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Abstract. We construct two identity-based encryption (IBE) schemes.
The first one is IBE satisfying key dependent message (KDM) secu-
rity for user secret keys. The second one is IBE satisfying simulation-
based receiver selective opening (RSO) security. Both schemes are secure
against adaptive-ID attacks and do not have any a-priori bound on the
number of challenge identities queried by adversaries in the security
games. They are the first constructions of IBE satisfying such levels of
security.

Our constructions of IBE are very simple. We construct KDM secure
IBE by transforming KDM secure secret-key encryption using IBE sat-
isfying only ordinary indistinguishability against adaptive-ID attacks
(IND-ID-CPA security). Our simulation-based RSO secure IBE is based
only on IND-ID-CPA secure IBE.

We also demonstrate that our construction technique for KDM secure
IBE is used to construct KDM secure public-key encryption. More pre-
cisely, we show how to construct KDM secure public-key encryption from
KDM secure secret-key encryption and public-key encryption satisfying
only ordinary indistinguishability against chosen plaintext attacks.

Keywords: Identity-based encryption
Key dependent message security · Receiver selective opening security

1 Introduction

1.1 Background

Identity-based encryption (IBE) proposed by Shamir [30] is an extension of
public-key encryption (PKE). In IBE, we can use an identity of a recipient as a
public-key. The secret-key corresponding to an identity is generated only by the
trusted authority who has the master secret-key. Users can obtain secret-keys
corresponding to their identities by authenticating themselves to the trusted
authority. By using IBE, we can avoid distributing public-key certificates that
is one of the major issues with public-key cryptography.
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Security notions for IBE capture corruptions and collusions of users. In other
words, we require that IBE guarantee confidentiality of a message encrypted
under an identity id∗ even if an adversary obtains a secret-key corresponding to
any identity other than id∗.

Security notions for IBE are classified into two categories, that is, adap-
tive security and selective security. An IBE scheme is said to be secure against
adaptive-ID attacks [12] if it is secure even when an adversary adaptively chooses
the challenge identity id∗. On the other hand, an IBE scheme is said to be secure
against selective-ID attacks [16] if it is secure when an adversary declares the
challenge identity id∗ before seeing public parameters.

Security against adaptive-ID attacks is a desirable security notion for IBE
when we use it in practical situations. However, since IBE has an advanced func-
tionality compared to PKE, attack scenarios that ordinary indistinguishability
against adaptive-ID attacks does not capture can naturally occur in practical sit-
uations of IBE. As such attack scenarios, in this work, we focus on the situations
of encrypting secret-keys and the selective opening attacks.

Black et al. [11] introduced the notion of key dependent message (KDM)
security which guarantees confidentiality even in situations of encrypting secret-
keys. Informally, an encryption scheme is said to be KDM secure if it is secure
when an adversary can obtain encryptions of f(sk1, . . . , sk�), where sk1, . . . , sk�

are secret-keys that exist in the system and f is a function.
Alperin-Sheriff and Peikert [3] pointed out that KDM security with respect to

user secret-keys is well-motivated by some natural usage scenarios for IBE such as
key distribution in a revocation system. They constructed the first IBE satisfying
KDM security for user secret-keys assuming the hardness of the learning with
errors (LWE) problem. Galindo et al. [22] proposed an IBE scheme that satisfies
KDM security for master secret-keys based on the hardness of a rank problem on
bilinear groups. However, both of these schemes are secure only against selective-
ID attacks. Moreover, both schemes have some a-priori bound on the number of
queries made by an adversary.1

In the selective opening attack, an adversary, given some ciphertexts, adap-
tively corrupts some fraction of users and tries to break confidentiality of cipher-
texts of uncorrupted users.

There are both sender corruption case and receiver corruption case in this
attack scenario. Bellare et al. [8] formalized sender selective opening (SSO) secu-
rity for PKE that captures situations where there are many senders and a single
receiver, and an adversary can obtain messages and random coins of corrupted
senders. Hazay et al. [24] later formalized receiver selective opening (RSO) secu-
rity for PKE that captures situations where there are many receivers and a sin-
gle sender, and an adversary can obtain messages and secret-keys of corrupted
receivers.

1 The scheme by Alperin-Sheriff and Peikert has an a-priori bound on the number
of challenge identities in the security game. The scheme by Galindo et al. has an
a-priori bound on the number of KDM encryption queries made by an adversary.
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Selective opening attacks originally considered in the context of multi-party
computation are natural and motivated in the context of IBE since it also con-
siders situations where there are many users and some fraction are corrupted.
Bellare et al. [9] defined SSO security for IBE and proposed SSO secure IBE
schemes under the decisional linear assumption and a subgroup decision assump-
tion in composite order bilinear groups. Their definition of SSO security for IBE
captures adaptive-ID attacks in addition to sender selective opening attacks.
However, it does not take receiver selective opening attacks into account.

It is known that the standard notions of indistinguishability imply neither
KDM security [1,10,18,28] nor selective opening security [7,25,26]. From this
fact, we know very little about the possibility of IBE satisfying these stronger
security notions than standard indistinguishability though there have been many
works on the study of IBE.

Especially, it is open whether we can construct IBE that is KDM secure
against adaptive-ID attacks and there is no a-priori bound on the number of
queries made by an adversary. For selective opening security, we have no con-
struction of IBE satisfying RSO security even if we require only security against
selective-ID attacks.

As mentioned above, attack scenarios captured by both KDM security and
selective opening security are natural and motivated for IBE. We thus think it
is important to clarify these issues.

1.2 Our Results

Based on the above background, we propose KDM secure IBE and RSO secure
IBE. Both schemes satisfy security against adaptive-ID attacks. They are the
first schemes satisfying such levels of security.

Our constructions of IBE are very simple. We construct KDM secure IBE
by transforming KDM secure secret-key encryption (SKE) using IBE satisfying
ordinary indistinguishability against adaptive-ID attacks (IND-ID-CPA security)
and garbled circuits. Somewhat surprisingly, our RSO secure IBE is based only
on IND-ID-CPA secure IBE.

We show the details of each result below.

Key dependent message secure IBE. In this work, we focus on KDM security for
user secret-keys similarly to Alperin-Sheriff and Peikert [3], and let KDM security
indicate KDM security for user secret-keys. We show the following theorem.2

Theorem 1 (Informal). Assuming there exist IND-ID-CPA secure IBE and
SKE that is KDM secure with respect to projection functions (resp. functions
computable by a-priori bounded size circuits). Then, there exists IBE that is
KDM secure with respect to projection functions (resp. functions computable by
a-priori bounded size circuits) against adaptive-ID attacks.

2 We also use garbled circuits, but it is implied by one-way functions [31]. Thus, it is
not explicitly appeared in the statement of Theorem 1.
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Projection function is a function each of whose output bits depends on at
most one bit of an input. KDM security with respect to projection functions is
a generalization of circular security [15]. We can construct IBE satisfying KDM
security with respect to any function computable by circuits of a-priori bounded
size [6] by requiring the same KDM security for the underlying SKE.

As noted above, KDM secure IBE proposed by Alperin-Sheriff and Peikert is
only secure against selective-ID attacks. Moreover, their scheme has an a-priori
bound on the number of challenge identities in the security game. Our KDM
secure IBE is secure against adaptive-ID attacks and does not have any a-priori
bound on the number of queries made by an adversary in the security game.

To achieve KDM security for an a-priori unbounded number of challenge
identities, in our construction, the size of instances of the underlying KDM secure
SKE needs to be independent of the number of users in the security game.3

We can construct SKE that is KDM secure with respect to projection func-
tions and satisfies this efficiency requirement based on the decisional diffie-
hellman (DDH) assumption [13] and LWE assumption [5].4 In addition, Apple-
baum [4] showed how to transform SKE that is KDM secure with respect to
projection functions into SKE that is KDM secure with respect to functions
computable by a-priori bounded size circuits.

We can construct IND-ID-CPA secure IBE under the LWE assumption [2].
Moreover, Döttling and Garg [21] recently showed how to construct IND-ID-CPA
secure IBE based on the computational diffie-hellman (CDH) assumption.

Thus, from Theorem 1, we obtain the following corollary.

Corollary 1. There exists IBE that is KDM secure with respect to functions
computable by a-priori bounded size circuits against adaptive-ID attacks under
the DDH assumption or LWE assumption.

In addition to these results, based on the construction techniques above, we
also show that we can transform KDM secure SKE into KDM secure PKE by
using PKE satisfies ordinary indistinguishability against chosen plaintext attacks
(IND-CPA security). Specifically, we show the following theorem.

Theorem 2 (Informal). Assuming there exist IND-CPA secure PKE and SKE
that is KDM secure with respect to projection functions (resp. functions com-
putable by a-priori bounded size circuits). Then, there exists PKE that is KDM
secure with respect to projection functions (resp. functions computable by a-priori
bounded size circuits).

It seems that we cannot construct KDM secure PKE from KDM secure SKE
via the straightforward hybrid encryption methodology. It leads to a dead-lock
of secret-keys of the underlying primitives and thus it is difficult to prove the
security of hybrid encryption construction. Thus, this result is of independent
interest.
3 For more details, see Remark 1 in Sect. 2.2.
4 More precisely, these works showed how to construct PKE that is KDM secure with

respect to projection functions and satisfies the efficiency requirement.
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Receiver selective opening secure IBE. Before our work, RSO security for IBE
has never been studied while an IBE scheme that is SSO secure was proposed
by Bellare et al. [9]. Therefore, we first define RSO security for IBE formally.
Our definition is a natural extension of simulation-based RSO security for PKE
proposed by Hazay et al. [24]. We then show the following theorem.

Theorem 3 (Informal). Assuming there exists IND-ID-CPA secure IBE.
Then, there exists IBE that satisfies simulation-based RSO security against
adaptive-ID attacks.

Somewhat surprisingly, the above theorem says that all we need is
IND-ID-CPA secure IBE to achieve simulation-based RSO secure IBE. We can
obtain the result via a simple double encryption paradigm [29].

The reason we can obtain the above result via a simple double encryption
paradigm is that in receiver selective opening attacks for IBE, we have to con-
sider the revelation of secret-keys themselves but not the random coins for key
generation since secret-keys are generated by the trusted authority in IBE.

We also observe that if we allow only revelations of secret-keys and not
the random coins for key generation, we can construct PKE satisfying such
simulation-based RSO security using any PKE satisfying ordinary IND-CPA
security. This fact is somewhat obvious from some previous results [17,24] though
these works did not explicitly state it. For self-containment, we show the follow-
ing theorem.

Theorem 4 (Informal). Assuming there exists IND-CPA secure PKE. Then,
there exists PKE that satisfies simulation-based RSO security with respect to the
revelation of only secret-keys.

To prove simulation-based RSO security against the revelation of random
coins for key generation, it seems that the underlying PKE needs to be key sim-
ulatable [19,24] in some sense. In this case, it is difficult to construct simulation-
based RSO secure PKE without relying on some specific algebraic or lattice
assumptions.

We summarize our results in Fig. 1.

1.3 Overview of Our Techniques

We first give an intuition for our KDM secure IBE.

KDM secure IBE from KDM secure SKE. Our construction methodology for
KDM secure IBE is somewhat based on the recent beautiful construction of IBE
proposed by Döttling and Garg [20,21] using new primitives called chameleon
encryption or one-time signatures with encryption. The essence of their construc-
tions is the mechanism that an encryptor who does not know the exact value of
a public-key ek of PKE can generate an “encoding” of a PKE’s ciphertext under
the public-key ek. Moreover, in their construction, the security of IBE is directly
reduced to that of PKE in the last step of the security proof.
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Fig. 1. Our results.

Based on this idea, by realizing the mechanism that an encryptor who does
not know the value of the key K of SKE can generate an encoding of an SKE’s
ciphertext under the key K of SKE, we try to transform SKE into public-key
primitives such as PKE and IBE shifting the security level of SKE to them. We
then show that we can construct KDM secure IBE (resp. PKE) based on KDM
secure SKE and IND-ID-CPA secure IBE (resp. IND-CPA secure PKE).

We emphasize that we need neither chameleon encryption nor one-time signa-
tures with encryption. IND-ID-CPA secure IBE is sufficient for our KDM secure
IBE.

Our constructions are very simple and use garbled circuits. For simplicity,
we focus on constructing KDM secure PKE to give an intuition. Suppose that
we construct a KDM secure PKE scheme KdmPKE from a KDM secure SKE
scheme SKE and IND-CPA secure PKE scheme PKE.

The encryption algorithm of KdmPKE first garbles an encryption circuit of
SKE that has a message to be encrypted hardwired, that is, Eske(·,m), and
then encrypts labels of the garbled circuit by PKE under different keys. This
process can be done without any secret-key of SKE and thus we achieve the
“encoding” mechanism mentioned above. This construction is similar to that of
“semi-adaptively” secure functional encryption based on selectively secure one
proposed by Goyal et al. [23], but our techniques for the security proof explained
below are different from theirs.

Why IND-CPA security of the underlying PKE is sufficient? One might won-
der why IND-CPA security of the underlying PKE scheme PKE is sufficient to
construct the KDM secure PKE scheme KdmPKE. To see the answer for this
question, we closer look at the construction of KdmPKE.

Let the length of a secret-key K of SKE be lenK. A public-key Kdm.ek of
KdmPKE consists of 2 · lenK PKE’s public-keys {ekj,α}j∈[lenK],α∈{0,1}, where [lenK]
denotes {1, . . . , lenK}. The secret-key Kdm.dk corresponding to Kdm.ek consists
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of a secret-key K of SKE and lenK secret-keys of PKE corresponding to the bit
representation of K = K[1] . . .K[lenK], that is,

{
dkj,K[j]

}
j∈[lenK]

. We note that
secret-keys of PKE that do not correspond to the bit representation of K are not
included in Kdm.dk.

As mentioned above, when encrypting a message m under the public-key
Kdm.ek := {ekj,α}j∈[lenK],α∈{0,1}, the encryption algorithm of KdmPKE first gar-
bles an encryption circuit of SKE in which m is hardwired, that is, Eske(·,m).
This results in a single garbled circuit Ẽ and 2 · lenK labels {labj,α}j∈[lenK],α∈{0,1}.
Then, the encryption algorithm of KdmPKE encrypts labj,α by ekj,α for every
j ∈ [lenK] and α ∈ {0, 1}. The resulting ciphertext of KdmPKE consists of Ẽ and
these 2 · lenK ciphertexts of PKE.

When decrypting this ciphertext with Kdm.dk :=
(
K,

{
dkj,K[j]

}
j∈[lenK]

)
, we

first obtain labels corresponding to K from lenK out of 2 · lenK ciphertexts of PKE
using

{
dkj,K[j]

}
j∈[lenK]

and evaluate Ẽ with those labels. This results in an SKE’s
ciphertext Eske(K,m). Then, by decrypting it with K, we obtain m.

In this construction, secret-keys of PKE corresponding to K, that
is,

{
dkj,K[j]

}
j∈[lenK]

are included in Kdm.dk, but the rest of secret-keys
{
dkj,1−K[j]

}
j∈[lenK]

are not included in Kdm.dk. Thus, even if an adversary
for KdmPKE obtains encryptions of key dependent messages, they cannot get
information of

{
dkj,1−K[j]

}
j∈[lenK]

while they potentially get information of
{
dkj,K[j]

}
j∈[lenK]

from those encryptions. In addition, in the security proof, we

use the security of PKE of instances related to
{
dkj,1−K[j]

}
j∈[lenK]

, but not
{
dkj,K[j]

}
j∈[lenK]

. This is the reason the IND-CPA security of PKE is sufficient
to construct a KDM secure PKE scheme KdmPKE. To see the fact, we show the
outline of the proof below.

In the proof, by using the security of garbled circuits, we change the secu-
rity game without affecting the behavior of an adversary so that we generate a
challenge ciphertext under the key pair (Kdm.ek,Kdm.dk) with simulated gar-
bled circuits computed from an SKE’s ciphertext of the challenge key dependent
message m∗ under the key K, that is, Eske(K,m∗), where K is the secret-key of
SKE contained in Kdm.dk. By this change, we do not need m∗ itself, and the
ciphertext Eske(K,m∗) is sufficient to simulate the security game. Thus, at this
point, we can reduce the KDM security of KdmPKE to that of the underlying
SKE.

More precisely, in the above proof, before using the security of garbled cir-
cuits, we have to eliminate the labels of garbled circuits that do not correspond
to the bit representation of K, that is,

{
labj,1−K[j]

}
j∈[lenK]

from the view of the
adversary. This can be done by using the IND-CPA security of PKE of only
instances related to

{
dkj,1−K[j]

}
j∈[lenK]

. Therefore, we can complete the proof by

using IND-CPA security of PKE of instances related to
{
dkj,1−K[j]

}
j∈[lenK]

, but

not
{
dkj,K[j]

}
j∈[lenK]

.
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Conversions of functions. One additional non-trivial point is the conversion of
functions by reductions.

In the security game of KDM security, an adversary queries a function and
obtain an encryption of the function of secret-keys. Thus, KDM security is
parameterized by function classes indicating functions that an adversary can
query.

In the above construction, a secret-key Kdm.dk of KdmPKE contains some
secret-keys of PKE in addition to a secret-key of SKE. Therefore, a function
queried by an adversary for KdmPKE is a function of secret-keys of PKE and
secret-keys of SKE. On the other hand, a function that a reduction algorithm
can query is a function of only secret-keys of SKE. This means that the reduction
algorithm needs to convert a function queried by an adversary for KdmPKE.

Such conversion is clearly possible if we do not care classes of functions. How-
ever, when considering KDM security, classes of functions are important since
they determine the level of KDM security. It is not clear how such conversions
affect a class of functions. Especially, it is not clear whether we can perform such
conversions for functions without changing the class of functions.

We show that such conversions are possible for projection functions and func-
tions computable by a-priori bounded size circuits. Thus, we can reduce the KDM
security for those function classes of KdmPKE to that of SKE.

These arguments hold if we replace the underlying IND-CPA secure PKE
with IND-ID-CPA secure IBE. The above construction can be seen as a special
case where the size of instances of the underlying IBE linearly depends on the
size of identity space. Thus, we can obtain KDM secure IBE from KDM secure
SKE and IND-ID-CPA secure IBE.

RSO secure IBE from IND-ID-CPA secure IBE. Our starting point of the con-
struction of RSO secure IBE is the above KDM secure IBE based on KDM secure
SKE. It seems that the above construction can be used to carry over strong secu-
rity notions of SKE to IBE that we need to simulate secret-keys in some sense
in the security game. One such example, we focus on RSO security.5 Actually,
in the above construction, if the underlying SKE has non-committing property
(such as one-time pad), the resulting IBE seems to gain simulation-based RSO
security.

However, it turns out that the construction is redundant and a simple double
encryption paradigm [29] is sufficient to achieve RSO security. The reason we
can construct RSO secure IBE via simple constructions is related to whether
we allow the revelation of the random coins for key generation in addition to
secret-keys or not.

Secret key vs random coins for the key generation. Hazay et al. [24] considered
the revelation of both secret-keys and random coins for key generation when
they defined RSO security for PKE. It is better to take the revelation of random
5 We observe that another example is leakage resilience. We do not focus on it in this

paper.
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coins of the key generation into account for many applications of PKE. However,
for IBE, it is sufficient to take the revelation of only secret-keys into account.

In IBE, the trusted authority generates user secret-keys and distributes them
to users. Thus, if an adversary corrupts a user, the adversary cannot obtain the
random coin used to generate the secret-key of the user since the user does not
know it. For this reason, we do not have to take the revelation of random coins
of key generation in IBE into account.6

Construction based on a double encryption paradigm. When we do not take
the revelation of random coins of key generation in IBE into account, we can
construct simulation-based RSO secure IBE via a simple double encryption
paradigm [29] without using garbled circuits.

More precisely, using an IBE scheme IBE whose identity space is ID×{0, 1},
we construct the following new IBE scheme RsoIBE whose message space and
identity space are {0, 1} and ID, respectively.

The setup algorithm of RsoIBE is the same as that of IBE. When generating a
secret-key Rso.skid for identity id ∈ ID, the key generation algorithm of RsoIBE
generates an IBE’s secret-key skid,r for the identity (id, r), where r is a freshly gen-
erated random bit, and outputs Rso.skid := (r, skid,r). When encrypting a message
m ∈ {0, 1} for identity id ∈ ID, the encryption algorithm of RsoIBE generates
a pair of ciphertexts (CT0,CT1), where CTα is an encryption of m under the
identity (id, α) for every α ∈ {0, 1}. The decryption algorithm of RsoIBE, given
a pair of ciphertexts (CT0,CT1) and a secret-key Rso.skid := (r, skid,r), outputs
the decryption result of CTr with skid,r.

This construction achieves a non-committing property. Suppose that we gen-
erate CTr as an encryption of 0 under the identity (id, r) and CT1−r as an
encryption of 1 under the identity (id, 1 − r) when generating a ciphertext
(CT0,CT1) for the identity id, where r is the random bit contained in the secret-
key Rso.skid := (r, skid,r) for id. We can open this ciphertext to any m ∈ {0, 1}
by pretending as if the secret-key Rso.skid for id is (r ⊕ m, skid,r⊕m). Due to
this non-committing property, we prove the simulation-based RSO security of
RsoIBE.

From this result, we observe that if we take the revelation of only secret-
keys into account, we can also construct SIM-RSO secure PKE based on any
IND-CPA secure PKE. Our results on simulation-based RSO secure IBE and
PKE highlight the gap of difficulties between achieving RSO security against
revelation of only secret-keys and that against both secret-keys and random
coins for key generation. To achieve the latter RSO security for PKE, it seems
that the underlying scheme needs to be key simulatable [19,24] in some sense.

1.4 Organization

In Sect. 2, we introduce some notations and review definitions of cryptographic
primitives that we use as building blocks. In Sect. 3, we define IBE, and introduce
6 One additional reason is that we can always make a key generation algorithm of IBE

deterministic by using pseudorandom functions.
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KDM security and RSO security for it. In Sect. 4, we show how to construct
KDM secure IBE from KDM secure SKE and IND-ID-CPA secure IBE. In
Sect. 5, we show the construction of simulation-based RSO secure IBE based
on IND-ID-CPA secure IBE. In Sect. 6, we show how to construct KDM secure
PKE from KDM secure SKE and IND-CPA secure PKE. In Sect. 7, we show
how to construct simulation-based RSO secure PKE based on IND-CPA secure
PKE.

2 Preliminaries

We define some cryptographic primitives after introducing some notations.

Notations. x
r←− X denotes choosing an element from a finite set X uniformly at

random, and y ← A(x; r) denotes assigning y to the output of an algorithm A on
an input x and a randomness r. When there is no need to write the randomness
clearly, we omit it and simply write y ← A(x). For strings x and y, x‖y denotes
the concatenation of x and y. For an integer �, [�] denote the set of integers
{1, . . . , �}. For a string x and positive integer j ≤ |x|, x[j] denotes the j-th bit
of x.

λ denotes a security parameter. PPT stands for probabilistic polynomial
time. A function f(λ) is a negligible function if f(λ) tends to 0 faster than
1
λc for every constant c > 0. We write f(λ) = negl(λ) to denote f(λ) being a
negligible function.

2.1 Garbled Circuits

We define garbled circuits. We can realize garbled circuits for all efficiently com-
putable circuits based on one-way functions [31].

Definition 1 (Garbled circuits). Let {Cn}n∈N be a family of circuits where
each circuit in Cn takes n-bit inputs. A circuit garbling scheme GC is a two tuple
(Garble,Eval) of PPT algorithms.

The garbling algorithm Garble, given a security parameter 1λ and circuit C ∈
Cn, outputs a garbled circuit C̃, together with 2n labels {labj,α}j∈[n],α∈{0,1}. The

evaluation algorithm, given a garbled circuit C̃ and n labels {labj}j∈[n], outputs

y. As correctness, we require Eval
(
C̃,

{
labj,x[j]

}
j∈[n]

)
= C(x) for every n ∈ N,

x ∈ {0, 1}n, where
(
C̃, {labj,α}j∈[n],α∈{0,1}

)
← Garble(1λ, C).

We define its security. Let Sim be a PPT simulator. We define the following
game between a challenger and an adversary A.

1. First, the challenger chooses a bit b
r←− {0, 1} and sends a security

parameter 1λ to A. Then, A sends a circuit C ∈ Cn and an input
x ∈ {0, 1}n for the challenger. Next, if b = 1, the challenger computes
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(
C̃, {labj,α}j∈[n],α∈{0,1}

)
← Garble(1λ, C) and returns

(
C̃,

{
labj,x[j]

}
j∈[n]

)
to

A. Otherwise, the challenger returns
(
C̃, {labj}j∈[n]

)
← Sim(1λ, |C| , C(x))

to A.
2. A outputs b′ ∈ {0, 1}.

We require that there exists a PPT simulator Sim such that for any PPT
adversary A, we have AdvgcGC,A,Sim(λ) = negl(λ).

2.2 Public Key Encryption

A public-key encryption (PKE) scheme PKE is a three tuple (KG,Enc,Dec) of
PPT algorithms. Below, let M be the message space of PKE. The key generation
algorithm KG, given a security parameter 1λ, outputs a public key ek and a secret
key dk. The encryption algorithm Enc, given a public key ek and message m ∈ M,
outputs a ciphertext CT. The decryption algorithm Dec, given a secret key dk
and ciphertext c, outputs a message m̃ ∈ {⊥} ∪ M. As correctness, we require
Dec(dk,Enc(ek,m)) = m for every m ∈ M and (ek, dk) ← KG(1λ).

We introduce indistinguishability against chosen plaintext attacks (IND-CPA
security) for PKE.

Definition 2 (IND-CPA security). Let PKE be a PKE scheme. We define
the IND-CPA game between a challenger and an adversary A as follows. We let
M be the message space of PKE.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger

generates a key pair (ek, dk) ← KG(1λ) and sends ek to A.
2. A sends (m0,m1) ∈ M2 to the challenger. We require that |m0| = |m1|. The

challenger computes CT ← Enc(ek,mb) and returns CT to A.
3. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as AdvindcpaPKE,A(λ) =∣
∣Pr[b = b′] − 1

2

∣
∣. We say that PKE is IND-CPA secure if for any PPT adversary

A, we have AdvindcpaPKE,A(λ) = negl(λ).

Next, we define key dependent message (KDM) security for PKE [11].

Definition 3 (KDM-CPA security). Let PKE be a PKE scheme, F function
family, and � the number of users. We define the F-KDM-CPA game between
a challenger and an adversary A as follows. Let DK and M be the secret key
space and message space of PKE, respectively.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger

generates � key pairs
(
ek(k), dk(k)

)
← KG(1λ) (k ∈ [�]). The challenger sets

dk :=
(
dk(1), . . . , dk(�)

)
and sends

(
ek(1), . . . , ek(�)

)
to A.
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2. A may adaptively make polynomially many KDM queries.
KDM queries. A sends (k, f) ∈ [�] × F to the challenger. We require that

f be a function such that f : DK� → M. If b = 1, the challenger returns
CT ← Enc

(
ek(k), f(dk)

)
to A. Otherwise, the challenger returns CT ←

Enc
(
ek(k), 0|f(·)|

)
to A.

3. A outputs b′ ∈ {0, 1}.

We say that PKE is F-KDM-CPA secure if for any PPT adversary A and
polynomial � = �(λ), we have Advkdmcpa

PKE,F,A,�(λ) =
∣
∣Pr[b = b′] − 1

2

∣
∣ = negl(λ).

Remark 1 (Flexibility of the number of users). The above definition implicitly
requires that the size of instances such as public keys, secret keys, and ciphertexts
be independent of the number of users �. We require the same condition for KDM
secure SKE. This requirement is necessary for our constructions of KDM secure
IBE (and PKE) based on KDM secure SKE.

When we reduce the KDM security of our IBE to that of the underlying SKE,
the number of users � in the security game of SKE corresponds to the number
of challenge identities queried by an adversary for IBE. If the size of instances
of SKE depends on �, we can prove the KDM security of the resulting IBE only
when the number of challenge identities is a-priori bounded.

Function families. As we can see, KDM security is defined with respect to func-
tion families. In this paper, we focus on KDM security with respect to the fol-
lowing function families.

Projection functions. A projection function is a function in which each output
bit depends on at most a single bit of an input. Let f be a function and
y = y1 . . . ym be the output of the function f on an input x = x1 . . . xn, that
is f(x) = y. We say that f is a projection function if for any j ∈ [m], there
exists i ∈ [n] such that yj ∈ {0, 1, xi, 1 − xi}.
In this paper, we let P denote the family of projection functions, and we say
that PKE is P-KDM-CPA secure if it is KDM-CPA secure with respect to
projection functions.

Functions computable by a-priori bounded size circuits. In the security
game of KDM-CPA security with respect to this function family, an adversary
can query a function computable by a circuit of a-priori bounded size and
input and output length. We allow the size of instances of a scheme to depend
on these a-priori bounds on functions while we do not allow it to depend on
the number of total users as we noted in Remark 1.
In this paper, we say that PKE is B-KDM-CPA secure if it is KDM-CPA
secure with respect to functions computable by a-priori bounded size circuits.

P-KDM-CPA security is a generalization of circular security [15] and strong
enough for many applications. Boneh et al. [13] and Applebaum et al. [5] showed
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how to construct P-KDM-CPA secure PKE under the decisional diffie-hellman
(DDH) assumption and learning with errors (LWE) assumption, respectively.7

Barak et al. [6] showed how to construct B-KDM-CPA secure PKE under the
DDH assumption or LWE assumption. Applebaum [4] showed how to transform
P-KDM-CPA secure PKE into B-KDM-CPA secure one using garbled circuits.

We next introduce the definition of receiver selective opening (RSO) security
for PKE. We adopt the simulation-based definition proposed by Hazay et al. [24].

Definition 4 (SIM-RSO security). Let PKE be a PKE scheme, and � the
number of users. Let A and S be a PPT adversary and simulator, respectively.
We define the following pair of games.

Real game

1. First, the challenger generates � key pairs
(
ek(k), dk(k)

)
←

KG(1λ) (k ∈ [�]) and sends
(
ek(1), . . . , ek(�)

)
to A.

2. A sends a message distribution Dist to the challenger. The challenger
generates

{
m(k)

}
k∈[�]

← Dist, computes CT(k) ← Enc
(
ek(k),m(k)

)
for

every k ∈ [�], and sends
{
CT(k)

}

k∈[�]
to A.

3. A sends a subset I of [�] to the challenger. The challenger sends{(
dk(k),m(k)

)}

k∈I
to A.

4. A sends a string out to the challenger.
5. The challenger outputs outreal :=

({
m(k)

}
k∈[�]

,Dist, I, out
)
.

Simulated game
1. First, the challenger sends 1λ to S.
2. S sends a message distribution Dist to the challenger. The challenger

generates
{
m(k)

}
k∈[�]

← Dist.
3. S sends a subset I of [�] to the challenger. The challenger sends{

m(k)
}

k∈I to S.
4. S sends a string out to the challenger.
5. The challenger outputs outsim :=

({
m(k)

}
k∈[�]

,Dist, I, out
)
.

We say that PKE is SIM-RSO secure if for any PPT adversary A and poly-
nomial � = �(λ), there exists a PPT simulator S such that for any PPT distin-
guisher D with binary output we have Advsimrso

PKE,A,�,S,D(λ) = |Pr[D(outreal) = 1] −
Pr[D(outsim) = 1]| = negl(λ).

The above definition considers non-adaptive corruptions by an adversary.
Namely, an adversary needs to corrupt users in one go.

7 Brakerski and Goldwasser [14] proposed P-KDM-CPA secure PKE under the
quadratic residuosity (QR) assumption and decisional composite residuosity (DCR)
assumption, but their schemes do not satisfy the flexibility of the number of users
in the sense of Remark 1.
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We note that our construction of RSO secure PKE based on IND-CPA secure
PKE works well even if we consider adaptive corruptions by an adversary. For
simplicity, we define RSO security for PKE against non-adaptive corruptions in
this paper.

Secret key vs key generation randomness. We define SIM-RSO security taking
only the revelation of secret keys into account throughout the paper. Namely,
we assume that an adversary gets only a secret key itself of a corrupted user and
not the random coin used to generate the secret key.

Hazay et al. [24] considered the revelation of both secret keys and random
coins for key generation when they defined RSO security for PKE. It is better
to take the revelation of random coins of key generation into account for some
applications.

We show that by requiring only security against the revelation of secret keys,
we can obtain RSO secure PKE from IND-CPA secure PKE. If we consider
RSO security against the revelation of random coins for key generation, it seems
difficult to construct RSO secure PKE based only on IND-CPA secure PKE
without assuming that secure erasure is possible or the underlying scheme is key
simulatable [19,24] in some sense.

2.3 Secret Key Encryption

A secret-key encryption (SKE) scheme SKE is a three tuple (KG,Enc,Dec) of
PPT algorithms. Below, let M be the message space of SKE. The key genera-
tion algorithm KG, given a security parameter 1λ, outputs a secret key K. The
encryption algorithm Enc, given a secret key K and a message m ∈ M, out-
puts a ciphertext CT. The decryption algorithm Dec, given a secret key K and
a ciphertext CT, outputs a message m̃ ∈ {⊥} ∪ M. As correctness, We require
Dec(K,Enc(K,m)) = m for every m ∈ M and K ← KG(1λ).

Next, we define KDM-CPA security for SKE.

Definition 5 (KDM-CPA security for SKE). Let SKE be an SKE scheme
whose key space and message space are K and M, respectively. Let F be a
function family, and � the number of users. We define the F-KDM-CPA game
between a challenger and an adversary A as follows.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger

generates � secret keys K(k) ← KG(1λ)(k ∈ [�]), sets K :=
(
K(1), . . . ,K(�)

)
,

and sends 1λ to A.
2. A may adaptively make polynomially many KDM queries.

KDM queries. A sends (k, f) ∈ [�] × F to the challenger. We require
that f be a function such that f : K� → M. If b = 1, the chal-
lenger returns CT ← Enc

(
K(k), f(K)

)
. Otherwise, the challenger returns

CT ← Enc
(
K(k), 0|f(·)|).

3. A outputs b′ ∈ {0, 1}.
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We say that SKE is F-KDM-CPA secure if for any PPT adversary A and
polynomial � = �(λ), we have Advkdmcpa

SKE,F,A,�(λ) =
∣
∣Pr[b = b′] − 1

2

∣
∣ = negl(λ).

As we noted at Remark 1 after the definition of KDM security for PKE,
we require that the size of instances of a KDM-CPA secure SKE scheme be
independent of the number of users �. This requirement is necessary for our
construction of KDM secure IBE (and PKE) based on KDM secure SKE.

Similarly to KDM security for PKE, we focus on KDM security for SKE with
respect to projection functions and that with respect to functions computable
by a-priori bounded size circuits. We say that SKE is P-KDM-CPA secure if it
is KDM-CPA secure with respect to projection functions. We say that SKE is
B-KDM-CPA secure if it is KDM-CPA secure with respect to functions com-
putable by a-priori bounded size circuits.

3 Identity-Based Encryption

We define identity-based encryption (IBE). Then, we introduce KDM security
and RSO security for IBE.

An IBE scheme IBE is a four tuple (Setup,KG,Enc,Dec) of PPT algorithms.
Below, let M be the message space of IBE. The setup algorithm Setup, given
a security parameter 1λ, outputs a public parameter PP and a master secret
key MSK. The key generation algorithm KG, given a master secret key MSK
and identity id ∈ ID, outputs a user secret key skid. The encryption algorithm
Enc, given a public parameter PP, identity id ∈ ID, and message m ∈ M,
outputs a ciphertext CT. The decryption algorithm Dec, given a user secret key
skid and ciphertext CT, outputs a message m̃ ∈ {⊥} ∪ M. As correctness, we
require Dec(KG(MSK, id),Enc(PP, id,m)) = m for every m ∈ M, id ∈ ID, and
(PP,MSK) ← Setup(1λ).

We define indistinguishability against adaptive-ID attacks (IND-ID-CPA
security [12]) for IBE.

Definition 6 (IND-ID-CPA security for IBE). Let IBE be an IBE scheme
whose identity space and message space are ID and M, respectively. We define
the IND-ID-CPA game between a challenger and an adversary A as follows.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger

generates (PP,MSK) ← Setup(1λ) and sends PP to A. Finally, the challenger
prepares a list Lext which is initially empty.
At any step of the game, A can make key extraction queries.
Extraction queries. A sends id ∈ ID to the challenger. The challenger

returns skid ← KG(MSK, id) to A and adds id to Lext.
2. A sends (id∗,m0,m1) ∈ ID × M × M to the challenger. We require that

|m0| = |m1| and id∗ /∈ Lext. The challenger computes CT ← Enc(PP, id,mb)
and returns CT to A.
Below, A is not allowed to make an extraction query for id∗.

3. A outputs b′ ∈ {0, 1}.
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We say that IBE is IND-ID-CPA secure if for any PPT adversary A, we have
AdvindidcpaIBE,A (λ) =

∣
∣Pr[b = b′] − 1

2

∣
∣ = negl(λ).

3.1 KDM Security for IBE

Next, we define KDM security for IBE. Alperin-Sheriff and Peikert [3] defined
KDM security for IBE by extending selective security for IBE [16]. The following
definition is an extension of adaptive security for IBE [12]. For the difference
between the definition of Alperin-Sheriff and Peikert and ours, see Remark 2
after Definition 7.

Definition 7 (KDM-CPA security for IBE). Let IBE be an IBE scheme,
and F a function family. We define the F-KDM-CPA game between a challenger
and an adversary A as follows. Let SK, ID, and M be the user secret key space,
identity space, and message space of IBE, respectively.

1. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next, the challenger

generates (PP,MSK) ← Setup(1λ) and sends PP to A. Finally, the challenger
prepares lists Lext, Lch, and sk all of which are initially empty.

2. A may adaptively make the following three types of queries.
Extraction queries. A sends id ∈ ID \ (Lext ∪ Lch) to the challenger. The

challenger returns skid ← KG(MSK, id) to A and adds id to Lext.
Registration queries. A sends id ∈ ID\ (Lext ∪Lch) to the challenger. The

challenger generates skid ← KG(MSK, id) and adds id and skid to Lch and
sk, respectively.

KDM queries. A sends (id, f) ∈ Lch × F to the challenger. We require
that f be a function such that f : SK|Lch| → M. If b = 1, the challenger
returns CT ← Enc (PP, id, f(sk)) to A. Otherwise, the challenger returns
CT ← Enc

(
PP, id, 0|f(·)|) to A.

3. A outputs b′ ∈ {0, 1}.

We say that IBE is F-KDM-CPA secure if for any PPT adversary A, we
have Advkdmcpa

IBE,F,A(λ) =
∣
∣Pr[b = b′] − 1

2

∣
∣ = negl(λ).

Similarly to KDM security for PKE, we focus on KDM security for IBE with
respect to projection functions and that with respect to functions computable
by a-priori bounded size circuits. We say that IBE is P-KDM-CPA secure if it
is KDM-CPA secure with respect to projection functions. We say that IBE is
B-KDM-CPA secure if it is KDM-CPA secure with respect to functions com-
putable by a-priori bounded size circuits.

Remark 2 (Difference with [3]). Alperin-Sheriff and Peikert [3] defined KDM
security for IBE. Their definition is a natural extension of selective security for
IBE [16]. In their definition, an adversary must declare the set of challenge iden-
tities Lch at the beginning of the security game. On the other hand, our definition
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of KDM security for IBE is an extension of adaptive security for IBE [12]. In
our definition, an adversary can adaptively declare challenge identities through
registration queries.8

One additional difference between our definition and that of Alperin-Sheriff
and Peikert is whether the size of instances of IBE such as a public parameter is
allowed to depend on the number of challenge identities or not. In the definition
of Alperin-Sheriff and Peikert, the setup algorithm of IBE takes the upper bound
on the number of challenge identities as an input, and the size of instances of IBE
depends on the number of challenge identities. In our definition, there is no a-
priori bound on the number of challenge identities, and thus the size of instances
of IBE is required to be independent of the number of challenge identities.

3.2 RSO Security for IBE

We next define RSO security for IBE. We extends the simulation-based definition
for PKE proposed by Hazay et al. [24].

Definition 8 (SIM-RSO security for IBE). Let IBE be an IBE scheme
whose identity space and message space are ID and M, respectively. Let A
and S be a PPT adversary and simulator, respectively. We define the following
pair of games.

Real game
1. The challenger generates public parameter and master secret key

(PP,MSK) ← Setup(1λ) and sends PP to A. The challenger then pre-
pares a list Lext which is initially empty.
At any step of the game, A can make key extraction queries.
Extraction queries. A sends id ∈ ID \ Lext to the challenger. The

challenger returns skid ← KG(MSK, id) to A and adds id to Lext.

2. A sends q identities
{
id(k) ∈ ID \ Lext

}

k∈[q]
and a message distribution

Dist on Mq to the challenger, where q is an a-priori unbounded polynomial
of λ. The challenger generates

{
m(k)

}
k∈[q]

← Dist, computes CT(k) ←
Enc

(
PP, id(k),m(k)

)
for every k ∈ [q], and sends

{
CT(k)

}

k∈[q]
to A.

Below, A is not allowed to make extraction queries for
{
id(k)

}

k∈[q]
.

3. A sends a subset I of [q] to the challenger. The challenger computes
skid(k) ← KG

(
MSK, id(k)

)
for every k ∈ I and sends

{(
skid(k) ,m(k)

)}
k∈I

to A.

8 One might think it is a restriction to force an adversary to register challenge identities
before making KDM queries. This is not the case since the adversary is allowed to
adaptively make registration and KDM queries. Our definition with registration
queries makes the security proof of our IBE simple.
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4. A sends a string out to the challenger.

5. The challenger outputs outreal =
({

id(k)
}

k∈[q]
,
{
m(k)

}
k∈[q]

,Dist, I, out

)
.

Simulated game
1. First, the challenger sends 1λ to S.
2. S sends q identities

{
id(k) ∈ ID

}

k∈[q]
and a message distribution Dist on

Mq to the challenger, where q is an a-priori unbounded polynomial of λ.
The challenger generates

{
m(k)

}
k∈[q]

← Dist.
3. S sends a subset I of [q] to the challenger. The challenger sends{

m(k)
}

k∈I to S.
4. S sends a string out to the challenger.

5. The challenger outputs outsim :=
({

id(k)
}

k∈[q]
,
{
m(k)

}
k∈[q]

,Dist, I, out

)
.

Then, we say that IBE is SIM-RSO secure if for any PPT adversary A, there
exists a PPT simulator S such that for any PPT distinguisher D with binary
output we have Advsimrso

IBE,A,S,D(λ) = |Pr[D(outreal) = 1] − Pr[D(outsim) = 1]| =
negl(λ).

As we noted after defining SIM-RSO security for PKE, for simplicity, we
consider non-adaptive corruptions by an adversary in this paper. We note that
our construction of RSO secure IBE based on IND-ID-CPA secure IBE works
well if we consider adaptive corruptions by an adversary.

Remark 3 (On the syntax of simulators). In the above definition, not only an
adversary but also a simulator is required to output challenge identities with a
message distribution, and these identities are given to a distinguisher of games.
One might think this is somewhat strange since these identities output by a
simulator are never used in the simulated game. This syntax of simulators is
similar to that used by Bellare et al. [9] when they defined simulation-based
sender selective opening security for IBE.

It does not seem to be a big issue whether we require a simulator to output
identities or not. This intuition comes from the fact that we allow an adver-
sary and simulator to output arbitrary length strings, and thus they can always
include challenge identities into the output strings.

However, this subtle issue might divide notions of selective opening security
for IBE. Especially, it looks hard to prove that the definition with simulators
without outputting identities implies that with simulators outputting identities,
while it is easy to prove the opposite implication. This means that the former
definition is possibly weaker than the latter.

From these facts, similarly to Bellare et al. [9], we adopt the definition with
simulators explicitly outputting identities in this work.
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4 KDM Secure IBE from KDM Secure SKE and
IND-ID-CPA Secure IBE

We show how to construct KDM secure IBE based on KDM secure SKE and
IND-ID-CPA secure IBE. The construction also uses a circuit garbling scheme.

Let SKE = (G,E,D) be an SKE scheme whose message space is M. Let
lenK and lenr denote the length of a secret key and encryption randomness of
SKE, respectively. Let IBE = (Setup,KG,Enc,Dec) be an IBE scheme whose
identity space is ID × {0, 1}lenK × {0, 1}. Let GC = (Garble,Eval) be a gar-
bling scheme. Using SKE, IBE, and GC, we construct the following IBE scheme
KdmIBE = (Kdm.Setup,Kdm.KG,Kdm.Enc,Kdm.Dec) whose message space and
identity space are M and ID, respectively.

Kdm.Setup(1λ):
– Return (PP,MSK) ← Setup(1λ).

Kdm.KG(MSK, id):
– Generate Kid ← G(1λ).
– Generate skid,j,Kid[j] ← KG(MSK, (id, j,Kid[j])) for every j ∈ [lenK].

– Return Kdm.skid :=
(
Kid,

{
skid,j,Kid[j]

}
j∈[lenK]

)
.

Kdm.Enc(PP, id,m):
– Generate rE

r←− {0, 1}lenr and compute
(
Ẽ, {labj,α}j∈[lenK],α∈{0,1}

)
←

Garble(1λ,E(·,m; rE)), where E(·,m; rE) is the encryption circuit E of SKE
into which m and rE are hardwired.

– Compute CTj,α ← Enc(PP, (id, j, α), labj,α) for every j ∈ [lenK] and α ∈
{0, 1}.

– Return Kdm.CT :=
(
Ẽ, {CTj,α}j∈[lenK],α∈{0,1}

)
.

Kdm.Dec(Kdm.skid,Kdm.CT):
– Parse

(
Kid, {skid,j}j∈[lenK]

)
← Kdm.skid.

– Parse
(
Ẽ, {CTj,α}j∈[lenK],α∈{0,1}

)
← Kdm.CT.

– For every j ∈ [lenK], compute labj ← Dec
(
skid,j ,CTj,Kid[j]

)
.

– Compute CTske ← Eval
(
Ẽ, {labj}j∈[lenK]

)
.

– Return m ← D(Kid,CTske).

Correctness. When decrypting a ciphertext of KdmIBE that encrypts a message
m, we first obtain a ciphertext of SKE that encrypts m from the correctness of
IBE and GC. The correctness of KdmIBE then follows from that of SKE.

We prove the following theorem.

Theorem 5. Let SKE be an SKE scheme that is P-KDM-CPA secure (resp.
B-KDM-CPA secure). Let IBE be an IND-ID-CPA secure IBE scheme and GC a
secure garbling scheme. Then, KdmIBE is an IBE scheme that is P-KDM-CPA
secure (resp. B-KDM-CPA secure).
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Proof of Theorem 5. Let A be an adversary that attacks the P-KDM-CPA secu-
rity of KdmIBE and makes at most qch registration queries and qkdm KDM queries.
We proceed the proof via a sequence of games. For every t ∈ {0, . . . , 2}, let SUCt

be the event that A succeeds in guessing the challenge bit b in Game t.

Game 0: This is the original P-KDM-CPA game regarding KdmIBE. Then, we
have Advkdmcpa

KdmIBE,P,A =
∣
∣Pr[SUC0] − 1

2

∣
∣. The detailed description is as follows.

1. The challenger chooses a challenge bit b
r←− {0, 1}, generates (PP,MSK) ←

Setup(1λ), and sends PP to A. The challenger also prepares lists Lext, Lch,
and skkdm all of which are initially empty.

2. A may adaptively make the following three types of queries.
Extraction queries. A sends id ∈ ID \ (Lext ∪ Lch) to the challenger.

The challenger responds as follows.
– The challenger generates Kid ← G(1λ).
– The challenger generates skid,j,Kid[j] ← KG(MSK, (id, j,Kid[j])) for

every j ∈ [lenK].
– The challenger returns Kdm.skid :=

(
Kid,

{
skid,j,Kid[j]

}
j∈[lenK]

)
to

A and adds id to Lext.
Registration queries. A sends id ∈ ID \ (Lext ∪ Lch) to the challenger.

The challenger generates Kdm.skid in the same way as the answer to
an extraction query. The challenger then adds id to Lch and Kdm.skid
to skkdm.

KDM queries. A sends (id, f) ∈ Lch × P to the challenger. The chal-
lenger responds as follows.
(a) The challenger sets m1 := f(skkdm) and m0 := 0|m1|.
(b) The challenger computes

(
Ẽ, {labj,α}j∈[lenK],α∈{0,1}

)
←

Garble(1λ,E(·,mb; rE)), where rE
r←− {0, 1}lenr .

(c) For every j ∈ [lenK] and α ∈ {0, 1}, the challenger computes
CTj,α ← Enc(PP, (id, j, α), labj,α).

(d) The challenger returns Kdm.CT :=
(
Ẽ, {CTj,α}j∈[lenK],α∈{0,1}

)
.

3. A outputs b′ ∈ {0, 1}.
Game 1: Same as Game 0 except the following. When A makes a KDM query

(id, f) ∈ Lch × P, for every j ∈ [lenK] the challenger computes CTj,1−Kid[j] ←
Enc

(
PP, (id, j, 1 − Kid[j]), labj,Kid[j]

)
, where Kid is the secret key of SKE gen-

erated when id was registered to Lch. Recall that in Game 0, CTj,1−Kid[j] is
generated as CTj,1−Kid[j] ← Enc

(
PP, (id, j, 1 − Kid[j]), labj,1−Kid[j]

)
. Namely,

we eliminate labels of garbled circuits that do not correspond to Kid from the
view of A in this game.
In order to simulate both Game 0 and 1, we do not need user secret keys of
IBE that do not correspond to {Kid}id∈Lch

, that is
{
skid,j,1−Kid[j]

}
id∈Lch,j∈[lenK]

while we need
{
skid,j,Kid[j]

}
id∈Lch,j∈[lenK]

to compute the value of f(skkdm) when
A makes a KDM query. Therefore, we can use the IND-ID-CPA security of
IBE when the challenge identity is (id, j, 1 − Kid[j]) for every id ∈ Lch and
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j ∈ [lenK]. By using IND-ID-CPA security of IBE lenK · qkdm times, we can
prove |Pr[SUC0] − Pr[SUC1]| = negl(λ).

Game 2: Same as Game 1 except that to respond to a KDM query from
A, the challenger generates a garbled circuit using the simulator for GC.
More precisely, when A makes a KDM query (id, f) ∈ Lch × P, the chal-
lenger generates rE

r←− {0, 1}lenr and CTske ← E (Kid,mb; rE), and computes(
Ẽ, {labj}j∈[lenK]

)
← Sim(1λ, |E| ,CTske), where Sim is the simulator for GC

and |E| denotes the size of the encryption circuit E of SKE. Moreover, the
challenger computes CTj,α ← Enc (PP, (id, j, α), labj) for every j ∈ [lenK] and
α ∈ {0, 1}.
In the last step, we eliminate labels of garbled circuits that do not correspond
to {Kid}id∈Lch

. Therefore, by using the security of GC qkdm times, we can show
that |Pr[SUC1] − Pr[SUC2]| = negl(λ).

Below, we show that
∣
∣Pr[SUC2] − 1

2

∣
∣ = negl(λ) holds by the P-KDM-CPA

security of SKE. Using the adversary A, we construct an adversary Aske that
attacks the P-KDM-CPA security of SKE when the number of keys is qch.

Before describing Aske, we note on the conversion of projection functions.
We let K(k) be the secret key of SKE generated to respond to the k-th regis-
tration query id(k) made by A. We let αk,j denote the j-th bit of K(k), that
is, K(k)[j] for every j ∈ [lenK] and k ∈ [qch]. Let f be a projection function
that A queries as a KDM query. f is a projection function of

{
K(k)

}
k∈[qch]

and
{
skid(k),j,αk,j

}

k∈[qch],j∈[lenK]
. To attack the P-KDM-CPA security of SKE, Aske

needs to compute a projection function g such that

g

({
K(k)

}

k∈[qch]

)
= f

({
K(k)

}

k∈[qch]
,
{
skid(k),j,αk,j

}

k∈[qch],j∈[lenK]

)
. (1)

We can compute such a function g from f and
{
skid(k),j,α

}
k∈[qch],j∈[lenK],α∈{0,1}

as follows.
We first observe that for every k ∈ [qch] and j ∈ [lenK], we can write

skid(k),j,αk,j
= (1 − αk,j) · skid(k)j,0 ⊕ αk,j · skid(k)j,1

= αk,j · (
skid(k),j,1 ⊕ skid(k),j,0

) ⊕ skid(k),j,0.

We suppose that skid(k),j,1 and skid(k),j,0 are represented as binary strings and ⊕
is done in the bit-wise manner. We define a function selk,j as selk,j(γ ∈ {0, 1}) =
γ · (

skid(k),j,1 ⊕ skid(k),j,0

) ⊕ skid(k),j,0. Then, we have

f

({
K(k)

}

k∈[qch]
,
{
skid(k),j,αk,j

}

k∈[qch],j∈[lenK]

)

= f

({
K(k)

}

k∈[qch]
, {selk,j (αk,j)}k∈[qch],j∈[lenK]

)
.

We define g
({

K(k)
}

k∈[qch]

)
= f

({
K(k)

}
k∈[qch]

,
{
selk,j

(
K(k)[j]

)}
k∈[qch],j∈[lenK]

)
.

Then, g satisfies Eq. 1.
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We show that if f is a projection function, then so is g. Let γ be an output
bit of g

({
K(k)

}
k∈[qch]

)
= f

({
K(k)

}
k∈[qch]

,
{
selk,j

(
K(k)[j]

)}
k∈[qch],j∈[lenK]

)
. We

say that γ is a projective bit for f (resp. g) if it depends on a single bit of an
input for f (resp. g). We also say that γ is a constant bit for f (resp. g) if it
does not depend on any bit of an input for f (resp. g).

Since f is a projection function, γ is a constant bit or projective bit for
f that depends on either part of

{
K(k)

}
k∈[qch]

or
{
selk,j

(
K(k)[j]

)}
k∈[qch],j∈[lenK]

.
Thus, we consider the following three cases. (i) If γ is a constant bit for f , γ
is clearly a constant bit for g. (ii) If γ is a projective bit for f and depends
on a single bit of

{
K(k)

}
k∈[qch]

, γ is a projective bit for g since
{
K(k)

}
k∈[qch]

is also an input for g. (iii) If γ is a projective bit for f and depends on some
bit of

{
selk,j

(
K(k)[j]

)}
k∈[qch],j∈[lenK]

, γ is a projective bit for g since each bit of
{
selk,j

(
K(k)[j]

)}
k∈[qch],j∈[lenK]

depends on a bit K(k)[j] for some k ∈ [qch] and

j ∈ [lenK], and K(k)[j] is a part of an input to g. Therefore, γ is a projective bit
or constant bit for g in any case, and thus g is a projection function.

We now describe the adversary Aske that uses the above conversion of pro-
jection functions.

1. On input 1λ, Aske first generates (PP,MSK) ← Setup(1λ) and sends PP to A.
Then, Aske prepares Lext and Lch.

2. Aske responds to queries made by A as follows.
Extraction queries. When A sends id ∈ ID \ (Lext ∪ Lch) as an extraction

query, Aske responds exactly in the same way as the challenger in Game 2.
We note that, in this case, Aske computes the answer Kdm.skid using a
freshly generated key Kid of SKE.

Registration queries. When A makes the k-th (k ≤ qch) registration query
id(k) ∈ ID \ (Lext ∪ Lch), Aske relates id(k) to K(k), where K(k) is the k-th
secret key of SKE generated by the challenger. Aske generates skid(k),j,α ←
KG

(
MSK,

(
id(k), j, α

))
for every j ∈ [lenK] and α ∈ {0, 1}. They are used

for the conversion of functions. Aske then adds id(k) to Lch.
KDM queries. When A makes a KDM query (id, f) ∈ Lch×P, Aske responds

as follows.
(a) Aske first computes a projection function g satisfying

g

({
K(k)

}

k∈[qch]

)
= f

({
K(k)

}

k∈[qch]
,
{
skid(k),j,K(k)[j]

}

k∈[qch],j∈[lenK]

)

as we noted above from
{
skid(k),j,α

}
k∈[qch],j∈[lenK],α∈{0,1}.

(b) Let k ∈ [qch] be the number that related to id. Since id was added
to Lch, such k ∈ [qch] exists. Aske queries (k, g) to the challenger as a
KDM query and gets the answer CTske.

(c) Aske computes
(
Ẽ,

{
labj

}
j∈[lenK]

)
← Sim

(
1λ, |E| ,CTske

)
and for every

j ∈ [lenK] and α ∈ {0, 1}, computes CTj,α ← Enc (PP, (id, j, α), labj).
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(d) Aske returns Kdm.CT :=
(
Ẽ, {CTj,α}j∈[lenK],α∈{0,1}

)
to A.

3. When A terminates with output b′ ∈ {0, 1}, Aske outputs β′ = b′.

Aske perfectly simulates Game 2 for A in which the challenge bit is the same
as that of P-KDM-CPA game of SKE between the challenger and Aske. Moreover,
Aske just outputs A’s output. Thus, Advkdmcpa

SKE,P,Aske,qch
(λ) =

∣
∣Pr[SUC2] − 1

2

∣
∣ holds.

Since SKE is P-KDM-CPA secure,
∣
∣Pr[SUC2] − 1

2

∣
∣ = negl(λ) holds.

From the above arguments, we see that

Advkdmcpa
KdmIBE,P,A(λ) =

∣
∣
∣
∣Pr[SUC0] − 1

2

∣
∣
∣
∣

≤
1∑

t=0

|Pr[SUCt] − Pr[SUCt+1]| +
∣
∣
∣
∣Pr[SUC2] − 1

2

∣
∣
∣
∣ = negl(λ).

Since the choice of A is arbitrary, KdmIBE satisfies P-KDM-CPA security.

On the transformation of B-KDM-CPA secure schemes. We can also construct
B-KDM-CPA secure IBE based on B-KDM-CPA secure SKE via the construc-
tion. The security proof of B-KDM-CPA secure IBE is in fact almost the same
as that of P-KDM-CPA secure IBE. The only issue we need to care is whether
the conversion of functions performed by Aske is successful or not also when we
construct B-KDM-CPA secure IBE.

Let f be a function queried by an adversary A for KdmIBE. As above, consider
a function g such that

g

({
K(k)

}

k∈[qch]

)
= f

({
K(k)

}

k∈[qch]
,
{
selk,j

(
K(k)[j]

)}

k∈[qch],j∈[lenK]

)
,

where the function selk,j is the function we defined earlier. Since selk,j is com-
putable by a circuit of a-priori bounded size, we see that if f is computable by
a circuit of a-priori bounded size, then so is g. Therefore, Aske can successfully
perform the conversion of functions also when constructing B-KDM-CPA secure
IBE. � (Theorem5)

5 SIM-RSO Secure IBE Based on IND-ID-CPA
Secure IBE

We construct SIM-RSO secure IBE based on any IND-ID-CPA secure IBE.
Let IBE = (Setup,KG,Enc,Dec) be an IBE scheme whose message space and

identity space are {0, 1} and ID × {0, 1}, respectively. Using IBE, we construct
the following IBE scheme RsoIBE = (Rso.Setup,Rso.KG,Rso.Enc,Rso.Dec) whose
message space and identity space are {0, 1} and ID.

Rso.Setup(1λ):
– Return (PP,MSK) ← Setup(1λ).
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Rso.KG(MSK, id):
– Generate r

r←− {0, 1}.
– Generate skid,r ← KG(MSK, (id, r)).
– Return Rso.skid := (r, skid,r).

Rso.Enc(PP, id,m ∈ {0, 1}):
– For every α ∈ {0, 1}, compute CTα ← Enc(PP, (id, α),m).
– Return Rso.CT := (CT0,CT1).

Rso.Dec(Rso.skid,Rso.CT):
– Parse (r, skid,r) ← Rso.dk.
– Parse (CT0,CT1) ← Rso.CT.
– Return m ← Dec(skid,r,CTr).

Correctness. The correctness of RsoIBE directly follows from that of IBE.
We prove the following theorem.

Theorem 6. Let IBE be an IND-ID-CPA secure IBE scheme. Then, RsoIBE is
a SIM-RSO secure IBE scheme.

Proof of Theorem 6. Let A be an adversary that attacks the SIM-RSO security
of RsoIBE. We show the proof via the following sequence of games.

Let D be an PPT distinguisher with binary output. For every t ∈ {0, 1, 2}, let
Tt be the event that D outputs 1 given the output of the challenger in Game t.

Game 0: This is the real game of SIM-RSO security regarding RsoIBE. The
detailed description is as follows.
1. First, the challenger generates (PP,MSK) ← Setup(1λ) and sends PP to

A. The challenger prepares a list Lext.
At any step of the game, A can make key extraction queries.
Extraction queries. A sends id ∈ ID \ Lext to the challenger. The

challenger responds as follows.
(a) The challenger generates r

r←− {0, 1}.
(b) The challenger generates skid,r ← KG(MSK, (id, r)).
(c) The challenger returns Rso.skid := (r, skid,r).

2. A sends qch identities
{
id(k) ∈ ID \ Lext

}

k∈[qch]
and a message distribu-

tion Dist on {0, 1}qch to the challenger, where qch is an a-priori unbounded
polynomial of λ. The challenger generates

{
m(k)

}
k∈[qch]

← Dist and com-

putes Rso.CT(k) for every k ∈ [qch] as follows.
(a) The challenger computes CT(k)

α ← Enc
(
PP,

(
id(k), α

)
,m(k)

)
for

every α ∈ {0, 1}.
(b) The challenger sets Rso.CT(k) :=

(
CT

(k)
0 ,CT

(k)
1

)
.

The challenger sends
{
Rso.CT(k)

}

k∈[qch]
to A.

Below, A is not allowed to make extraction queries for
{
id(k)

}

k∈[qch]
.
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3. A sends a subset I of [qch] to the challenger. The challenger generates
Rso.skid(k) for every k ∈ I as follows.
(a) The challenger generates r(k)

r←− {0, 1}.
(b) The challenger generates skid(k),r(k) ← KG

(
MSK,

(
id(k), r(k)

))
.

(c) The challenger sets Rso.skid(k) :=
(
r(k), skid(k),r(k)

)
.

The challenger sends
{(

Rso.skid(k) ,m(k)
)}

k∈I to A.
4. A sends a string out to the challenger.
5. The challenger outputs

outreal :=
({

id(k)
}

k∈[qch]
,
{

m(k)
}

k∈[qch]
,Dist, I, out

)
.

Game 1: Same as Game 0 except that for every k ∈ [qch], the challenger generates

CT
(k)

1−r(k) ← Enc
(
PP,

(
id(k), 1 − r(k)

)
, 1 − m(k)

)
.

We note that the challenger generates CT
(k)

r(k) ← Enc
(
PP, (id(k), r(k)),m(k)

)

for every k ∈ [qch] in both Games 0 and 1.
Secret keys for identities

{(
id(k), 1 − r(k)

)}

k∈[qch]
of IBE are not given to A

regardless of which users A corrupts in both Games 0 and 1. Therefore, by
using the security of IBE qch times, we can prove |Pr[T0] − Pr[T1]| = negl(λ).

Game 2: Same as Game 1 except that for every k ∈ [qch], the challenger uses
r(k) ⊕ m(k) instead of r(k) as the random bit contained in the k-th RsoIBE’s
secret key Rso.skid(k) for id(k). We note that the challenger does not need{
r(k)

}
k∈[qch]

before generating
{
m(k)

}
k∈[qch]

. Thus, the transition from Games

1 to 2 makes sense, and |Pr[T2] − Pr[T3]| = 0 holds since r(k) ⊕ m(k) is dis-
tributed uniformly at random for every k ∈ [qch].

In Game 2, uncorrupted messages
{
m(k)

}
k∈[qch]\I are completely hidden from

the view of A. To verify the fact, we confirm that ciphertexts
{
Rso.CT(k)

}

k∈[qch]

are independent of
{
m(k)

}
k∈[qch]

.

For every k ∈ [qch], the challenger generates Rso.CT(k) =
(
CT

(k)
0 ,CT

(k)
1

)
by

computing

CT
(k)

r(k)⊕m(k) ← Enc
(
PP,

(
id(k), r(k) ⊕ m(k)

)
,m(k)

)
,

CT
(k)

1−r(k)⊕m(k) ← Enc
(
PP,

(
id(k), 1 − r(k) ⊕ m(k)

)
, 1 − m(k)

)
.

We see that, regardless of the value of m(k) ∈ {0, 1}, the challenger computes

CT
(k)

r(k) ← Enc
(
PP,

(
id(k), r(k)

)
, 0

)
,

CT
(k)

1−r(k) ← Enc
(
PP,

(
id(k), 1 − r(k)

)
, 1

)
.
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Therefore, we see that ciphertexts
{
Rso.CT(k)

}

k∈[qch]
are independent of

{
m(k)

}
k∈[qch]

in Game 2.
Then, we construct a simulator S that perfectly simulates Game 2 for A.

The description of S is as follows.

1. On input 1λ, S generates (PP,MSK) ← Setup(1λ) and sends PP to A. S then
prepares a list Lext.
Extraction queries. When A sends id ∈ ID \ Lext, S responds as follows.

(a) S generates r
r←− {0, 1}.

(b) S generates skid,r,← KG(MSK, (id, r)).
(c) S returns Rso.skid := (r, skid,r) to A and adds id to Lext.

2. When A outputs a message distribution Dist with identities
{
id(k)

}

k∈[qch]
, S

sends them to the challenger. Then, S computes Rso.CT(k) for every k ∈ [qch]
as follows.
(a) S computes r(k)

r←− {0, 1}.
(b) S computes

CT
(k)

r(k) ← Enc
(
PP,

(
id(k), r(k)

)
, 0

)
and

CT
(k)

1−r(k) ← Enc
(
PP,

(
id(k), 1 − r(k)

)
, 1

)
.

(c) S sets Rso.CT(k) :=
(
CT

(k)
0 ,CT

(k)
1

)
.

S sends
{
Rso.CT(k)

}

k∈[qch]
to A.

3. When A outputs a subset I of [qch], S sends it to the challenger, and gets
{
m(k)

}
k∈I . S computes skid(k),r(k)⊕m(k) ← KG

(
MSK,

(
id(k), r(k) ⊕ m(k)

))
,

sets Rso.skid(k) :=
(
r(k) ⊕ m(k), skid(k),r(k)⊕m(k)

)
for every k ∈ I, and sends{(

Rso.skid(k) ,m(k)
)}

k∈I to A.
4. When A outputs a string out, S outputs it.

S perfectly simulates Game 2 for A. Therefore, we have

Advsimrso
RsoIBE,A,S,D(λ) = |Pr[T0] − Pr[T2]| ≤

2∑

t=0

|Pr[Tt] − Pr[Tt+1]| . (2)

From the above arguments, we see that each term of the right hand side of
Inequality 2 is negligible in λ. Since the choice of A and D is arbitrary and the
description of S does not depend on that of D, we see that for any A, there
exists S such that for any D we have Advsimrso

RsoIBE,A,S,D(λ) = negl(λ). This means
that RsoIBE is SIM-RSO secure. � (Theorem6)
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6 KDM Secure PKE from KDM Secure SKE and
IND-CPA Secure PKE

We show how to construct KDM secure PKE based on KDM secure SKE and
IND-CPA secure PKE. The construction is similar to that of KDM secure IBE we
show in Sect. 4 except that IND-CPA secure PKE is used instead of IND-ID-CPA
secure IBE as a building block.

Let SKE = (G,E,D) be an SKE scheme whose message space is M. Let lenK
and lenr denote the length of a secret key and encryption randomness of SKE,
respectively. Let PKE = (KG,Enc,Dec) be a PKE scheme and GC = (Garble,Eval)
a garbling scheme. Using SKE,PKE, and GC, we construct the following PKE
scheme KdmPKE = (Kdm.KG,Kdm.Enc,Kdm.Dec) whose message space is M.

Kdm.KG(1λ):
– Generate K ← G(1λ).
– Generate (ekj,α, dkj,α) ← KG(1λ) for every j ∈ [lenK] and α ∈ {0, 1}.
– Return Kdm.ek := {ekj,α}j∈[lenK],α∈{0,1} and Kdm.dk :=

(
K,

{
dkj,K[j]

}
j∈[lenK]

)
.

Kdm.Enc(Kdm.ek,m):
– Parse {ekj,α}j∈[lenK],α∈{0,1} ← Kdm.ek.

– Generate rE
r←− {0, 1}lenr and compute

(
Ẽ, {labj,α}j∈[lenK],α∈{0,1}

)
←

Garble(1λ,E(·,m; rE)), where E(·,m; rE) is the encryption circuit E of SKE
into which m and rE are hardwired.

– For every j ∈ [lenK] and α ∈ {0, 1}, compute CTj,α ← Enc(ekj,α, labj,α).
– Return Kdm.CT :=

(
Ẽ, {CTj,α}j∈[lenK],α∈{0,1}

)
.

Kdm.Dec(Kdm.dk,Kdm.CT):
– Parse

(
K, {dkj}j∈[lenK]

)
← Kdm.dk.

– Parse
(
Ẽ, {CTj,α}j∈[lenK],α∈{0,1}

)
← Kdm.CT.

– For every j ∈ [lenK], compute labj ← Dec
(
dkj ,CTj,K[j]

)
.

– Compute CTske ← Eval
(
Ẽ, {labj}j∈[lenK]

)
.

– Return m ← D(K,CTske).

Correctness. When decrypting a ciphertext of KdmPKE that encrypts a message
m, we first obtain a ciphertext of SKE that encrypts m from the correctness of
PKE and GC. The correctness of KdmPKE then follows from that of SKE.

We have the following theorem.

Theorem 7. Let SKE be an SKE scheme that is P-KDM-CPA secure (resp.
B-KDM-CPA secure). Let PKE be an IND-CPA secure PKE scheme and GC a
secure garbling scheme. Then, KdmPKE is a PKE scheme that is P-KDM-CPA
secure (resp. B-KDM-CPA secure).

The proof for Theorem 7 is almost the same as that for Theorem 5. Thus, we
omit it and provide in the full version of this paper [27].
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7 SIM-RSO Secure PKE Based on IND-CPA Secure PKE

We can construct SIM-RSO secure PKE based on any IND-CPA secure PKE
if we take the revelation of only secret keys into account. The construction is
similar to that of SIM-RSO secure IBE we show in Sect. 5 except that IND-CPA
secure PKE is used instead of IND-ID-CPA secure IBE.

Using a PKE scheme PKE = (KG,Enc,Dec), we construct the following PKE
scheme RsoPKE = (Rso.KG,Rso.Enc,Rso.Dec) whose message space is {0, 1}.

Rso.KG(1λ):
– Generate (ekα, dkα) ← KG(1λ) for every α ∈ {0, 1}.
– Generate r

r←− {0, 1}.
– Return Rso.ek := (ek0, ek1) and Rso.dk := (r, dkr).

Rso.Enc(Rso.ek,m ∈ {0, 1}):
– Parse (ek0, ek1) ← Rso.ek.
– For every α ∈ {0, 1}, compute CTα ← Enc(ekα,m).
– Return Rso.CT := (CT0,CT1).

Rso.Dec(Rso.dk,Rso.CT):
– Parse (r, dkr) ← Rso.dk
– Parse (CT0,CT1) ← Rso.CT.
– Return m ← Dec(dkr,CTr).

Correctness. The correctness of RsoPKE directly follows from that of PKE.
We have the following theorem.

Theorem 8. Let PKE be an IND-CPA secure PKE scheme. Then, RsoPKE is
a SIM-RSO secure PKE scheme.

The proof for Theorem8 is almost the same as that for Theorem 6. Thus, we
omit it and provide in the full version of this paper [27].
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