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Abstract. Universally composable protocols provide security even in
highly complex environments like the Internet. Without setup assump-
tions, however, UC-secure realizations of cryptographic tasks are impos-
sible. Tamper-proof hardware tokens, e.g. smart cards and USB tokens,
can be used for this purpose. Apart from the fact that they are widely
available, they are also cheap to manufacture and well understood.

Currently considered protocols, however, suffer from two major draw-
backs that impede their practical realization:

– The functionality of the tokens is protocol-specific, i.e. each protocol
requires a token functionality tailored to its need.

– Different protocols cannot reuse the same token even if they require
the same functionality from the token, because this would render the
protocols insecure in current models of tamper-proof hardware.

In this paper we address these problems. First and foremost, we propose
formalizations of tamper-proof hardware as an untrusted and global setup
assumption. Modeling the token as a global setup naturally allows to
reuse the tokens for arbitrary protocols. Concerning a versatile token
functionality we choose a simple signature functionality, i.e. the tokens
can be instantiated with currently available signature cards. Based on
this we present solutions for a large class of cryptographic tasks.
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1 Introduction

In 2001, Canetti [5] proposed the Universal Composability (UC) framework.
Protocols proven secure in this framework have strong security guarantees for
protocol composition, i.e. the parallel or interleaved execution of protocols. Sub-
sequently, it was shown that it is not possible to construct protocols in this strict
framework without additional assumptions [7]. Typical setup assumptions like a
common reference string or a public key infrastructure assume a trusted setup.
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Katz [33] on the other hand put forward the idea that protocol parties create
and exchange untrusted tamper-proof hardware tokens, i.e. the tokens may be
programmed maliciously by the sending party.

Katz’ proposal spawned a line of research that focuses mainly on the feasibil-
ity of UC-secure two-party computation. First, stateful tamper-proof hardware
was considered [14,17,24,26,33,38], then weaker models of tamper-proof hard-
ware, where the hardware token cannot reliably keep a state, i.e. the receiver
can reset the token [11,12,15,18–20,25–28,34].

Common to all of the aforementioned results is the fact that each protocol
requires a token functionality that is tailored to the protocol. From a practi-
cal point of view it seems unlikely that these tokens will ever be produced by
hardware vendors, and software implementations on standard smart cards are
far too inefficient. Another negative side effect of protocol-specific tokens is that
users need to keep at least one token for each application, which is prohibitive
in practice.

We would therefore like to be able to use widely available standard hardware
for our protocols. Examples are signature cards, where the token functionality
is a simple signature functionality. The signing key is securely stored inside the
tamper-proof hardware, while the verification key can be requested from the
card. These cards are not required to keep an internal state (the keys can be
hardwired). As an alternative several works in the literature discuss bit-oblivious
transfer (OT) tokens as a very simple and cheap functionality [2,26,31]. However,
there are no standardized implementations of such tokens, while signature tokens
are standardized and already deployed.

As it turns out, even if there were protocols that use a signature card as a
setup assumption, it would not be possible to use the same token in a different
protocol. This is due to the current definitions of tamper-proof hardware in the
UC model. To the best of our knowledge, reusing tamper-proof hardware was
only considered by Hofheinz et al. [29], who introduce the concept of catalysts.
In their model, they show that the setup can be used for multiple protocols,
unlike a normal UC setup, but they assume a trusted setup.

A recent line of research, e.g. [4,8,10], has focused on efficient protocols
based on a globally available setup. This stronger notion of UC security, called
Generalized UC (GUC), was introduced by Canetti et al. [6] and captures the
fact that protocols are often more efficient if they can use the same setup. Indeed,
a globally available token in the sense of GUC would naturally allow different
protocols to use the same token. We note that the work of Chandran et al. [11]
and subsequent works following the approach of requiring only black-box access
to the token during simulation (e.g. [12,26]) might in principle be suitable for
reuse, however none of these works consider this scenario and the problem of
highly protocol-specific token functionalities is prevalent in all of these works.

1.1 Our Contribution

We apply the GUC methodology to resettable tamper-proof hardware and define
the first global setup that is untrusted, in contrast to trusted and incorruptible
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setups like a global random oracle [8], key registration with knowledge [6] or
trusted processors [40].

We present two models for reusable tamper-proof hardware:

– The first model is inspired by the work of [29] and generalizes their approach
from trusted signature cards to generic and untrusted resettable tokens. It
is also designed to model real world restrictions regarding concurrent access
to e.g. a smart card. A real world analogy is an ATM that seizes the card
for the duration of the cash withdrawal. During that time, the card cannot
be used to sign a document. We want to highlight that this only limits the
access to the tokens for a short time, it is still possible to run several protocols
requiring the same token in an interleaved manner.

– The second model is a GUC definition of a resettable tamper-proof hardware
token following the approach of [8], which is meant to give a GUC definition
of reusable tamper-proof hardware. In particular, this means that there are
no restrictions at all regarding access to the token.

We also consider a peculiarity of real world signature cards that is typically
ignored in idealized descriptions. Most signature cards outsource some of the
hashing of the message, which is usually needed in order to generate a signature,
to the client. This is done to make the signature generation more efficient. We
formally capture this in a new definition of signatures where the signing process
is partitioned into a preprocessing and the actual signing. As we will show, cards
that do outsource the hashing—even if only in part—cannot be used in all sce-
narios. Nevertheless, we show that a wide range of cryptographic functionalities
can be realized, even if the card enforces preprocessing.

– UC-secure commitments in both models, even with outsourced hashing by
the signature card. This means that all currently available signature cards
can in principle be used with our protocols.

– UC-secure non-interactive secure computation (NISC) in the GUC model.
Here it is essential that the hashing is performed on the card, i.e. not all
signature cards are suitable for these protocols. This result establishes the
minimal interaction required for (one-sided) two-party computation.

We show that the number of tokens sent is optimal, and that stateful tokens
do not yield any advantage in the setting of globally available or reusable tokens.

1.2 Our Techniques

Modelling reusable hardware tokens. In the definition of the “realistic”
model, a protocol is allowed to send a seize command to the token function-
ality, which will block all requests by other protocols to the token until it is
released again via release. We have to make sure that messages cannot be
exchanged between different protocols, thus the receiving party (of the signa-
ture, i.e. the sender of the signature card) has to choose a nonce. This nonce
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has to be included in the signature, thereby binding the message to a proto-
col instance. This obviously requires interaction, so non-interactive primitives
cannot be realized in this model.

In order to explore the full feasibility of functionalities with reusable tokens
and obtain more round-efficient protocols, we therefore propose a more idealized
model following [8]. The simulator is given access to all “illegitimate” queries that
are made to the token, so that all queries concerning a protocol (identified by
a process ID PID), even from other protocols, can be observed. Essentially, this
turns the token into a full-blown GUC functionality and removes the additional
interaction from the protocols.

Commitments from signature cards. Concerning our protocols in the above
described models, one of the main difficulties when trying to achieve UC security
with hardware tokens is to make sure that the tokens cannot behave maliciously.
In our case, this would mean that we have to verify that the signature was
created correctly. Usually, e.g. in [20,29], this is done via zero-knowledge proofs of
knowledge, but the generic constructions that are available are highly inefficient.
Instead, similar to Choi et al. [12], we use unique signatures. Unique signatures
allow verification of the signature, but they also guarantee that the signature
is subliminal-free, i.e. a malicious token cannot tunnel messages through the
signatures.

Based on tokens with this unique signature functionality, we construct a
straight-line extractable commitment. The main idea is to send the message to
the token and obtain a signature on it. The simulator can observe this message
and extract it. Due to the aforementioned partitioning of the signature algorithm
on current smart cards, however, the simulator might only learn a hash value,
which makes extraction impossible. We thus modify this approach and make it
work in our setting. Basically, we keep the intermediate values sent to the token
in the execution and use them as a seed for a PRG, which can in turn be used to
mask the actual message. Since the simulator observes this seed, it can extract
the message. However, the token can still abort depending on the input, so we
also have to use randomness extraction on the seed, otherwise the sender of the
token might learn some bits of the seed.

Using the straight-line-extractable commitment as a building block, we mod-
ify the UC commitment of [8] so that it works with signature cards.

Non-interactive witness-extractable arguments. A witness-extractable
argument is basically a witness-indistinguishable argument of knowledge
(WIAoK) with a straight-line extraction procedure. We construct such a non-
interactive witness-extractable argument for later use in non-interactive secure
computation (NISC). Our approach follows roughly the construction of Pass [39],
albeit not in the random oracle model. [39] modify a traditional WIAoK by
replacing the commitments with straight-line extractable ones. Further, they
replace the application of a hash function to the transcript (i.e. the Fiat-Shamir
heuristic) with queries to a random oracle. For our construction, we can basi-
cally use our previously constructed straight-line extractable commitments, but
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we also replace the queries to the random oracle by calls to the signature token,
i.e. we can use the EUF-CMA security of the signature to ensure the soundness
of the proof.

As hinted at above, this protocol requires the ideal model, since using a nonce
would already require interaction. Also, there is a subtle technical issue when
one tries to use signatures with preprocessing instead of the random oracle. In
the reduction to the EUF-CMA security (where the reduction uses the signing
oracle to simulate the token), it is essential that the commitments contain an
(encoded) valid signature before they are sent to the token. However, if we use
preprocessing, the preprocessed value does not provide the reduction with the
commitments, which could in turn be extracted to reveal the valid signature and
break the EUF-CMA security. Instead, it only obtains a useless preprocessed
value, and once the reduction obtains the complete commitments via the non-
interactive proof from the adversary, a valid call to the signature card on these
commitments means that the adversary has a valid way to obtain a signature
and the reduction does not go through. If the protocol were interactive, this
would not be an issue, because we could force the adversary to first send the
commitments and then provide a signature in a next step. But since the protocol
is non-interactive, this does not work and we cannot use signature cards with
preprocessing for this protocol. We believe this to be an interesting insight, since
it highlights one of the differences in feasibility between idealized and practically
available hardware.

1.3 Related Work

In an independent and concurrent work, using an analogous approach based
on [8], Hazay et al. [27] recently introduced a GUC-variant of tamper-proof
hardware to deal with the problem of adversarial token transfers in the multi-
party case. This problem is equivalent to the problem of allowing the parties
to reuse the token in different protocols without compromising security. Apart
from using completely different techniques, however, [27] are only interested in
the general feasibility of round-efficient protocols. In contrast, we would like to
minimize the number of tokens that are sent. Additionally, [27] only consider
the somewhat idealized GUC token functionality, and do not investigate a more
realistic approach (cf. Sect. 3). This is an important aspect, in particular since
our results indicate that some of the protocols in the idealized model cannot
be realized in our more natural token model that is compatible with existing
signature cards. Thus, from a more practical point of view, even the feasibility
of generic 2PC is not conclusively resolved from existing results.

Table 1 gives a concise overview of our result compared with previous solu-
tions based on resettable hardware that make black-box use of the token program
in the UC security proof. Other approaches as shown in e.g. [17,18,20] are more
efficient, but require the token code and therefore cannot be reused.

Generally, physically uncloneable functions (PUFs) also provide a fixed func-
tionality, which has (assumed) statistical security. One could thus imagine using
PUFs to realize reusable tokens. However, in the context of transferable setups
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Table 1. Comparison of our result with existing solutions based on resettable hardware
that technically allow reusing the tokens. All results mentioned above allow UC-secure
2PC, either directly or via generic completeness results.

# Tokens Rounds Assumption Token func.

[11] 2 (bidir.) Θ(κ) eTDP Specific for com.

[26] Θ(κ) (bidir.) Θ(1) CRHFa Specific for OT

[12] 2 (bidir.) Θ(1) VRFb Specific for OT

[27] Θ(κ2) (bidir.) Θ(1) OWF Specific for OT

Ours (Sect. 3) 2 (bidir.) Θ(1) Unique Sign.c Generic

Ours (Sect. 4) 2 (bidir.) Θ(1) Unique Sign./DDHd Generic
a A protocol based on OWF is also shown, but the round complexity increases to
Θ(κ/ log(κ)). Additionally, it was shown by Hazay et al. [27] that there is a subtle
error in the proof of the protocol.
b Verifiable random functions (VRFs) are only known from specific number-
theoretic assumptions [32,35,37]. They also present a protocol with similar prop-
erties based on a CRHF, but the number of OTs is bounded in this case.
cUnique signatures are only known from specific number-theoretic assumptions
and closely related to VRFs. These are required for our protocols.
dDDH is necessary for the NISC protocol.

(i.e. setups that do not disclose whether they have been passed on), Boureanu et
al. [4] show that neither OT nor key exchange can be realized, and PUFs fall into
the category of transferable setups. Tamper-proof hardware as defined in this
paper on the other hand is not a transferable setup according to their definitions,
so their impossibilities do not apply.

2 Preliminaries

2.1 UC Framework

We show our results in the generalized UC framework (GUC) of Canetti et al. [6].
Let us first briefly describe the basic UC framework [5], and then highlight the
changes required for GUC. In UC, the security of a real protocol π is shown by
comparing it to an ideal functionality F . The ideal functionality is incorruptible
and secure by definition. The protocol π is said to realize F , if for any adversary
A in the real protocol, there exists a simulator S in the ideal model that mimics
the behavior of A in such a way that any environment Z, which is plugged either
to the ideal or the real model, cannot distinguish both.

In UC, the environment Z cannot run several protocols that share a state,
e.g. via the same setup. In GUC, this restriction is removed. In particular, Z
can query the setup independently of the current protocol execution, i.e. the
simulator will not observe this query.

We will realize a UC-secure commitment. The ideal functionality FCOM is
defined in Fig. 1.
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Functionality FCOM

Implicitly parametrized by a domain of secrets S.

Commit phase:
1. Await an input (commit, s) with s ∈ S from the sender. Store s, send (committed)

to the adversary and ignore any further commit-messages.
2. Await a message (notify) from the adversary. Then send (committed) to the

receiver.

Unveil phase:
3. Await an input (unveil, ŝ) with ŝ ∈ S from the sender. Then, store ŝ and send

(opened) to the adversary.
4. Await a message (output) from the adversary. Then, if ŝ = s, send (opened, ŝ) to

the receiver; otherwise, send a special reject message ⊥.

Fig. 1. Ideal functionality for commitments.

2.2 Commitments

We need several types of commitment schemes. A commitment is a (possibly
interactive) protocol between two parties and consists of two phases. In the
commit phase, the sender commits to a value and sends the commitment to
the receiver. The receiver must not learn the underlying value before the unveil
phase, where the sender sends the unveil information to the receiver. The receiver
can check the correctness of the commitment. A commitment must thus pro-
vide two security properties: a hiding property that prevents the receiver from
extracting the input of the sender out of the commitment value, and a binding
property that ensures that the sender cannot unveil a value other than the one
he committed to.

Definition 1. A commitment scheme COM between a sender S and a receiver
R consists of two PPT algorithms Commit and Open with the following
functionality.

– Commit takes as input a message s and computes a commitment c and unveil
information d.

– Open takes as input a commitment c, unveil information d and a message s
and outputs a bit b ∈ {0, 1}.

We require the commitment scheme to be correct, i.e. for all s:

Open(Commit(s), d, s) = 1

We assume the standard notions of statistical binding and computational
hiding.
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Further, we need extractable commitments. Extractabilty is a stronger form
of the binding property which states that the sender is not only bound to one
input, but that there also exists an (efficient) extraction algorithm that extracts
this value. Our definition of extractable commitments is derived from Pass and
Wee [41].

Definition 2. We say that COM = (Commit,Open) is extractable, if there
exists an (expected) PPT algorithm Ext that, given black-box access to any mali-
cious PPT algorithm AS, outputs a pair (ŝ, τ) such that

– (simulation) τ is identically distributed to the view of AS at the end of inter-
acting with an honest receiver R in the commit phase,

– (extraction) the probability that τ is accepting and ŝ = ⊥ is negligible, and
– (binding) if ŝ �= ⊥, then it is infeasible to open τ to any value other than ŝ.

Extractable commitments can be constructed from any commitment scheme
via additional interaction, see e.g. [23,41]. The definition of extractable com-
mitments implicitly allows the extractor to rewind the adversarial sender to
extract the input. In some scenarios, especially in the context of concurrently
secure protocols, it is necessary that the extractor can extract the input with-
out rewinding. This is obviously impossible in the plain model, as a malicious
receiver could employ the same strategy to extract the sender’s input. Thus, some
form of setup (e.g. tamper-proof hardware) is necessary to obtain straight-line
extractable commitments.

Definition 3. We say that COM = (Commit,Open) is straight-line extractable
if in addition to Definition 2, the extractor does not use rewinding.

Another tool that we need is a trapdoor commitment scheme, where the
sender can equivocate a commitment if he knows a trapdoor. We adapt a defi-
nition from Canetti et al. [8].

Definition 4. A trapdoor commitment scheme TCOM between a sender S and
a receiver R consists of five PPT algorithms KeyGen, TVer, Commit, Equiv and
Open with the following functionality.

– KeyGen takes as input the security parameter and creates a key pair (pk, sk),
where sk serves as the trapdoor.

– TVer takes as input pk and sk and outputs 1 iff sk is a valid trapdoor for pk.
– Commit takes as input a message s and computes a commitment c and unveil

information d.
– Equiv takes as input the trapdoor sk, message s′, commitment c, unveil infor-

mation d and outputs an unveil information d′ for s′.
– Open takes as input a commitment c, unveil information d and a message s

and outputs a bit b ∈ {0, 1}.

The algorithm Equiv has to satisfy the following condition. For every PPT
algorithm AR, the following distributions are computationally indistinguishable.
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– (pk, c, d, s), where (pk, sk) ← AR(1κ) such that TVer(pk, sk) = 1 and (c, d) ←
Commit(pk, s)

– (pk, c′, d′, s), where (pk, sk) ← AR(1κ) such that TVer(pk, sk) = 1, (c′, z) ←
Commit(pk, ·) and d′ ← Equiv(sk, s, c′, z)

For example, the commitment scheme by Pedersen [42] satisfies the above
definition.

2.3 Witness-Indistinguishability

We construct a witness-indistiguishable argument of knowledge in this paper.

Definition 5. A witness-indistinguishable argument of knowledge system for a
language L ∈ NP with witness relation RL consists of a pair of PPT algorithms
(P,V) such that the following conditions hold.

– Completeness: For every (x,w) ∈ RL,

Pr[〈P(w),V〉(x) = 1] = 1.

– Soundness: For every x /∈ L and every malicious PPT prover P∗,

Pr[〈P∗,V〉(x) = 1] ≤ negl(|x|).

– Witness-indistinguishability: For every w1 �= w2 such that (x,w1) ∈ RL,
(x,w2) ∈ RL and every PPT verifier V∗, the distributions {〈P(w1),V∗〉(x)}
and {〈P(w2),V∗〉(x)} are computationally indistinguishable.

– Proof of Knowledge: There exists an (expected) PPT algorithm Ext such that
for every x ∈ L and every PPT algorithm P∗, there exists a negligible function
ν(κ) such that Pr[Ext(x,P∗) ∈ wL(x)] > Pr[〈P∗,V〉(x) = 1] − ν(κ).

Witness-indistinguishable arguments/proofs of knowledge are also sometimes
referred to as witness-extractable. Similar to the case of extractable commit-
ments, one can also require the extractor to be straight-line, i.e. the extractor
may not rewind the prover. Again, this requires an additional setup assumption
and is not possible in the plain model.

Definition 6. We say that a witness-indistinguishable argument/proof system
is straight-line witness-extractable if in addition to Definition 5, the extractor
does not use rewinding.

2.4 Digital Signatures

A property of some digital signature schemes is the uniqueness of the signatures.
Our definition is taken from Lysyanskaya [35]. Such schemes are known only from
specific number theoretic assumptions.

Definition 7. A digital signature scheme SIG consists of three PPT algorithms
KeyGen, Sign and Verify.
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– KeyGen(1κ) takes as input the security parameter κ and generates a key pair
consisting of a verification key vk and a signature key sgk.

– Sign(sgk,m) takes as input a signature key sgk and a message m, and outputs
a signature σ on m.

– Verify(vk,m, σ) takes as input a verification key vk, a message m and a pre-
sumed signature σ on this message. It outputs 1 if the signature is correct and
0 otherwise.

We require correctness, i.e. for all m and (vk, sgk) ← KeyGen(1κ):

Verify(vk,m,Sign(sgk,m)) = 1.

A signature scheme is called unique if the following property holds:
There exists no tuple (vk,m, σ1, σ2) such that SIG.Verify(vk,m, σ1) = 1 and
SIG.Verify(vk,m, σ2) = 1 with σ1 �= σ2.

We point out that in the above definition, vk, σ1, and σ2 need not be created
honestly by the respective algorithms, but may be arbitrary strings.

3 Real Signature Tokens

It is our objective to instantiate the token functionality with a signature scheme.
In order to allow currently available signature tokens to be used with our proto-
col, our formalization of a generalized signature scheme must take the peculiar-
ities of real tokens into account.

One of the most important aspects regarding signature tokens is the fact
that most tokens split the actual signing process into two parts: the first step is
a (deterministic) preprocessing that usually computes a digest of the message.
To improve efficiency, some tokens require this step to be done on the host
system, at least in part. In a second step, this digest is signed on the token
using the encapsulated signing key. In our case, this means that the adversary
contributes to computing the signature. This has severe implications regarding
the extraction in UC-secure protocols, because it is usually assumed that the
simulator can extract the input from observing the query to the token.

To illustrate the problem, imagine a signature token that executes textbook
RSA, and requires the host to compute the hash. A malicious host can blind
his real input due to the homomorphic properties of RSA. Let (e,N) be the
verification key and d the signature key for the RSA function. The adversary
chooses a message m and computes the hash value h(m) under the hash function
h. Instead of sending h(m) directly to the signature token, he chooses a random
r, computes h(m)′ = h(m) · re mod N and sends h(m)′ to the token. The
signature token computes σ′ = (h(m) · re)d = h(m)d · r mod N and sends it
to the adversary, who can multiply σ′ by r−1 and obtain a valid signature σ on
m. Obviously, demanding EUF-CMA for the signature scheme is not enough,
because the signature is valid and the simulator is not able to extract m.

The protocols of [29] will be rendered insecure if the tokens perform any
kind of preprocessing outside of the token, so the protocols cannot be realized
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with most of the currently available signature tokens (even if they are trusted).
We aim to find an exact definition of the requirements, so that tokens which
outsource part of the preprocessing can still be used in protocols. The following
definition of a signature scheme with preprocessing thus covers a large class of
currently available signature tokens and corresponding standards.

Definition 8. (Digital signatures with preprocessing). A signature scheme SIG
with preprocessing consists of five PPT algorithms KeyGen, PreSg, Sign, Vfy and
Verify.

– KeyGen(1κ) takes as input the security parameter κ and generates a key pair
consisting of a verification key vk and a signature key sgk.

– PreSg(vk,m) takes as input the verification key vk, the message m and outputs
a deterministically preprocessed message p with |p| = n.

– Sign(sgk, p) takes as input a signing key sgk and a preprocessed message p of
fixed length n. It outputs a signature σ on the preprocessed message p.

– Vfy(vk, p, σ) takes as input a verification key vk, a preprocessed message p
and a presumed signature σ on this message. It outputs 1 if the signature is
correct and 0 otherwise.

– Verify(vk,m, σ) takes as input a verification key vk, a message m and a pre-
sumed signature σ on this message. It computes p ← PreSg(vk,m) and then
checks if Vfy(vk, p, σ) = 1. It outputs 1 if the check is passed and 0 otherwise.

We assume that the scheme is correct, i.e. it must hold for all messages m that

∀κ ∈ N ∀(vk, sgk) ← KeyGen(1κ) : Verify(vk,m,Sign(sgk,PreSg(vk,m))) = 1.

Additionally, we require uniqueness according to Definition 7.

Existential unforgeability can be defined analogously to the definition for
normal signature schemes. However, the EUF-CMA property has to hold for
both KeyGen,Sign and Vfy and KeyGen,Sign and Verify. The PreSg algorithm is
typically realized as a collision-resistant hash function.

All protocols in the following sections can be instantiated with currently avail-
able signature tokens that adhere the definition above. Tokens that completely
outsource the computation of the message digest to the host do not satisfy this
definition (because KeyGen, Sign and Vfy are not EUF-CMA secure).

The full version of this paper [36] contains an analysis for generic prepro-
cessings, in the following we assume for simplicity that PreSg is the identity
function.

3.1 Model

Our definition of reusable resettable tamper-proof hardware is defined analo-
gously to normal resettable tamper-proof hardware tokens as in [20,26], but we
add a mechanism that allows a protocol party to seize the hardware token. This
approach is inspired by the work of Hofheinz et al. [29], with the difference that
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we consider untrusted tokens instead of a trusted signature token. While the
token is seized, no other (sub-)protocol can use it. An adversarial sender can
still store a malicious functionality in the wrapper, and an adversarial receiver
is allowed to reset the program. The formal description of the wrapper F ru-strict

wrap

is given in Fig. 2.
We assume that the token receiver can verify that it obtained the correct

token, e.g. by requesting some token identifier from the sender.
For completeness, we add the definition of a catalyst introduced by

Hofheinz et al. [29].

Definition 9. Let Π be a protocol realising the functionalities F and C in the
C-hybrid model. We say that C is used as a catalyst if Π realises C by simply
relaying all requests and the respective answers directly to the ideal functional-
ity C.

Functionality F ru-strict
wrap

Implicitly parametrized by a security parameter κ.

Creation:
1. Await an input (create,M, t) from the token issuer, where M is a deterministic

Turing machine and t ∈ N. Store (M, t) and send (created) to the adversary.
Ignore all further create-messages.

2. Await a message (delivery) from the adversary. Then, send (ready) to the token
receiver.

Execution:
3. Await an input (run, w, sid) from the receiver. If no create-message has been

sent, return a special symbol ⊥. Otherwise, if seized = sid, run M on w from
its most recent state. When M halts without generating output or t steps have
passed, send ⊥ to the receiver; otherwise store the current state of M and send
the output of M to the receiver.

4. Await an input (seize, sid) from the receiver. If seized = ⊥, set seized = sid.
5. Await an input (release) from the receiver. Set seized = ⊥.

Reset (adversarial receiver only):
6. Upon receiving a message (reset) from a corrupted token receiver, reset M to its

initial state.

Fig. 2. The wrapper functionality by which we model reusable resettable tamper-proof
hardware. The runtime bound t is merely needed to prevent malicious token senders
from providing a perpetually running program code M; it will be omitted throughout
the rest of the paper.

In other words, the environment (and therefore other protocols) have access
to the catalyst C while it is used in the protocol Π. In particular, this implies
that the catalyst C cannot be simulated for a protocol. All in all, this notion is
very similar to Definition 10.
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3.2 UC-Secure Commitments

Straight-Line Extractable Commitment
We need a straight-line extractable commitment scheme in the F ru-strict

wrap -
hybrid model to achieve two-party computation. We enhance a protocol due
to Hofheinz et al. [29] which assumes trusted signature tokens as a setup such
that it remains secure even with maliciously created signature tokens. Towards
this goal, we adapt the idea of Choi et al. [12] to use unique signatures to our
scenario. This is necessary, because verifying the functionality of an untrusted
token is difficult. A unique signature scheme allows this verification very effi-
ciently (compared to other measures such as typically inefficient ZK proofs).
Additionally, it prevents the token from channeling information to the receiver
of the signatures via subliminal channels.

Our protocol proceeds as follows. As a global setup, we assume that the
commitment receiver has created a token containing a digital signature func-
tionality, i.e. basically serving as a signature oracle. In a first step, the commit-
ment receiver sends a nonce N to the sender such that the sender cannot use
messages from other protocols involving the hardware token. The sender then
draws a random value x. It ignores the precomputation step and sets the result
px of this step to be x concatenated with the nonce N . The value px is sent to
the token, which returns a signature. From the value px the sender derives the
randomness for a one-time pad otp and randomness r for a commitment. Using
r the sender commits to x, which will allow the extractor to verify if he correctly
extracted the commitment. The sender also commits to the signature, x and N
in a separate extractable commitment. To commit to the actual input s, the
sender uses otp. Care has to be taken because a maliciously programmed signa-
ture card might leak some information about px to the receiver. Thus, the sender
applies a 2-universal hash function before using it and sends all commitments
and the blinded message to the receiver. To unveil, the sender has to send its
inputs and random coins to the receiver, who can then validate the correctness
of the commitments. A formal description of the protocol is shown in Fig. 3. We
abuse the notation in that we define (c, d) ← COM.Commit(x) to denote that
the commitment c was created with randomness d.

Theorem 1. The protocol Πse
COM in Fig. 3 is a straight-line extractable commit-

ment scheme as per Definition 3 in the F ru-strict
wrap -hybrid model, given that unique

signatures exist, using F ru-strict
wrap as a catalyst.

Very briefly, extractability follows from the fact that the extractor can see all
messages that were sent to the token, including the seed for the PRG that allows
to extract the commitments cs and cx. Therefore, the extractor can just search
through all messages that were sent until it finds the input that matches the
commitment values. Hiding follows from the hiding property of the commitments
and the pseudorandomness of the PRG. The randomness extraction with the
2-universal hash function prevents the token from leaking any information that
might allow a receiver to learn some parts of the randomness of the commitments.
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We split the proof into two lemmata, showing the computational hiding prop-
erty of Πse

COM in Lemma 1 and the straight-line extraction in Lemma2.

Lemma 1. The protocol Πse
COM in Fig. 3 is computationally hiding, given that

COM is an extractable computationally hiding commitment scheme, f is a linear
2-universal hash function, PRG is a pseudorandom generator and SIG is an EUF-
CMA-secure unique signature scheme.

Proof. Let us consider a modified commit phase of the protocol Πse
COM: instead

of committing to the values s, x,N, σx, the sender S inputs random values in the

Protocol Π
se
COM

Let T be an instance of F ru-strict
wrap and PRG be a pseudorandom generator. Further let

COM be a computationally hiding and extractable commitment scheme. Let SIG be a
unique signature scheme according to Definition 8.

Global setup phase:
– Receiver: Compute (vk, sgk) ← SIG.KeyGen(1κ). Program a stateless token T with

the following functionality.
• Upon receiving a message (vk), return vk.
• Upon receiving a message (sign, m), compute σm ← SIG.Sign(sgk, m) and

output σm.
Send (create,T) to T .

– Sender: Query T with (vk) to obtain the verification key vk and check if it is a
valid verification key for SIG.

Commit phase:
1. Receiver: Choose a nonce N ← {0, 1}κ uniformly at random and send it to the

sender.
2. Sender: Let s be the sender’s input.

– Draw x ← {0, 1}3κ uniformly at random and choose a linear 2-universal
hash function f from the family of linear 2-universal hash functions {fh :
{0, 1}4κ → {0, 1}κ}h←H.

– Send (seize) to T . Set px = x||N and send (sign, px) to T to obtain σx.
Abort if SIG.Vfy(vk, px, σx) �= 1.

– Derive (otp, r) ← PRG(f(px)) with |otp| = |s| and compute cs = s ⊕ otp,
(cx, r) ← COM.Commit(px) and (cσ, dσ) ← COM.Commit(σx, x, N).

– Send (cs, cx, cσ, f) to the receiver. Release T by sending (release).

Unveil phase:
3. Sender: Send (s, x, σx, dσ) to the receiver.
4. Receiver: Set px = x||N and compute (otp, r) ← PRG(f(px)). Check if

SIG.Vfy(vk, px, σx) = 1, COM.Open(cx, r, x) = 1, COM.Open(cσ, dσ, (σx, x, N)) =
1 and cs = s ⊕ otp. If not, abort; otherwise accept.

Fig. 3. Computationally secure straight-line extractable commitment scheme in the
F ru-strict

wrap -hybrid model.
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commitments and replaces the generated pseudorandom string by a completely
random string. Thus no information about the actual input remains. In the fol-
lowing, we will show that from the receiver’s point of view, the real protocol and
the modified protocol as described above are computationally indistinguishable.
This implies that the commit phase of the protocol Πse

COM is computationally
hiding. Consider the following series of hybrid experiments.

Experiment 0: The real protocol Πse
COM.

Experiment 1: Identical to Experiment 0, except that instead of computing
(otp, r) ← PRG(f(px)), draw a uniformly at random and compute (otp, r) ←
PRG(a).

Experiment 2: Identical to Experiment 1, except that instead of using PRG(a)
to obtain otp and r, S draws otp and r uniformly at random.

Experiment 3: Identical to Experiment 2, except that instead of using COM
to commit to (σx, x,N), S commits to a random string of the same length.

Experiment 4: Identical to Experiment 3, except that instead of using COM to
commit to px with randomness r, S commits to a random string of the same
length. This is the ideal protocol.

Experiments 0 and 1 are statistically close, given that f is a linear 2-universal
hash function and SIG is unique. A malicious receiver AR provides a maliciously
programmed token T ∗ which might help distinguish the two experiments. In
particular, the token might hold a state and it could try to communicate with
AR via two communication channels:

1. T ∗ can try to hide messages in the signatures.
2. T ∗ can abort depending on the input of S.

The first case is prevented by using a unique signature scheme. The sender S asks
T ∗ for a verification key vk∗ and can verify that this key has the correct form for
the assumed signature scheme. Then the uniqueness property of the signature
scheme states that each message has a unique signature. Furthermore, there exist
no other verification keys such that a message has two different signatures. It
was shown in [3] that unique signatures imply subliminal-free signatures. Sum-
marized, given an adversary AR that can hide messages in the signatures, we can
use this adversary to construct another adversary that can break the uniqueness
property of the signature scheme.

The second case is a bit more involved. The main idea is to show that applying
a 2-universal hash function to px generates a uniformly distributed value, even
if R has some information about px. Since x is drawn uniformly at random
from {0, 1}3κ, T ∗ can only abort depending on a logarithmic part of the input.
Otherwise, the probability for the event that T ∗ aborts becomes negligible in
κ (because the leakage function is fixed once the token is sent). Let X be the
random variable describing inputs into the signature token and let Y describe
the random variable representing the leakage. In the protocol, we apply f ∈ {fh :
{0, 1}4κ → {0, 1}κ}h←H to X, which has at least min-entropy 3κ, ignoring the
nonce N . Y has at most 2 possible outcomes, abort or proceed. Thus, [16] gives
a lower bound for the average min-entropy of X given Y , namely
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H̃∞(X|Y ) ≥ H∞(X) − H∞(Y ) = 3κ − 1.

Note that f is chosen after R∗ sent the token. This means that we can apply
the Generalized Leftover Hash Lemma (cf. [16]):

Δ((fH(X),H, Y ); (Uk,H, Y )) ≤ 1
2

√
2H̃∞(X|Y )2κ ≤ 1

2

√
2−(3κ−1)+κ ≤ 2−κ

We conclude that from AR’s view, f(x) is distributed uniformly over {0, 1}κ

and thus Experiment 0 and Experiment 1 are statistically indistinguishable. We
will only sketch the rest of the proof.

Computational indistinguishability of Experiments 1 and 2 follows directly
from the pseudorandomness of PRG, i.e. given a receiver R∗ that distinguishes
both experiments, we can use this receiver to construct an adversary that distin-
guishes random from pseudorandom values. Experiment 2 and Experiment 3 are
computationally indistinguishable given that COM is computationally hiding.
From a distinguishing receiver R∗ we can directly construct an adversary that
breaks the hiding property of the commitment scheme. And by the exact same
argumentation, Experiments 3 and 4 are computationally indistinguishable. �

We now show the straight-line extractability of Πse
COM.

Lemma 2. The protocol Πse
COM in Fig. 3 is straight-line extractable, given that

COM is an extractable computationally hiding commitment scheme and SIG is
an EUF-CMA-secure unique signature scheme.

Proof. Consider the extraction algorithm in Fig. 4. It searches the inputs of AS

into the hybrid functionality F ru-strict
wrap for the combination of input and random-

ness for the commitment that is to be extracted.

Fig. 4. The extraction algorithm for the straight-line extractable commitment protocol
Πse

COM.

Let Q denote the set of inputs that AS sent to F ru-strict
wrap . Extraction will fail

only in the event that a value x∗ is unveiled that has never been sent to T , i.e.
p∗

x /∈ Q. We have to show that ExtSEC extracts c∗
s with overwhelming probability,

i.e. if the receiver accepts the commitment, an abort in Step 1 happens only with
negligible probability.
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Assume for the sake of contradiction that AS causes this event with non-
negligible probability ε(κ). We will use AS to construct an adversary B that
breaks the EUF-CMA security of the signature scheme SIG with non-negligible
probability. Let vk be the verification key that B receives from the EUF-CMA
experiment. B simulates F ru-strict

wrap for AS by returning vk upon receiving a query
(vk); further let Q be the set of queries that AS sends to F ru-strict

wrap . For each
query (sign,m), B forwards the message to the signature oracle of the EUF-
CMA game and returns the resulting signature σ to AS.

B now simulates the interaction between AS and R up to the point when
AS sends the message c∗

σ. The next messages between AS and R represent the
interaction between an honest receiver and a malicious commitment sender A′

S

for the extractable commitment scheme COM. Thus, B constructs a malicious
A′

S from the state of AS, which interacts with an external commitment receiver.
Due to the extractability of COM, there exists an extractor Ext that on input

(c∗
σ,A′

S) outputs a message (σ̂x, x̂, N̂) except with negligible probability ν(κ). B
runs Ext, sets p̂x = x̂||N̂ and outputs (σ̂x, p̂x) to the EUF-CMA experiment and
terminates.

From AS’s view, the above simulation is distributed identically to the real
protocol conditioned on the event that the unveil of the commitment cσ succeeds.
By assumption, AS succeeds in committing to a signature with non-negligible
probability ε(κ) in this case. It follows that the extractor Ext of COM will output
a message (σ̂x, x̂, N̂) with non-negligible probability ε(κ)−ν(κ). Thus B will out-
put a valid signature σ̂x for a value p̂x with non-negligible probability. However,
it did not query the signature oracle on this value, which implies breaking the
EUF-CMA security of the signature scheme SIG.

Thus, the extractor ExtSEC will correctly output the value s with overwhelm-
ing probability. �
Obtaining UC-Secure Commitments
In order to achieve computationally secure two-party computation, we want to
transform the straight-line extractable commitment from Sect. 3.2 into a UC-
secure commitment. A UC-secure commitment can be used to create a UC-
secure CRS via a coin-toss (e.g. [20]). General feasibility results, e.g. [9], then
imply two-party computation from this CRS.

One possibility to obtain a UC-secure commitment from our straight-line
extractable commitment is to use the compiler of Damg̊ard and Scafuro [15],
which transforms any straight-line extractable commitment into a UC-secure
commitment. The compiler provides an information-theoretic transformation,
but this comes at the cost of requiring O(κ) straight-line extractable commit-
ments to commit to one bit only. If we use a signature token, this translates to
many calls to the signature token and makes the protocol rather inefficient.

Instead, we adapt the UC commitment protocol of [8] to our model. The
key insight in their protocol is that trapdoor extraction is sufficient to realize
a UC-secure commitment. They propose to use a trapdoor commitment in con-
junction with straight-line extractable commitments via a global random oracle
to realize a UC-secure commitment. If we wanted to replace their commitments
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with our construction, we would encounter a subtle problem that we want to
discuss here. In their compiler, the commitment sender first commits to his
input via the trapdoor commitment scheme. Then, he queries the random oracle
with his input (which is more or less equivalent to a straight-line extractable
commitment) and the unveil information for the trapdoor commitment. In the
security proof against a corrupted sender, the simulator has to extract the trap-
door commitment. Thus, in their case, the simulator just searches all queries to
the random oracle for the correct unveil information. In our very strict model, if
we replace the oracle call with our straight-line extractable commitments, this
approach fails. At first sight, it seems possible to just use the extractor for the
straight-line extractable commitment to learn the value. However, it is crucial
for the proof of security against a corrupted receiver that the commitment value
is never published. Without this value, however, the extraction procedure will
not work. Further, while we can still see all queries that are made to the hard-
ware token, the simulator does not (necessarily) learn the complete input, but
rather a precomputed value for the signature. Therefore, a little more work is
necessary in order to realize a UC-secure commitment in our model.

In essence, we can use the techniques of the straight-line extractable commit-
ment from the previous section, although we have to enhance it at several points.
First, we need to query the signature token twice, for both x and r, instead of
deriving r from x via a PRG. This is necessary because all protocol steps have
to be invertible in order to equivocate the commitment, and finding a preimage
for a PRG is not efficiently possible. Second, we have to replace the extractable
commitments by extractable trapdoor commitments1.

The protocol proceeds as follows: First, the receiver chooses a trapdoor for the
trapdoor commitment TCOMext and commits to it via a straight-line extractable
commitment. This ensures that the simulator against a corrupted receiver can
extract the trapdoor and then equivocate the commitments of TCOMext. The
sender then commits with TCOMext to his input (in a similar fashion as in the
straight-line extractable commitment) and uses the token to sign the unveil
information. Against a corrupted sender, the simulator can thus extract the
unveil information and thereby extract the commitment. The commitment is
sent to the receiver, which concludes the commit phase. To unveil, the sender
first commits to the unveil information of TCOMext such that he cannot change
his commitment when the receiver unveils the trapdoor in the next step. From
there, the commitments are checked for validity and if everything checks out,
the commitment is accepted. The formal description of our protocol is given in
Fig. 5.

Theorem 2. The protocol ΠCOM in Fig. 5 computationally UC-realizes FCOM

(cf. Sect. 2.1) in the F ru-strict
wrap -hybrid model, using F ru-strict

wrap as a catalyst, given
that TCOMext is an extractable trapdoor commitment, SECOM is a straight-
line extractable commitment and SIG is an EUF-CMA-secure unique signature
scheme.
1 Note that any commitment scheme can be made extractable (with rewinding) via

an interactive protocol, e.g. [23,41].
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Fig. 5. Computationally UC-secure protocol realizing FCOM in the F ru-strict
wrap -hybrid

model.

Proof. Corrupted sender. Consider the simulator in Fig. 6. It is basically a
modified version of the extraction algorithm for the straight-line extractable
commitment. Against a corrupted sender, we only have to extract the input of
the sender and input it into the ideal functionality.
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Fig. 6. Simulator against a corrupted sender in the protocol ΠCOM

The only possibility for an environment Z to distinguish Real
ΠCOM
AS

and
Ideal

FCOM
SS

is the case of an abort by the simulator. However, we can adapt
Lemma 2 to this scenario.

It follows that the extraction is successful with overwhelming probability and
the simulation is thus indistinguishable from a real protocol run.

Corrupted receiver. The case of a corrupted receiver is more complicated.
The simulator proceeds as follows. In the commit phase, he just commits to the
all zero string and sends the rest of the messages according to the protocol. To
equivocate the commitment, the simulator first extracts the trapdoor ŝk from
the commitment that the receiver sent in the commit phase. He computes the
image t under the 2-universal hash function f that equivocates cs to the value
ŝ obtained from the ideal functionality. Then, he samples a preimage p̂x of t,
and uses the trapdoor ŝk to equivocate the commitment cx to p̂x. Let p̂r be the
new unveil information. The simulator sends both p̂x and p̂r to the token TR

to obtain σx and σr. Now, the second commitment cσ has to be equivocated to
the new signatures and inputs. From there, the simulator just executes a normal
protocol run with the newly generated values.

Let AR be the dummy adversary. The formal description of the simulator is
given in Fig. 7.

Experiment 0: This is the real model.
Experiment 1: Identical to Experiment 0, except that S1 aborts if the extrac-

tion of ŝk from c∗
sk fails, although SECOM.Open(c∗

sk, d
∗
sk, sk

∗) = 1.
Experiment 2: Identical to Experiment 1, except that S2 uses a uniformly

random value tx instead of applying f to px, and computes a preimage p̂x of
tx under the linear 2-universal hash function f .

Experiment 3: Identical to Experiment 2, except that S3 computes (cσ, dσ) ←
TCOMext.Commit(0) in the commit phase. In the unveil phase, he sends
(sign, p̂x), (sign, p̂r) to TR. As an unveil information, he computes d̂σ ←
TCOMext.Equiv(ŝk, (σ̂x, σ̂r, p̂x, p̂r, N), cσ, dσ).
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Experiment 4: Identical to Experiment 3, except that S4 computes (cx, dx) ←
TCOMext.Commit(0) in the commit phase and then computes the unveil infor-
mation p̂r ← TCOMext.Equiv(ŝk, p̂x, cx, dx). This is the ideal model.

Fig. 7. Simulator against a corrupted receiver in the protocol ΠCOM

Experiment 0 and Experiment 1 are computationally indistinguishable given
that SECOM is a straight-line extractable commitment. A distinguishing envi-
ronment can directly be transformed into an adversary that breaks the straight-
line extraction property. Experiments 1 and 2 are statistically indistinguish-
able, given that f is a 2-universal hash function (the same argumentation as
in Lemma 1 applies). Additionally, it is obvious that a preimage is efficiently
sampleable due to the linearity of f . Experiment 2 and Experiment 3 are com-
putationally indistinguishable, given that TCOMext is a trapdoor commitment
scheme. A distinguishing environment Z can straightforwardly be used to break
the equivocation property of the commitment scheme. The same argumentation
holds for Experiment 3 and Experiment 4. �

4 Ideal Signature Tokens

The model considered in the previous section allows a broad class of signature
algorithms that can be placed on the token. This comes with the drawback that
some UC functionalities cannot be realized. In particular, non-interactive proto-
cols are directly ruled out by the model. In this section, we want to explore what
is theoretically feasible with reusable hardware tokens, at the cost of limiting the
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types of signature tokens that are suitable for our scenario. Therefore, we require
that the complete message that is to be signed is given to the signature token.
Nevertheless, there are currently available signature cards that can be used for
the protocols that are presented in this section.

4.1 Model

In contrast to F ru-strict
wrap , we now adapt the simulation trapdoor of Canetti et

al. [8] from a global random oracle to the scenario of reusable tamper-proof
hardware. To overcome the problem that the simulator cannot read queries to
the setup functionality outside of the current protocol, the authors require parties
that query the setup to include the current session id SID of the protocol. If a
malicious party queries the setup in another protocol, using the SID of the first
protocol, the setup will store this query in a list and give the simulator access
to this list (via the ideal functionality with which the simulator communicates).
This mechanism ensures that the simulator only learns illegitimate queries, since
honest parties will always use the correct SID.

We thus enhance the standard resettable wrapper functionality F resettable
wrap

by the query list, and parse inputs as a concatenation of actual input and the
session id (cf. Fig. 8).

Compared to our previous reusable token specification F ru-strict
wrap , it is no

longer necessary to use a nonce to bind the messages to one specific protocol
instance. Thus, the inherent interaction of the F ru-strict

wrap -hybrid model is removed
in the F ru

wrap-hybrid model. This will allow a much broader class of functionali-
ties to be realized. For our purposes, however, we have to assume that the token
learns the complete input, in contrast to the strict model. This is similar to the
model assumed in [29], but in contrast to their work, we focus on untrusted
tokens.

Let us briefly state why we believe that this model is still useful. On the one
hand, there are signature tokens that support that the user inputs the complete
message without any preprocessing. On the other hand, the messages that we
input are typically rather short (linear in the security parameter), implying that
the efficiency of the token is not reduced by much. Even to the contrary, this
allows us to construct more round- and communication-efficient protocols, such
that the overall efficiency increases.

Our security notion is as follows.

Definition 10. Let F be an ideal functionality and let Π be a protocol. We say
that Π UC-realizes F in the global tamper-proof hardware model if for any real
PPT adversary A, there exists an ideal PPT adversary S such that for every
PPT enviroment Z, it holds that

Ideal
Fru

wrap
F,S (Z) ≈ Real

Fru
wrap

Π,A (Z)

Compared to the standard UC security, the setup is now available both in the
real and the ideal settings.
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Fig. 8. The wrapper functionality by which we model reusable resettable tamper-proof
hardware. The runtime bound t is merely needed to prevent malicious token senders
from providing a perpetually running program code M; it will be omitted throughout
the rest of the chapter.

4.2 UC-Secure Non-Interactive Two-Party Computation

In this section, we show how to realize UC-secure non-interactive computation
and the required tools. In the full version [36] we show a small modification
to the straight-line extractable commitment from Sect. 3.2 such that it is non-
interactive by simply removing the nonce. This is used for the construction in
the next section.

Non-Interactive Straight-Line Witness-Extractable Arguments
Our protocol is based on the construction of Pass [39], who presented a protocol
for a non-interactive straight-line witness-extractable proof (NIWIAoK) in the
random oracle model. Let Π = (α, β, γ) be a Σ-protocol, i.e. a three message
zero-knowledge proof system. We also assume that Π has special soundness, i.e.
from answers γ1, γ2 to two distinct challenges β1, β2, it is possible to reconstruct
the witness that the prover used.

The main idea of his construction is as follows. Instead of performing a
Σ-protocol interactively, a Fiat-Shamir transformation [22] is used to make
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the protocol non-interactive. The prover computes the first message α of the
Σ-protocol, selects two possible challenges β1 and β2, computes the resulting
answers γ1 and γ2 based on the witness w according to the Σ-protocol for
both challenges and computes commitments ci to the challenge/response pairs.
Instead of having the verifier choose one challenge, in [22], a hash function is
applied to the commitment to determine which challenge is to be used. The
prover then sends (α, c) and the unveil information of the ci to the verifier. The
verifier only has to check if the unveil is correct under the hash function and if
the resulting Σ-protocol transcript (α, βi, γi) is correct. The resulting protocol
only has soundness 1

2 and thus has to be executed several times in parallel. [39]
replaces the hash function by a random oracle and thus obtains a proof system.
Further, if the commitments to (βi, γi) are straight-line extractable, the resulting
argument system will be witness-extractable, i.e. an argument of knowledge.

The straight-line extractable commitment Πse
COM from Sect. 3.2 requires

interaction, so we cannot directly plug this into the protocol without losing
the non-interactive nature of the argument system. But note that the first mes-
sage of Πse

COM is simply sending a nonce, which is no longer necessary in the
F ru

wrap-hybrid model. Thus, by omitting this message, Πse
COM becomes a valid

non-interactive straight-line extractable commitment.
A formal description of the protocol complete NIWIAoK is given in Fig. 9.

Theorem 3. The protocol ΠNIWI in Fig. 9 is a straight-line witness-extractable
argument as per Definition 6 in the F ru

wrap-hybrid model, given that NICOM is
a straight-line extractable commitment scheme and SIG is an EUF-CMA-secure
unique signature scheme.

Proof. Let Π be a public-coin special-sound honest-verifier zero-knowledge
(SHVZK) protocol.

Completeness: Completeness of ΠNIWI follows directly from the completeness
of the Σ-protocol Π.

Witness-Indistinguishability: Cramer et al. [13,39] show that a SHVZK pro-
tocol directly implies a public-coin witness-indistinguishable protocol. Since
witness-indistinguishable protocols are closed under parallel composition as
shown be Feige and Shamir [21], ΠNIWI is witness-indistinguishable.

Extractablility: Let ExtNIC be the straight-line extractor of NICOM. We will
construct a straight-line extractor for ΠNIWI (cf. Fig. 10).
It remains to show that if the verifier accepts, ExtNIWI outputs a correct wit-
ness with overwhelming probability. First, note that ExtNIC extracts the inputs
of c∗ with overwhelming probability, and by the special soundness of Π, we
know that if both challenges in the commitment are extracted, ExtNIWI will
obtain a witness. Thus, the only possibility for ExtNIWI to fail with the extrac-
tion is if a malicious PPT prover AP manages to convince the verifier with a
witness w∗ such that (x,w∗) /∈ RL.
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Fig. 9. Computationally secure non-interactive straight-line witness-extractable argu-
ment in the F ru

wrap-hybrid model.

Each of the l instances of Π has soundness 1
2 , since a malicious AP can only

answer at most one challenge correctly, and otherwise a witness is obtained.
Thus, AP has to make sure that in all l instances, the correctly answered
challenge is selected. Assume for the sake of contradiction that AP manages
to convince the verifier with some non-negligible probability ε(κ) of a witness
w∗ such that (x,w∗) /∈ RL. We will construct an adversary B from AP that
breaks the EUF-CMA property of SIG with probability ε(κ).
Let B be the adversary for the EUF-CMA game. Let vk be the verification
key that B receives from the EUF-CMA game. B simulates F ru

wrap to AP by
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Fig. 10. The extraction algorithm for the non-interactive straight-line witness-
extractable argument ΠNIWI.

returning vk upon receiving a query (vk); further let Q be the set of queries
that AP sends to F ru

wrap. For each query (sign,m), B forwards the message
to the signature oracle of the EUF-CMA game and returns the resulting
signature σ to AP.
If B receives a signature query of the form (sign,m∗) with m∗ = (α∗, c∗),
start the extractor ExtNIC with input (c∗, Q) to extract the commitments
c∗ using Q. Create a signature σ∗ by selecting σ∗

i as the index of the cor-
rectly evaluating challenge. The verifier will only accept if that is the case. If
SIG.Verify(vk, (α∗, c∗), σ∗) = 1, send (m∗, σ∗) to the EUF-CMA game, other-
wise abort. We thus have that AP wins the EUF-CMA game with probability
ε(κ), which contradicts the EUF-CMA security of SIG. �

UC-secure NISC
Non-interactive secure computation (NISC) [30] is typically a two-party protocol.
The main idea is to execute a constant round two-party computation, but reduce
the number of rounds to two. In the OT-hybrid model, garbled circuits realize a
non-interactive evaluation of any functionality (if the sender requires no output):
the sender garbles the circuit and sends it to the receiver, who learns some labels
via the OTs to evaluate the garbled circuit. It remains to realize the OT protocol
with minimal interaction, and such a protocol was provided by Peikert et al. [43],
taking 2 rounds of interaction given a CRS. Combining the two building blocks,
a NISC protocol proceeds as follows: the receiver first encodes his input using
the first message of the OT protocol and sends it to the sender. The sender in
turn garbles the circuit and his inputs depending on the received message and
sends the resulting garbled values to the receiver. Now the receiver can obtain
some of the labels and evaluate the garbled circuit.

In order to obtain NISC, [8] build such a one-sided simulatable OT using
a NIWIAoK as constructed in the previous section. The construction is black-
box, i.e. we can directly replace their NIWIAoK with ours and obtain the same
result. The actual NISC protocol of [8] is based on the protocol of Ashfar et
al. [1]. Our modifications to the protocol are only marginal. In order for the
simulation against the sender to work, the simulator must extract the seeds
that the sender used to create the circuits. That is the main technical difference
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between [8] and our solution. [8] have the sender send a random value to their
global random oracle and use the answer as the seed. Thus, the simulator learns
the seed and can extract the sender’s inputs. In our case, we let the sender
choose a random value and have him send it to F ru

wrap to obtain a signature,
which allows us to extract this value. Due to possible leakage the sender has
to apply a 2-universal hash function to the random value and use the result as
the seed, but the technique (and the proof) is essentially the same as for our
straight-line extractable commitment scheme. We provide a detailed protocol
description in the full version [36].

5 Limitations

It is known that there exist limitations regarding the feasibility of UC-secure pro-
tocols based on resettable tamper-proof hardware, both with computational and
with statistical security. Concerning statistical security, Goyal et al. [25] show
that non-interactive commitments and OT cannot be realized from resettable
tamper-proof hardware tokens, even with standalone security. In the computa-
tional setting, Döttling et al. [20] and Choi et al. [12] show that if (any number
of) tokens are sent only in one direction, i.e. are not exchanged by both par-
ties, it is impossible to realize UC-secure protocols without using non-black-box
techniques. Intuitively, this follows from the fact that the simulator does not
have any additional leverage over a malicious receiver of such a token. Thus, a
successful simulator strategy could be applied by a malicious receiver as well.
The above mentioned results apply to our scenario as well.

Jumping ahead, the impossibilities stated next hold for both specifications of
reusable tamper-proof hardware that we present in the following. In particular,
GUC and GUC-like frameworks usually impose the restriction that the simulator
only has black-box access to the reusable setup. Thus, compared to the standard
definition of resettable tamper-proof hardware, the model of resettable reusable
tamper-proof hardware has some limitations concerning non-interactive two-
party computation. The degree of non-interactivity that can be achieved with
resettable hardware, i.e. just sending tokens (and possibly an additional mes-
sage) to the receiver, is impossible to obtain in the model of resettable reusable
hardware.

Corollary 1. There exists no protocol ΠPF using any number of reusable and
resettable hardware tokens T1, . . . , Tn issued from the sender to the receiver that
computationally UC-realizes the ideal point function FPF.

Proof (Sketch). This follows directly from the observation that the simulator for
protocols based on reusable hardware is only allowed to have black-box access
to the token, i.e. the simulator does not have access to the code of the token(s).
Applying [12,20] yields the claim.

The best we can hope for is a protocol for non-interactive two-party com-
putation where the parties exchange two messages (including hardware tokens)
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to obtain a (somewhat) non-interactive protocol. Maybe even more interesting,
even stateful reusable hardware tokens will not yield any advantage compared
to resettable tokens, if the tokens are only sent in one direction.

Corollary 2. There exists no protocol ΠOT using any number of reusable and
stateful hardware tokens T1, . . . , Tn issued from the sender to the receiver that
statistically UC-realizes FOT.

Proof (Sketch). First note, as above, that the simulator of a protocol against a
token sender will not get the token code because he only has black-box access
to the token. Thus the simulator cannot use rewinding during the simulation,
which is the one advantage that he has over the adversary. The simulator falls
back to observing the input/output behavior of the token, exactly as in the case
of standard resettable hardware. Due to the impossibility of statistically secure
OT based on resettable hardware [25], the claim follows.
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