

One of the most important optimizations of the past decade for garbled circuits
is that of free-XOR [7]. Observe that none of the 3VL-Boolean encodings that we
have presented have free-XOR, and the cheapest transformation of ⊕3 requires
2 ciphertexts. In this section, we ask the following question:

Can free-XOR garbling be achieved for 3VL functions?

We prove a negative answer for a linear garbling scheme, which is defined in
the Linicrypt model of [1]. Our proof is based on a reduction from any garbling
scheme for 3VL circuit to a garbling scheme for Boolean circuits. Specifically, we
show that any garbling scheme for 3VL-XOR can be used to garble Boolean-AND
gates at the exact same cost. Now, [12] proved that at least 2 ciphertexts are
required for garbling AND gates using any linear garbling method. By reducing
to this result, we will show that 3VL-XOR cannot be garbled with less than two
ciphertexts using any linear garbling method. Thus, a significant breakthrough
in garbling would be required to achieve free-XOR in the 3VL setting, or even
to reduce the cost of 3VL-XOR to below two ciphertexts.

Reducing Boolean AND to 3VL XOR. It is actually very easy to compute a
Boolean AND gate given a 3VL XOR gate. This is due to the fact that 3VL
XOR actually contains an embedded AND ; this is demonstrated in Fig. 4.

6 The proof of the theorem is straightforward and is thus omitted.

638 Y. Lindell and A. Yanai

Fig. 4. Shows that
⊕3 embeds the truth
table of both ∧, ∨
and ⊕.

This can be utilized in the following way. Let g̃ be a
garbled 3VL-XOR gate with input wires x, y and output
wire z. By definition, given keys kα

x and kβ
y on the input

wires with α, β ∈ {T, F, U}, the garbled gate can be used
to compute the key kγ

z on the output wire where γ =
α ⊕3 β. Thus, in order to compute a Boolean AND gate,
the following can be carried out. First, associate the 3VL-
value F with the Boolean value 1 (True), and associate the
3VL-value U with the Boolean value 0 (False). Then, given
any two of kU

x , kF
x and kU

y , kF
y the output of the garbled

gate will be kF
z if and only if x = y = F , which is exactly

a Boolean AND gate. (This is depicted in the shaded square in Fig. 4.) Observe
that the 3VL-value T is not used in this computation and so is ignored. The fact
that this method is a secure garbling of an AND gate follows directly from the
security of the 3VL garbling scheme.

It follows that a (single) Boolean AND gate can be garbled at the same cost
of a 3VL XOR gate. Thus, free-3VL-XOR would imply free-Boolean-AND, and
even 3VL XOR with just a single ciphertext would imply a construction for
garbling a Boolean AND gate at the cost of just one ciphertext. Both of these
would be surprising results. We now formalize this more rigorously using the
framework of linear garbling.

Impossibility for linear garbling. The notion of linear garbling was introduced
by [12], who also showed that all known garbling schemes are linear. In their
model, the garbling and evaluation algorithms use only linear operations, apart
from queries to a random oracle (which may be instantiated by the garbling
scheme) and choosing which linear operation to apply based on some select bits
for a given wire. They prove that for every ideally secure linear garbling scheme
(as defined in [12]), at least two ciphertexts must be communicated for every
Boolean AND gate in the circuit. Combining [12, Theorem 3] with what we have
shown above, we obtain the following theorem with regards to garbling schemes
for 3VL circuits in the same model.

Theorem 8.1. Every ideally secure garbling scheme for 3VL-XOR gates, that is
linear in the sense defined in [12], has the property that the garbled gate consists
of at least 2n bits, where n is the security parameter.

This explains why we do not achieve free-XOR in our constructions in the
three-valued logic setting.

A Exhaustive Search for Expressions with One Boolean
AND

We present a simplified version of the technique that we used in order to search
for a Boolean expression with only one AND gate (and an unlimited number of
XOR gates) that implements the functionality of a 3VL AND and 3VL XOR.

Fast Garbling of Circuits over 3-Valued Logic 639

We actually used several simple optimizations to this technique to make it run
faster, but these are not of significance to the discussion and so are omitted.

In this paper we focus on a specific set of possible 3VL-to-Boolean encodings,
specifically, we focus on encodings that map each 3VL value x (i.e. T, F, U)
to a pair of Boolean values (xL, xR) (L,R for left and right). Note that this
means that either the encoding is functional, which means that each 3VL value
is mapped to exactly one Boolean pair and hence there remains one invalid
Boolean pair, or the encoding is non-functional which means that one 3VL value
is mapped to two Boolean pairs while the other two 3VL values are mapped to
a single Boolean pair. The total number of possible encodings (functional and
non-functional) is 60, as can be seen by a simple combinatorical computation.

Let Enc be some 3VL-to-Boolean encoding. A Boolean implementation of
3VL-AND (resp. 3VL-XOR) using Enc is given two pairs of Boolean values,
(xL, xR) and (yL, yR), and outputs a single pair of Boolean values (zL, zR), such
that when given encodings of the 3VL values x and y it outputs an encoding of
x∧3y (resp. x⊕3y) where ∧3 is a 3VL-AND (resp. ⊕3 is a 3VL-XOR). When Enc
is non-functional, this should hold for every possible encoding of x and y. This
means that for a functional encoding we test the correctness of 9 possibilities,
and for a non-functional encoding we test the correctness of 16 possibilities of
(xL, xR) and (yL, yR).

Since we are interested in an implementation with a single Boolean AND
gate, the values of zL and zR are basically a Boolean expression over the four
literals xL, xR, yL, yR and the constant 1 (the constant 0 can be obtained by
simply XORing the literal with itself) with a single Boolean AND and unlimited
number of Boolean XOR gates. Our goal is to find a way to enumerate over all
these expressions and test if they form a correct implementation of the 3VL-AND
and 3VL-XOR.

Fig. 5. The exhaustive search
process.

The exhaustive search process is depicted in
Fig. 5. We set E0 = {xL, xR, yL, yR, 1}. This is
the set of initial values, from which the expres-
sions for zL, zR are formed. Before we apply
a Boolean AND to the above values we first
want to obtain a set of all possible expres-
sions using Boolean XOR gates only, we denote
this set by E+

0 . Note that E+
0 can be obtained

by taking the XOR of each non-empty subset
of values from E0, which means that |E+

0 | =
|E0| +

∑5
i=1

(
5
i

)
= 36. Then, we can choose 2

expressions e1, e2 ∈ E+
0 and apply e3 = e1 ∧ e2.

We denote the set of possible expressions of
this form by E1 and by counting we get that
E1 =

(|E+
0 |
2

)
=

(
36
2

)
= 630. Notice that E1 does

not contain all possible expressions with exactly
one Boolean AND, since XOR operations are
only computed before the AND. Thus, for exam-
ple, xL ⊕ (xR ∧ yL) /∈ E1. In order to obtain the

640 Y. Lindell and A. Yanai

set of all possible expressions, denoted E+
1 , we need to add another layer of

Boolean XORs after the AND. However, since we want to test pairs of Boolean
expressions for zL, zR using up to one Boolean AND gate, we may use the same
expression from E1 and apply XOR after it with two different expressions from
E+

0 . Therefore, we have that E+
1 = E1 × (E+

0 × E+
0). Note that E+

1 also con-
tains expressions with no Boolean AND at all. For example, for any expression
e without Boolean AND gates, E+

1 also contains e = (1∧1)⊕ (¬e). We therefore
conclude that |E+

1 | = |E1| · |E+
0 |2 = 630 · 362 = 816480.

Putting it all together, we have 60 possible encodings. For each encoding, we
have 816,480 possible pairs of expressions for zl, zR with up to one AND gate and
for each possible pair we need to test its correctness over 9 or 16 possible inputs.
The total number of tests is therefore 60 · 816480 · 9 = 440, 899, 200 ≈ 228.7 or
60 · 816480 · 16 = 783, 820, 800 ≈ 229.5.

B Insecurity of the Naive Protocol for Evaluating
3VL Functions

In this section we provide a concrete attack on a protocol that uses a valid
Boolean encoding, without adding the input/output gadgets described in Sect. 7.
Consider the 3VL function f3 : {T, F, U}2 → {T, F, U}2 defined by f3(a, b) =
a ⊕3 b; denote the output by c. Now, consider a 2-party protocol for evaluating
this function, where P1 inputs both a and b, and P2 does not input anything.
(Needless to say, this is a silly example since such a function can be singlehand-
edly computed by P1 and the result can be sent to P2. However, this illustrates
the problem, and of course applies to more “interesting” cases as well.)

Now, assume that the output of the function is U . In this case, a secure
evaluation of f does not reveal anything to P2 except the fact that (a, b) is
either (U,U), (T,U), (U, T), (F,U) or (U,F). Furthermore, consider the case
that P1’s inputs are random. In this case, each of these possible inputs occurs
with probability 1

5 (assuming P2 has no auxiliary information). Consider now
what happens if a secure two-party protocol is run to compute this function on
the encoding, without applying an output transformation gadget as described in
Sect. 7. For the sake of concreteness, consider the non-functional relation encod-
ing of Sect. 5. For this encoding U can be mapped to (1, 0) or to (0, 1). Assume
that Tr3→2(U) = (0, 1). Then, the possible outputs of the function (since it is
just a single XOR) are given in Table 3; the shaded rows are associated with
output U :

Observe that if P2 receives (zT , zF) = (0, 1) for output, then it knows that
P1’s input was either (F,U) or (U,F). In contrast, if P2 receives (zT , zF) = (1, 0)
for output, then it knows that P1’s input was either (U,U) or (U, T) or (T,U).
This is clearly information that P2 should not learn (observe also that if P2

receives (0, 1) then it know with full certainty that either a = F or b = F). This
is therefore not a secure protocol.

Fast Garbling of Circuits over 3-Valued Logic 641

Table 3. TrF (⊕3)

x y z xT xF yT yF (zT , zF) z

F F F 0 0 0 0 (0, 0) F

F U U 0 0 0 1 (0, 1) U

F T T 0 0 1 1 (1, 1) T

U F U 0 1 0 0 (0, 1) U

U U U 0 1 0 1 (1, 0) U

U T U 0 1 1 1 (1, 0) U

T F T 1 1 0 0 (1, 1) T

T U U 1 1 0 1 (1, 0) U

T T F 1 1 1 1 (0, 0) F

C Formal Proofs of Encodings via Truth Tables

In this appendix, we provide the truth tables for each of our encoding methods.
These truth tables constitute a formal proof of correctness, since they show that
the mapping from input to output is correct for all possible inputs.

C.1 Correctness of the Natural Encoding

See Tables 4, 5 and 6.

Table 4. The Boolean
encoding of 3VL-AND in
Sect. 3

x y z xT xU yT yU (zT , zU) z

F F F 0 0 0 0 (0, 0) F

F U F 0 0 0 1 (0, 0) F

F T F 0 0 1 0 (0, 0) F

F U F 0 0 1 1 (0, 0) F

U F F 0 1 0 0 (0, 0) F

U U U 0 1 0 1 (0, 1) U

U T U 0 1 1 0 (0, 1) U

U U U 0 1 1 1 (0, 1) U

T F F 1 0 0 0 (0, 0) F

T U U 1 0 0 1 (0, 1) U

T T T 1 0 1 0 (1, 0) T

T U U 1 0 1 1 (1, 1) U

U F F 1 1 0 0 (0, 0) F

U U U 1 1 0 1 (0, 1) U

U T U 1 1 1 0 (1, 1) U

U U U 1 1 1 1 (1, 1) U

Table 5. The Boolean
encoding of 3VL-XOR in
Sect. 3

x y z xT xU yT yU (zT , zU) z

F F F 0 0 0 0 (0, 0) F

F U U 0 0 0 1 (0, 1) U

F T T 0 0 1 0 (1, 0) T

F U U 0 0 1 1 (1, 1) U

U F U 0 1 0 0 (0, 1) U

U U U 0 1 0 1 (0, 1) U

U T U 0 1 1 0 (1, 1) U

U U U 0 1 1 1 (1, 1) U

T F T 1 0 0 0 (1, 0) T

T U U 1 0 0 1 (1, 1) U

T T F 1 0 1 0 (0, 0) F

T U U 1 0 1 1 (0, 1) U

U F U 1 1 0 0 (1, 1) U

U U U 1 1 0 1 (1, 1) U

U T U 1 1 1 0 (0, 1) U

U U U 1 1 1 1 (0, 1) U

Table 6. The Boolean
encoding of 3VL-NOT
in Sect. 3

x ¬3(x) xT xU (zT , zU) z

F T 0 0 (1, 0) T

U U 0 1 (1, 1) U

T F 1 0 (0, 0) F

U U 1 1 (0, 1) U

642 Y. Lindell and A. Yanai

C.2 Correctness of the Encoding Using a Functional Relation

See Tables 7, 8 and 9.

Table 7. The Boolean
encoding of 3VL-AND in
Sect. 4

x y z xT xU yT yU (zT , zU) z

F F F 0 0 0 0 (0, 0) F

F U F 0 0 1 0 (0, 0) F

F T F 0 0 1 1 (0, 0) F

U F F 1 0 0 0 (0, 0) F

U U U 1 0 1 0 (1, 0) U

U T U 1 0 1 1 (1, 0) U

T F F 1 1 0 0 (0, 0) F

T U U 1 1 1 0 (1, 0) U

T T T 1 1 1 1 (1, 1) T

Table 8. The Boolean
encoding of 3VL-XOR in
Sect. 4

x y z xT xU yT yU (zT , zU) z

F F F 0 0 0 0 (0, 0) F

F U U 0 0 1 0 (1, 0) U

F T T 0 0 1 1 (1, 1) T

U F U 1 0 0 0 (1, 0) U

U U U 1 0 1 0 (1, 0) U

U T U 1 0 1 1 (1, 0) U

T F T 1 1 0 0 (1, 1) T

T U U 1 1 1 0 (1, 0) U

T T F 1 1 1 1 (0, 0) F

Table 9. The Boolean
encoding of 3VL-NOT
in Sect. 4

x ¬3(x) xT xU (zT , zU) z

F T 0 0 (1, 1) T

U U 1 0 (1, 0) U

T F 1 1 (0, 0) F

C.3 Correctness of the Encoding Using a Non-functional Relation

See Tables 10, 11 and 12.

Table 10. The Boolean
encoding of 3VL-AND in
Sect. 5

x y z xT xU yT yU (zT , zU) z

F F F 0 0 0 0 (0, 0) F

F U F 0 0 0 1 (0, 0) F

F U F 0 0 1 0 (0, 0) F

F T F 0 0 1 1 (0, 0) F

U F F 0 1 0 0 (0, 0) F

U U U 0 1 0 1 (0, 1) U

U U U 0 1 1 0 (0, 1) U

U T U 0 1 1 1 (0, 1) U

U F F 1 0 0 0 (0, 0) F

U U U 1 0 0 1 (0, 1) U

U U U 1 0 1 0 (1, 0) U

U T U 1 0 1 1 (1, 0) U

T F F 1 1 0 0 (0, 0) F

T U U 1 1 0 1 (0, 1) U

T U U 1 1 1 0 (1, 0) U

T T T 1 1 1 1 (1, 1) T

Table 11. The Boolean
encoding of 3VL-XOR in
Sect. 5

x y z xT xU yT yU (zT , zU) z

F F F 0 0 0 0 (0, 0) F

F U U 0 0 0 1 (0, 1) U

F U U 0 0 1 0 (1, 0) U

F T T 0 0 1 1 (1, 1) T

U F U 0 1 0 0 (0, 1) U

U U U 0 1 0 1 (1, 0) U

U U U 0 1 1 0 (0, 1) U

U T U 0 1 1 1 (1, 0) U

U F U 1 0 0 0 (1, 0) U

U U U 1 0 0 1 (0, 1) U

U U U 1 0 1 0 (1, 0) U

U T U 1 0 1 1 (0, 1) U

T F T 1 1 0 0 (1, 1) T

T U U 1 1 0 1 (1, 0) U

T U U 1 1 1 0 (0, 1) U

T T F 1 1 1 1 (0, 0) F

Table 12. The Boolean
encoding of 3VL-NOT in
Sect. 5

x ¬3(x) xT xU (zT , zU) z

F T 0 0 (1, 1) T

U U 0 1 (0, 1) U

U U 1 0 (1, 0) U

T F 1 1 (0, 0) F

References

1. Carmer, B., Rosulek, M.: Linicrypt: a model for practical cryptography. In: Rob-
shaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 416–445. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3 15

2. de Haan, L., Gennick, J.: Nulls: Nothing to Worry About. Oracle
Magazine (2005). http://www.oracle.com/technetwork/issue-archive/2005/05-jul/
o45sql-097727.html/

https://doi.org/10.1007/978-3-662-53015-3_15
http://www.oracle.com/technetwork/issue-archive/2005/05-jul/o45sql-097727.html/
http://www.oracle.com/technetwork/issue-archive/2005/05-jul/o45sql-097727.html/

Fast Garbling of Circuits over 3-Valued Logic 643

3. Goldreich, O.: Foundations of Cryptography: Volume 2 - Basic Applications. Cam-
bridge University Press, Cambridge (2004)

4. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game - a com-
pleteness theorem for protocols with honest majority. In: 19th STOC, pp. 218–229
(1987). For details see [3]

5. ISO/IEC. ISO/IEC 9075-2:2016 (2016). http://www.iso.org/iso/home/store/
catalogue ics/catalogue detail ics.htm?csnumber=63556/

6. Kleene, S.C.: Introduction to Metamathematics. Bibliotheca Mathematica (1952)
7. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and

applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 40

8. Lindell, Y., Pinkas, B.: A proof of Yao’s protocol for secure two-party computation.
J. Cryptol. 22(2), 161–188 (2009)

9. Microsoft. Null and Unknown (Transact-SQL). https://msdn.microsoft.com/en-
us/library/mt204037.aspx/

10. MySQL. MySQL 5.7 Reference Manual 13.3.3: Logical Operators. http://dev.
mysql.com/doc/refman/5.7/en/logical-operators.html/

11. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party compu-
tation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
250–267. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 15

12. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole: reducing data trans-
fer in garbled circuits using half gates. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46803-6 8

13. Yao, A.: How to generate and exchange secrets. In: 27th FOCS, pp. 162–167 (1986)

http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=63556/
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=63556/
https://doi.org/10.1007/978-3-540-70583-3_40
https://msdn.microsoft.com/en-us/library/mt204037.aspx/
https://msdn.microsoft.com/en-us/library/mt204037.aspx/
http://dev.mysql.com/doc/refman/5.7/en/logical-operators.html/
http://dev.mysql.com/doc/refman/5.7/en/logical-operators.html/
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-642-10366-7_15
https://doi.org/10.1007/978-3-662-46803-6_8
https://doi.org/10.1007/978-3-662-46803-6_8

	Fast Garbling of Circuits over 3-Valued Logic
	1 Introduction
	1.1 Background – Three-Valued Logic
	1.2 Applications in SQL
	1.3 Naively Garbling a 3VL Gate
	1.4 Our Results

	2 Encoding 3VL Functions as Boolean Functions
	2.1 Notation
	2.2 3VL-Boolean Encoding
	2.3 Composition of 3VL Functions
	2.4 More Generalized Encodings

	3 A Natural 3VL-Boolean Encoding
	4 A More Efficient Encoding Using a Functional Relation
	4.1 An Efficient Function Transformation for 3,3 Gates
	4.2 An Efficient Function Transformation for 3 Gates

	5 Encoding Using a Non-functional Relation
	6 Efficiency Summary of the Different Methods
	7 A Black-Box Protocol for Computing 3VL Circuits
	8 Lower Bounds
	A Exhaustive Search for Expressions with One Boolean AND
	B Insecurity of the Naive Protocol for Evaluating 3VL Functions
	C Formal Proofs of Encodings via Truth Tables
	C.1 Correctness of the Natural Encoding
	C.2 Correctness of the Encoding Using a Functional Relation
	C.3 Correctness of the Encoding Using a Non-functional Relation

	References

