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Abstract. We initiate the study of public-key encryption (PKE)
schemes and key-encapsulation mechanisms (KEMs) that retain security
even when public parameters (primes, curves) they use may be untrusted
and subverted. We define a strong security goal that we call ciphertext
pseudo-randomness under parameter subversion attack (CPR-PSA). We
also define indistinguishability (of ciphertexts for PKE, and of encap-
sulated keys from random ones for KEMs) and public-key hiding (also
called anonymity) under parameter subversion attack, and show they are
implied by CPR-PSA, for both PKE and KEMs. We show that hybrid
encryption continues to work in the parameter subversion setting to
reduce the design of CPR-PSA PKE to CPR-PSA KEMs and an appro-
priate form of symmetric encryption. To obtain efficient, elliptic-curve-
based KEMs achieving CPR-PSA, we introduce efficiently-embeddable
group families and give several constructions from elliptic-curves.

1 Introduction

This paper initiates a study of public-key encryption (PKE) schemes, and key-
encapsulation mechanisms (KEMs), resistant to subversion of public parameters.
We give definitions, and efficient, elliptic-curve-based schemes. As a tool of inde-
pendent interest, we define efficiently-embeddable group families and construct
them from elliptic curves.

Parameter subversion. Many cryptographic schemes rely on some trusted,
public parameters common to all users and implementations. Sometimes these
are specified in standards. The Oakley primes [39], for example, are a small num-
ber of fixed prime numbers widely used for discrete-log-based systems. For ECC
(Elliptic Curve Cryptography), the parameters are particular curves. Exam-
ples include the P-192, P-224, ... curves from the FIPS-186-4 [38] standard and
Ed25519 [16].
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There are many advantages to such broad use of public parameters. For
example, it saves implementations from picking their own parameters, a task
that can be error-prone and difficult to do securely. It also makes key-generation
faster and allows concrete-security improvements in the multi-user setting [7].
Recent events indicate, however, that public parameters also bring a risk, namely
that they can be subverted. The representative example is Dual-EC. We refer
to [19] for a comprehensive telling of the story. Briefly, Dual EC was a PRG
whose parameters consisted of a description of a cyclic group and two generators
of the group. If the discrete logarithm of one generator to base the other were
known, security would be compromised. The Snowden revelations indicate that
NIST had adopted parameters provided by the NSA and many now believe these
parameters had been subverted, allowing the NSA to compromise the security
of Dual EC. Juniper’s use of Dual EC further underscores the dangers [21].

Security in the face of parameter subversion. DGGJR [26] and BFS [9]
initiated the study of cryptography that retains security in the face of subverted
parameters, the former treating PRGs and the latter treating NIZKs, where the
parameter is the common reference string. In this paper we treat encryption.
We define what it means for parameter-using PKE schemes and KEMs to retain
security in the face of subversion of their parameters. With regard to schemes,
ECC relies heavily on trusted parameters. Accordingly we focus here, providing
various efficient elliptic-curve-based schemes that retain security in the face of
parameter subversion.

Current mitigations. In practice, parameters are sometimes specified in a
verifiable way, for example derived deterministically (via a public algorithm)
from publicly-verifiable coins. The coins could be obtained by applying a hash
function like SHA1 to some specified constants (as is in fact done for the FIPS-
186-4 curves [38] and in the ECC brainpool project), via the first digits of the
irrational number π, or via lottery outcomes [5]. This appears to reduce the
possibility of subversion, but BCCHLN [15] indicate that the potential of sub-
verting elliptic curves still remains, so there is cause for caution even in this
regard. Also, even if such mechanisms might “work” in some sense, we need def-
initions to understand what “work” means, and proofs to ensure definitions are
met. Our work gives such definitions.

Background. A PKE scheme specifies a parameter generation algorithm that
returns parameters π, a key-generation algorithm that takes π and returns a
public key pk and matching secret key sk , an encryption algorithm that given
π, pk and message m returns a ciphertext c, and a decryption algorithm that
given π, sk , c recovers m. We denote the classical notions of security by IND—
indistinguishability of ciphertexts under chosen-ciphertext attack [8,22]—and
PKH—public-key hiding, also called anonymity, this asks that ciphertexts not
reveal the public key under which they were created [6]. For KEMs, parameter
and key generation are the same, encryption is replaced by encapsulation—it
takes π, pk to return an encapsulated key K and a ciphertext c that encapsu-
lates K—and decryption is replaced by decapsulation—given π, sk , c it recov-
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Fig. 1. Relations between notions of security. The notions are defined, and the relations
hold, for both PKE schemes and KEMs. An arrow A → B is an implication: if a scheme
meets A then it also meets B.

ers K. We continue to denote the classical goals by IND—this now asks for
indistinguishability of encapsulated keys from random under chosen-ciphertext
attack [23]—and PKH. We stress that these classical notions assume honest
parameter generation, meaning the parameters are trusted.

We know that, in this setting, IND PKE is reduced, via hybrid encryption, to
IND KEMs and ind-cpa symmetric encryption [23]. To the best of our knowledge,
no analogous result exists for PKH.

Mass surveillance activities have made apparent the extent to which privacy
can be violated purely by access to meta-data, including who is communicating
with whom. PKE and KEMs providing PKH are tools towards systems that do
more to hide identities of communicants. We will thus target this goal in the
parameter subversion setting as well.

Definitions and relations. For both PKE and KEMs, we formulate a goal
called ciphertext pseudorandomness under parameter subversion attack, denoted
CPR-PSA. It asks that ciphertexts be indistinguishable from strings drawn ran-
domly from the ciphertext space, even under a chosen-ciphertext attack (CCA).
We also extend the above-discussed classical goals to the parameter subver-
sion setting, defining IND-PSA and PKH-PSA. For both PKE (Proposition 1)
and KEMs (Proposition 2) we show that CPR-PSA implies both IND-PSA and
PKH-PSA. We thus get the relations between the new and classical notions sum-
marized in Fig. 1. (Here CPR is obtained by dropping the PSA in CPR-PSA,
meaning it is our definition with honest parameter generation. This extends the
notions of [26,37] to allow a CCA.)

We ask whether we can reduce the design of CPR-PSA PKE to the design of
CPR-PSA KEMs via hybrid encryption. Proposition 3 says the answer is yes, but,
interestingly, requires that the KEM has an extra property of well-distributed
ciphertexts that we denote WDC-PSA. (The symmetric encryption scheme is
required to have pseudo-random ciphertexts. Such symmetric schemes are eas-
ily obtained.) We now have a single, strong target for constructions, namely
CPR-PSA+WDC-PSA KEMs. (By the above they imply CPR-PSA PKE, which
in turn implies IND-PSA PKE and PKH-PSA PKE.) Our goal thus becomes to
build efficient KEMs that are CPR-PSA+WDC-PSA.
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Parameter-free schemes. We say that a scheme (PKE or KEM) is param-
eter free if there are no parameters. (Formally, the parameters are the empty
string ε.) Note that a parameter-free scheme that is XXX secure is trivially also
XXX-PSA secure. (XXX ∈ {CPR, IND,PKH}.) This is an important observa-
tion, and some of our schemes will indeed be parameter-free, but, as we discuss
next, this observation does not trivialize the problem.

Issues and challenges. In an attempt to achieve PSA security through the
above observation, we could consider the following simple way to eliminate
parameters. Given a XXX-secure parameter-using scheme, build a parameter-
free version of it as follows: the new scheme sets its parameters to the empty
string; key generation runs the old parameter generation algorithm to get π, then
the old key generation algorithm to get pk and sk , setting the new public and
secret keys to (π, pk) and (π, sk), respectively; encryption and decryption can
then follow the old scheme. This trivial construction, however, has drawbacks
along two dimensions that we expand on below: (1) security and (2) efficiency.

With regard to security, the question is, if the old scheme is XXX, is the new
one too? (If so, it is also XXX-PSA, since it is parameter free, so we only need to
consider the classical notions.) The answer to the question is yes if XXX = IND,
but no if XXX ∈ {PKH,CPR}. Imagine, as typical, that the parameters describe
a group. Then in the new scheme, different users use different, independent
groups. This will typically allow violation of PKH [6]. For example, in the El
Gamal KEM, a ciphertext is a group element, so if two users have groups G0

and G1, respectively, one can determine which user generated a ciphertext by
seeing to which of the two groups it belongs. The same is true for RSA where
the group Gi = ZNi

is determined by the modulus Ni in the key of user i. Even
when the moduli have the same bit length, attacks in [6] show how to violate
PKH-security of the simple RSA KEM.

With regard to efficiency, the drawback is that we lose the benefits of
parameter-using schemes noted above. In particular, key-generation is less effi-
cient (because it involves parameter generation for the old scheme, which can
be costly), and public keys are longer (because they contain the parameters of
the old scheme). We aim to retain, as much as possible, the efficiency benefits
of parameters while adding resistance to PSA.

BBDP [6] give (1) parameter-free IND+PKH RSA-based PKE schemes and
(2) parameter-using discrete-log based IND+PKH PKE schemes. The former,
since parameter-free, are IND-PSA+PKH-PSA, but they are not CPR-PSA and
they are not as efficient as ECC-based schemes. The latter, while ECC-based
and fast, are not secure against PSA.

The open question that emerges is thus to design efficient, ECC-based KEMs
that are CPR-PSA+WDC-PSA. The technical challenge is to achieve CPR-PSA
(and thus PKH-PSA) even though the groups of different users may be different.

Overview of the approach. We introduce and formalize efficiently-
embeddable group (eeg) families and identify desirable security properties for
them. We give a transform constructing CPR-PSA+WDC-PSA KEMs from
secure eeg families. This reduces our task to finding secure eeg families. We
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Table 1. Our elliptic curve based CPR-PSA+WDC-PSA KEMs. p denotes the mod-
ulus of the field. Efficiency of KE.G is dominated by the sampling time of the curves.
Efficiency of KE.E (average, worst case) and KE.D (worst case) is given as the number
of exponentiations on the curves. The key size is measured in bits, k = �|Fp|� being
the bit length of the used modulus. For the rejection sampling based constructions, �
denotes the cut-off bound. For transform eegToKE2 and the constructions based on
Elligator curves (last two rows) see [4].

Eeg family Transform Parameter Assumption Efficiency Key size

KE.G KE.E KE.D

EGtwist eegToKE1 p sCDH-PSA tTGen 2, 2 2 10k

EGtwist eegToKE2 p CDH-PSA tTGen 3, 3 3 12k

EG�
twist-rs eegToKE1 — sCDH-PSA tTGen 3, �+1 1 9k

EG�
twist-rs eegToKE2 — CDH-PSA tTGen 4, �+2 2 11k

EGtwist-re eegToKE1 — sCDH-PSA tTGen 3, 3 1 9k

EGtwist-re eegToKE2 — CDH-PSA tTGen 4, 4 2 11k

EG�
ell1, EG

�
ell2 eegToKE1 p sCDH-PSA tEllGen 3, � + 1 1 6k

EG�
ell1-rs, EG

�
ell2-rs eegToKE1 — sCDH-PSA tEllGen 5, �+1 1 5k

propose several instantiations of eeg families from elliptic curves with security
based on different assumptions. An overview of the resulting KEMs is given in
Table 1. We discuss our results in greater detail below.

Efficiently-embeddable group families. As described above, having users
utilize different groups typically enables linking ciphertexts to the intended
receiver and hence violating CPR-PSA. However, certain families of groups allow
to efficiently map group elements to a space, which is independent of the partic-
ular group of the family. Building on these types of group families it is possible
to achieve CPR-PSA secure encryption while still allowing each user to choose
his own group.

We formalize the required properties via efficiently embeddable group fami-
lies, a novel abstraction that we believe is of independent interest. An eeg family
EG specifies a parameter generation algorithm EG.P sampling parameters to be
used by the other algorithms, and a group generation algorithm EG.G sampling a
group from the family. Embedding algorithm EG.E embeds elements of the group
into some embedding space EG.ES. The group element can be recovered using
inversion algorithm EG.I. An important property is that the embedding space
only depends on the parameters and in particular not on the used group. Looking
ahead, the KEM’s public key will contain a group sampled with EG.S and cipher-
texts will be embeddings. We require two security properties for EG in order
to achieve CPR-PSA+WDC-PSA KEMs. Both assume parameter subversion
attacks and are defined with respect to a sampling algorithm EG.S, which sam-
ples (not necessarily uniformly distributed) group elements. The first, embedding
pseudorandomness (EPR-PSA), is that embeddings of group elements sampled
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with EG.S are indistinguishable from uniform. Further we give a definition the
strong computational Diffie-Hellman assumption (sCDH-PSA) with respect to
EG—an adaption of the interactive assumption introduced in [2] to our setting.
It differs from the usual strong computational Diffie-Hellman assumption in two
points. The group used for the challenge is sampled using EG.G on a parame-
ter of the adversary’s choice and additionally one of the exponents used in the
challenge is sampled with sampling algorithm EG.S.

Key ecapsulation mechanisms from eeg families. We provide a transform
eegToKE1 of eeg families to secure KEMs. If the eeg family is both EPR-PSA
and sCDH-PSA the resulting KEM is CPR-PSA and WDC-PSA.

Key encapsulation from weaker assumptions. In the full version of this
paper [4] we give a second transform eegToKE2 from eeg families to secure
KEMs. It is applicable to eeg families consisting of groups, which order has no
small prime factors. Its security is based on the weaker computational Diffie-
Hellman assumption (CDH-PSA), i.e. it achieves a CPR-PSA and WDC-PSA
KEM under the weaker assumption that EG is both EPR-PSA and CDH-PSA.
However, this comes at the cost of larger key size and slower encryption and
decryption.

Instantiations from elliptic curves. We propose several instantiations of
eeg families from elliptic curves. It is well known that elliptic curves are not all
equal in security. We target elliptic-curve groups over the field Fp for a large
odd prime p since they are less vulnerable to discrete-log-finding attacks than
groups over fields of characteristic two [28,40]. While the usage of standardized
primes allows for more efficient implementations, several cryptanalysts further
suggest that p should be as random as possible for maximal security, see for
example Brainpool’s RFC on ECC [36]. These constraints make building eeg
families more challenging. We offer solutions for both cases. We first identify an
eeg family implicitly given in prior work [34,37]. The family consists of curve-
twist pairs of elliptic curves. Its embedding space depends on the modulus p of
the underlying field, which serves as parameter of the construction.

Building on eeg family EGtwist we also provide alternatives, which no longer
rely on a fixed modulus. The constructions have empty parameters and p is
sampled at random in the group generation algorithm. The technical challenge
is to still achieve pseudorandom embeddings in an embedding space independent
of the group. Our solution EG�

twist-rs achieves this by using rejection sampling
with cut-off parameter �. Its embedding space consists of bit strings of length
only dependent on the security parameter. The sampling algorithm has a worst-
case running time of � exponentiations, but the average cost is two exponentia-
tions independently of �. Eeg family EGtwist-re uses a range expansion technique
from [33] and improves on EG�

twist-rs both in terms of efficiency and security. As
in the other construction embeddings are bit strings, but sampling only requires
a single exponentiation.

Security of the instantiations. We now discuss the security properties
of our instantiations in greater detail. An overview is given in Table 2. All of
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Table 2. Security of our eeg families. The modulus of the used field is denoted by p.
ΔEPR-PSA denotes the maximal advantage of an (unbounded) adversary in breaking
EPR-PSA. � denotes the cut-off bound used in the construction based on rejection
sampling.

Eeg family Curve type Parameter ΔEPR-PSA See

EGtwist Twist p 0 Sect. 5.2

EG�
twist-rs Twist — (1/2)� Sect. 5.3

EGtwist-re Twist — 0 Sect. 5.4

EG�
ell1, EG

�
ell2 Elligator p (2/3)� [4]

EG�
ell1-rs, EG

�
ell2-rs Elligator — (4/5)� [4]

our constructions achieve EPR-PSA statistically. Embeddings in eeg families
EGtwist, and EGtwist-re are perfectly random, i.e. any (unbounded) adversary has
advantage 0 in breaking EPR-PSA. For family EG�

twist-rs the advantage decays
exponentially in the cut-off bound �.

Diffie-Hellman problem sCDH-PSA is non standard. It is defined with respect
to the eeg family’s sampling algorithm and assumes parameter subversion
attacks. However, for all of our proposed instantiations we are able to show
that sCDH-PSA can be reduced to assumptions, which no longer depend on
the sampling algorithms, but use uniformly sampled exponents instead. Con-
sidering the parameters of our constructions, they belong to one of two classes.
Eeg familiy EGtwist uses the modulus p as parameter, which might be subject
to subversion. Accordingly sCDH-PSA in this case corresponds to the assump-
tion that the adversary’s possibility to choose p does not improve its capacities
in solving Diffie-Hellman instances on either the curve or its twist for a curve-
twist pair sampled from the family. Eeg families EG�

twist-rs and EGtwist-re serve
as more conservative alternatives. They are parameter-free and each user choses
his own modulus at random, resulting in the weaker assumption that solving
Diffie-Hellman instances over curves sampled with respect to a randomly chosen
modulus is hard.

Instantiations from Elligator curves. In the full version of this paper [4]
we provide alternatives to our curve-twist pair based constructions. Eeg families
EG�

ell1, EG
�
ell2, EG

�
ell1-rs and EG�

ell2-rs make use of the Elligator1 and Elligator2
curves of [17]. EG�

ell1 and EG�
ell2 were implicitly given in [17] and use the modulus

of the underlying field as parameter. Constructions EG�
ell1-rs and EG�

ell2-rs serve
as parameter-free alternatives.

Related work. One might consider generating parameters via a multi-party
computation protocol so that no particular party controls the outcome. It is
unclear however what parties would perform this task and why one might trust
any of them. PKE resistant to parameter subversion provides greater security.

Parameter subversion as we consider it allows the adversary full control of the
parameters. This was first considered for NIZKs [9] and (under the term back-
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doored) for PRGs [25,26]. Various prior works, in various contexts, considered
relaxing the assumptions on parameters in some way [20,30,32,35], but these do
not allow the adversary full control of the parameters and thus do not provide
security against what we call parameter subversion.

Algorithm-substitution attacks, studied in [3,10–12,24], are another form of
subversion, going back to the broader framework of kleptography [43,44]. The
cliptography framework of RTYZ [41] aims to capture many forms of subver-
sion. In [42] the same authors consider PKE that retains security in the face of
substitution of any of its algorithms, but do not consider parameter subversion.

2 Preliminaries

Notation. We let ε denote the empty string. If X is a finite set, we let x ←$ X
denote picking an element of X uniformly at random and assigning it to x. All our
algorithms are randomized and polynomial time (PT) unless stated otherwise.
An adversary is an algorithm. Running time is worst case. If A is an algorithm,
we let y ← A(x1, . . . ; r) denote running A with random coins r on inputs x1, . . .
and assigning the output to y. We let y ←$ A(x1, . . .) be the result of picking
r at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set
of all possible outputs of A when invoked with inputs x1, . . .. We use the code
based game playing framework of [14]. (See Fig. 3 for an example.) By Pr[G] we
denote the probability that the execution of game G results in the game returning
true. We also adopt the convention that the running time of an adversary refers
to the worst case execution time of the game with the adversary. This means
that the time taken for oracles to compute replies to queries is included. The
random oracle model [13] is captured by a game procedure RO that implements
a variable output length random oracle. It takes a string x and an integer m and
returns a random m-bit string. We denote by Pk the set of primes of bit length
k and by [d] the set {0, . . . , d − 1}. Furthermore, the uniform distribution on M
is denoted by UM . If two random variables X and Y are equal in distribution we
write X ∼ Y . The statistical distance between X and Y is denoted by Δ(X;Y ).
If Δ(X;Y ) ≤ δ we say X is δ-close to Y .

3 Public-Key Encryption Resistant to Parameter
Subversion

In this section we recall public-key encryption schemes and key encapsulation
mechanisms. For both primitives we define the strong security notion of pseu-
dorandomness of ciphertexts in the setting of parameter subversion and show
that it implies both indistinguishability of encryptions and public-key hiding.
We further define the security notion of well-distributedness of ciphertexts for
key encapsulation mechanisms. Finally, we recall symmetric encryption schemes
and revisit the hybrid encryption paradigm in the setting of ciphertext pseudo-
randomness under parameter subversion attacks.
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3.1 Public-Key Encryption Schemes

Below we give a syntax for public-key encryption schemes. It follows [23], but
uses slightly different notation and includes an additional algorithm setting up
global parameters to be utilized by all users. We then formalize a novel security
requirement of pseudorandomness of ciphertexts under parameter subversion
attacks (CPR-PSA), which says that even if the parameters of the scheme are
controlled by the adversary, ciphertexts obtained under any public key are indis-
tinguishable from random elements of the ciphertext space, which depends only
on the security parameter, the message length and the global parameters. We
then recall two existing requirements of public-key encryption schemes adapt-
ing them to the setting of parameter subversion attacks. The first is the well-
known notion of indistinguishability of encryptions [31], the second, from [1,6],
is that ciphertexts under different public keys are indistinguishable, which they
called anonymity or key hiding and we call public-key hiding. In Proposition 1
we show that the first requirement implies the other two, allowing us to focus
on it subsequently. We model the possibility of subverted parameters by having
the adversary provide the parameters, which are used in the security games.

Public-Key Encryption. A public-key encryption scheme (PKE) PE speci-
fies the following. Parameter generation algorithm PE.P takes input 1k, where
k ∈ N is the security parameter, and returns global parameters π. Key-generation
algorithm PE.G takes input 1k, π and returns a tuple (pk , sk) consisting of the
public (encryption) key pk and matching secret (decryption) key sk . PE.CS asso-
ciates to k, π and message length m ∈ N a finite set PE.CS(k, π,m) that is the
ciphertext space of PE. Encryption algorithm PE.E takes 1k, π, pk and a message
M ∈ {0, 1}∗ and returns a ciphertext c ∈ PE.CS(k, π, |M |). Deterministic decryp-
tion algorithm PE.D takes 1k, π, sk and a ciphertext c and returns either a mes-
sage M ∈ {0, 1}∗ or the special symbol ⊥ indicating failure. The correctness con-
dition requires that for all k ∈ N, all π ∈ [PE.P(1k)], all (pk , sk) ∈ [PE.G(1k, π)]
and all M ∈ {0, 1}∗ we have Pr

[
PE.D(1k, π, sk , c) = M

] ≥ 1 − PE.de(k), where
the probability is over c ←$ PE.E(1k, π, pk ,M) and PE.de : N → R≥0 is the
decryption error of PE. Our PKEs will be in the ROM [13], which means the
encryption and decryption algorithms have access to a random oracle specified
in the security games. Correctness must then hold for all choices of the random
oracle. We say a PKE is parameter-free if PE.P returns ε on every input 1k.

Ciphertext pseudorandomness. Consider game Gcpr-psa
PE,A (k) of Fig. 2 associ-

ated to PKE PE, adversary A and security parameter k, and let

Advcpr-psa
PE,A (k) = 2Pr[Gcpr-psa

PE,A (k)] − 1.

We say that PE has pseudorandom ciphertexts under parameter subversion
attacks (also called CPR-PSA) if the function Advcpr-psa

PE,A (·) is negligible for
every A. In the game, b is a challenge bit. When b = 1, the challenge cipher-
text c∗ is an encryption of a message of the adversary’s choice, but if b = 0 it is
chosen at random from the ciphertext space. Given the public key and challenge
ciphertext, the adversary outputs a guess b′ and wins if b′ equals b, the game
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Fig. 2. Games defining security of PKEs. In each game the adversary is given access to
oracles. The game, to which an oracle belongs, is indicated behind the oracle’s name.
In each game oracles Init and Enc may be queried only once. Further Init has to be
queried before using any of the other oracles.

returning true in this case and false otherwise. The adversary has access to an
oracle Init, which sets up the public key using parameters of the adversary’s
choice, and an oracle Enc to generate the challenge ciphertext. Furthermore it
has access to the random oracle and a decryption oracle crippled to not work on
the challenge ciphertext. We require that the adversary queries the oracles Init
and Enc only once. Furthermore Init has to be queried before using any of the
other oracles.

Indistinguishability of encryptions. Consider game Gind-psa
PE,A (k) of Fig. 2

associated to PKE PE, adversary A and security parameter k, and let

Advind-psa
PE,A (k) = 2Pr[Gind-psa

PE,A (k)] − 1.

We say that PE has indistinguishable encryptions under parameter subversion
attacks (also called IND-PSA) if the function Advind-psa

PE,A (·) is negligible for every
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A. In the game, b is a challenge bit. The adversary has access to an oracle Init,
which sets up the public key using parameters of the adversary’s choice, and an
oracle Enc, which receives as input two messages M0, M1 of the same length
and outputs the challenge ciphertext c∗. When b = 0, the challenge ciphertext
is an encryption of M0, if b = 1 an encryption of M1. Given the public key and
challenge ciphertext, the adversary outputs a guess b′ and wins if b′ equals b,
the game returning true in this case and false otherwise. Again, the adversary
has access to the random oracle and a decryption oracle crippled to not work on
the challenge ciphertext. We require that the adversary queries the oracles Init
and Enc only once. Furthermore Init has to be queried before using any of the
other oracles.

Public-key hiding. Consider game Gpkh-psa
PE,A (k) of Fig. 2 associated to PKE

PE, adversary A and security parameter k, and let

Advpkh-psa
PE,A (k) = 2Pr[Gpkh-psa

PE,A (k)] − 1.

We say that PE is public-key hiding under parameter subversion attacks (also
called PKH-PSA) if the function Advpkh-psa

PE,A (·) is negligible for every A. In the
game, b is a challenge bit. Unlike the prior games, two key pairs are generated,
not one. The challenge ciphertext c∗ is an encryption of a message of the adver-
sary’s choice under pk b. Given the public keys and the challenge ciphertext,
the adversary outputs a guess b′ and wins if b′ equals b. This time the crippled
decryption oracle returns decryptions under both secret keys. The adversary sets
up the public keys with its call to oracle Init, and an uses oracle Enc to generate
the challenge ciphertext. Again we require that the adversary queries the oracles
Init and Enc only once. Furthermore Init has to be queried before using any
of the other oracles.

Relations. The following says that pseudorandomness of ciphertexts implies
both indistinguishable encryptions and anonymity. We give both asymptotic
and concrete statements of the results.

Proposition 1. Let PE be a PKE that has pseudorandom ciphertexts under
parameter subversion attacks. Then:

1. PE is IND-PSA. Concretely, given an adversary A the proof specifies an
adversary B0 such that Advind-psa

PE,A (k) ≤ 2 · Advcpr-psa
PE,B0

(k) for every k ∈ N,
and B0 has the same running time and query counts as A.

2. PE is PKH-PSA. Concretely, given an adversary A the proof specifies an
adversary B1 such that Advpkh-psa

PE,A (k) ≤ 2 · Advcpr-psa
PE,B1

(k) for every k ∈ N,
and B0 has the same running time and query counts as A.

The proof of the proposition can be found in the full version of this paper [4].

3.2 Key Encapsulation Mechanisms

Below we first give a syntax for key encapsulation mechanisms. It follows [23]
but with notation a bit different and including an additional algorithm setting
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Fig. 3. Games defining security of key encapsulation mechanism KE. In each game the
adversary is given access to oracles. The game, to which an oracle belongs, is indicated
behind the oracle’s name. In each game oracle Init must be queried only once, which
has to be done before using any of the other oracles.

up global parameters to be utilized by all users. As for public-key encryption
schemes we formalize the security requirement of pseudorandomness of cipher-
texts under parameter subversion attacks (CPR-PSA). We then adapt the two
existing KEM requirements of indistinguishability of encryptions [23] and public-
key hiding [1,6] to the setting of parameter subversion attacks. In Proposition 2
we show that—as in the case of public-key encryption—the first requirement
implies the other two. We furthermore define a new security requirement called
well-distributedness of ciphertexts, which is necessary to achieve CPR-PSA in
the hybrid PKE construction. It states that key-ciphertext pairs generated using
the KEM’s encapsulation algorithm are indistinguishable from choosing a cipher-
text at random and then computing its decapsulation.

KEMs. A key encapsulation mechanism (KEM) KE specifies the following.
Parameter generation algorithm KE.P takes input 1k, where k ∈ N is the secu-
rity parameter, and returns global parameters π. Key-generation algorithm KE.G
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takes input 1k, π and returns a tuple (pk , sk) consisting of the public (encryp-
tion) key pk and matching secret (decryption) key sk . KE.KS associates to k
a finite set KE.KS(k) only depending on the security parameter that is the key
space of KE. KE.CS associates to k and parameters π a finite set KE.CS(k, π) that
is the ciphertext space of KE. Encapsulation algorithm KE.E takes 1k, π, pk and
returns (K, c) where K ∈ KE.KS(k) is the encapsulated key and c ∈ KE.CS(k, π)
is a ciphertext encapsulating K. Deterministic decapsulation algorithm KE.D
takes 1k, π, sk and a ciphertext c and returns either a key K ∈ KE.KS(k)
or the special symbol ⊥ indicating failure. The correctness condition requires
that for all k ∈ N, all π ∈ [KE.P(1k)] and all (pk , sk) ∈ [KE.G(1k, π)] we
have Pr

[
KE.D(1k, π, sk , c) = K

] ≥ 1 − KE.de(k), where the probability is over
(K, c) ←$ KE.E(1k, π, pk) and KE.de : N → R≥0 is the decryption error of KE.
Our KEMs will be in the ROM [13], which means the encapsulation and decapsu-
lation algorithms have access to a random oracle specified in the security games.
Correctness must then hold for all choices of the random oracle. We say a KEM
is parameter-free if KE.P returns ε on every input 1k.

Ciphertext pseudorandomness. Consider game Gcpr-psa
KE,A (k) of Fig. 3 associ-

ated to KEM KE, adversary A and security parameter k, and let

Advcpr-psa
KE,A (k) = 2Pr[Gcpr-psa

KE,A (k)] − 1.

We say that KE has pseudorandom ciphertexts under parameter subversion
attacks (also called CPR-PSA) if the function Advcpr-psa

KE,A (·) is negligible for
every A. In the game, b is a challenge bit. When b = 1, the challenge key K∗ and
ciphertext c∗ are generated via the encapsulation algorithm, but if b = 0 they are
chosen at random, from the key space and ciphertext space, respectively. Given
the public key, challenge key and challenge ciphertext, the adversary outputs a
guess b′ and wins if b′ equals b, the game returning true in this case and false oth-
erwise. The adversary has access to an oracle Init, which sets up the challenge.
We require that the adversary queries Init before using any of the other oracles
and that it queries Init only once. Further the adversary has access to an oracle
for decapsulation under sk , crippled to not work when invoked on the challenge
ciphertext. It, and the encapsulation and decapsulation algorithms, have access
to the random oracle RO. The parameters used in the game are provided by the
adversary via its call to Init.

Indistinguishability of encapsulated keys from random. Consider
game Gind-psa

KE,A (k) of Fig. 3 associated to KEM KE, adversary A and security
parameter k, and let

Advind-psa
KE,A (k) = 2Pr[Gind-psa

KE,A (k)] − 1.

We say that KE has encapsulated keys indistinguishable from random under
parameter subversion attacks (also called IND-PSA) if the function Advind-psa

KE,A (·)
is negligible for every A. In the game, b is a challenge bit. When b = 1, the chal-
lenge key K∗ and ciphertext c∗ are generated via the encapsulation algorithm,
while if b = 0 the key is switched to one drawn randomly from the key space,



PKE Resistant to Parameter Subversion 361

the ciphertext remaining real. Given the public key, challenge key and challenge
ciphertext, the adversary outputs a guess b′ and wins if b′ equals b. Again the
adversary has access to a crippled decapsulation oracle and the random oracle
and provides the parameters used in the game via his call to the oracle Init,
which has to be queried before using any of the other oracles.

Public-key hiding. Consider game Gpkh-psa
KE,A (k) of Fig. 3 associated to KEM

KE, adversary A and security parameter k, and let

Advpkh-psa
KE,A (k) = 2Pr[Gpkh-psa

KE,A (k)] − 1.

We say that KE is public-key hiding under parameter subversion attacks (also
called PKH-PSA) if the function Advpkh-psa

KE,A (·) is negligible for every A. In the
game, b is a challenge bit. Unlike the prior games, two key pairs are generated,
not one. The challenge key K∗ and ciphertext c∗ are generated via the encapsu-
lation algorithm under pk b. Given the public keys, challenge key and challenge
ciphertext, the adversary outputs a guess b′ and wins if b′ equals b. This time
the crippled decapsulation oracle returns decapsulations under both secret keys.
Again the adversary provides the parameters to be used in the game via his
single call to the oracle Init, which has to be queried before using any of the
other oracles.

Relations. The following says that in the parameter subversion setting
CPR-PSA implies both IND-PSA and PKH-PSA. We give both the asymptotic
and concrete statements of the results.

Proposition 2. Let KE be a KEM that has pseudorandom ciphertexts under
parameter subversion attacks. Then:

1. KE is IND-PSA. Concretely, given an adversary A the proof specifies an
adversary B such that Advind-psa

KE,A (k) ≤ 2 · Advcpr-psa
KE,B (k) for every k ∈ N,

and B has the same running time and query counts as A.
2. KE is PKH-PSA. Concretely, given an adversary A the proof specifies an

adversary B such that Advpkh-psa
KE,A (k) ≤ 2 · Advcpr-psa

KE,B (k) for every k ∈ N,
and B has the same running time and query counts as A.

The proof of the proposition can be found in the full version of this paper [4].

Well-distributed ciphertexts. Consider game Gwdc-psa
KE,A (k) of Fig. 4 associ-

ated to KEM KE, adversary A and security parameter k, and let

Advwdc-psa
KE,A (k) = 2Pr[Gwdc-psa

KE,A (k)] − 1.

We say KE has well distributed ciphertexts under parameter subversion attacks
(also called WDC-PSA), if the function Advwdc-psa

KE,A (·) is negligible for every
adversary A. In the game b is a challenge bit. If b equals 1 the adversary as
response to querying the initialization procedure, which may be done at most
once, receives a key-ciphertext pair generated using KE.E. If b equals 0 it receives
a pair (c∗,K∗) generated by choosing c∗ at random and then setting K∗ to be
the decapsulation of c∗. The adversary has access to a decryption oracle. We
require that the adversary queries Init before querying any of the other oracles.
Looking ahead, all of our instantiations achieve this notion statistically.
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Fig. 4. Game defining well-distributedness of ciphertexts of KEs.

3.3 Symmetric Encryption

Below, we recall symmetric encryption. Our definition follows [23] but uses dif-
ferent notation. We further define the security notion of ciphertext pseudoran-
domness for symmetric key encryption.

One-Time symmetric-Key Encryption. A symmetric-key encryption scheme
(SKE) specifies the following. SE.KS associates to security parameter k key space
SE.KS(k). SE.CS associates to security parameter k and message length m ∈ N

the ciphertext space SE.CS(k,m). Deterministic encryption algorithm SE.E takes
as input 1k, key K ∈ SE.KS(k) and a message M ∈ {0, 1}∗ and returns ciphertext
c ∈ SE.CS(k, |M |). Deterministic decryption algorithm SE.D on input 1k,K ∈
SE.KS(k), c ∈ SE.CS(k,m) returns either a message M ∈ {0, 1}m or the special
symbol ⊥ indicating failure. For correctness we require that M = SE.D(1k,K, c)
for all k, all K ∈ SE.KS(k) and all M ∈ {0, 1}∗, where c ← SE.E(1k,K,M).

One-time security. Consider game Gcpr
SE,A(k) of Fig. 5 associated to SKE SE,

adversary A and security parameter k, and let

Advcpr
SE,A(k) = 2Pr[Gcpr

SE,A(k)] − 1.

We say that SE has pseudorandom ciphertexts (also called CPR) if the function
Advcpr

SE,A(·) is negligible for every A. We require that Enc is queried at most
once.

3.4 PKE from Key Encapsulation and Symmetric-Key Encryption

Below, we analyze hybrid encryption in the setting of parameter subversion.
Formally we give a transform KEMToPE that associates to KEM KE and
symmetric-key encryption scheme SE a public-key encryption scheme PE. The
construction essentially is the hybrid encryption scheme of [23] including an addi-
tional parameter generation algorithm. The scheme’s parameter generation, key
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Fig. 5. Game defining one-time security notions of SKEs.

Fig. 6. PKE KEMToPE[KE, SE] associated to KEM KE and SE SE.

generation encryption and decryption algorithms are in Fig. 6. PE’s ciphertext
space is given by PE.CS(k, π,m) = KE.CS(k, π) × SE.CS(k,m). It is easy to ver-
ify that PE has decryption error PE.de(k) = KE.de(k). The following essentially
states that hybrid encryption also works in setting of ciphertext pseudorandom-
ness under parameter subversion attacks, i.e., combining a KEM that is both
CPR-PSA and WDC-PSA with a SKE that is CPR yields a CPR-PSA PKE,
where the well-distributedness of the KEM’s ciphertext is necessary to correctly
simulate the decryption oracle in the CPR-PSA game with respect to PE.

Proposition 3. Let KE a KEM and SE a SE such that KE.KS(k) = SE.KS(k)
for all k ∈ N. Let PE = KEMToPE[KE,SE] be the PKE associated to KE
and SE. If KE is CPR-PSA and WDC-PSA and if SE is CPR then PE is
CPR-PSA Concretely, given adversary A against Gcpr-psa

PE,A (k), there exist adver-
saries B1,B2,B3 having the same running time and query count as A, which
satisfy

Advcpr-psa
PE,A (k) ≤ 2 Advcpr-psa

KE,B1
(k) + Advwdc-psa

KE,B2
(k) + Advcpr

SE,B3
(k) + KE.de(k).

The proof of the proposition can be found in the full version of this paper [4].
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Fig. 7. Game defining embedding pseudorandomness of eeg family EG.

4 KEMs from Efficiently Embeddable Group Families

In this section we define efficiently embeddable group families (eeg). We define
the security notion of pseudorandom embeddings under parameter subversion
attacks (EPR-PSA) and adapt the strong computational Diffie-Hellman prob-
lem (sCDH-PSA) to the setting of efficiently embeddable group families and
parameter subversion. Further we give a generic constructions of key encapsula-
tion mechanisms from eeg families. It achieves security assuming the eeg family
is sCDH-PSA and EPR-PSA.

4.1 Efficiently Embeddable Group Families

Efficiently embeddable group families. An embeddable group family EG
specifies the following. Parameter generation algorithm EG.P takes as input 1k,
where k ∈ N is the security parameter, and returns parameters π. Group gen-
eration algorithm EG.G on input 1k, π returns a tuple G = (〈G〉, n, g), where
〈G〉 is a description of a cyclic group G of order n, and g is a generator of
G. EG.ES associates to k a finite set EG.ES(k, π) called the embedding space
that is only dependent on k and π. Sampling algorithm EG.S on input of 1k, π
and G ∈ [EG.G(1k, π)] outputs y ∈ Zn. (Not necessarily uniformly distributed.)
Embedding algorithm EG.E receives as input 1k, π, G ∈ [EG.G(1k, π)] and h ∈ G

and returns an element c ∈ EG.ES(k, π). Deterministic inversion algorithm EG.I
on input of 1k, π, G ∈ [EG.G(1k, π)] and c ∈ EG.ES(k, π) returns an element
of G. The correctness condition requires that for all k ∈ N, all π ∈ EG.P(1k)
and all G ∈ [EG.G(1k, π)] we have Pr

[
EG.I(1k, π,G, h) = gy

] ≥ 1 − EG.ie(k),
where the probability is over y ←$ EG.S(1k, π,G) and h ←$ EG.E(1k, π,G, gy),
and EG.ie : N → R≥0 is the inversion error of EG. If EG.P returns ε on every
input 1k, i.e. if no parameters are used, we say that EG is parameter-free.

Embedding Pseudorandomness. Consider game Gepr-psa
EG,A (k) of Fig. 7 associ-

ated to eeg family EG, adversary A and security parameter k. Let

Advepr-psa
EG,A (k) = 2Pr[Gepr-psa

EG,A (k)] − 1.
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Fig. 8. Experiment for the strong computational Diffie-Hellman problem with respect
to eeg family EG. Oracle Init may be queried only once and has to be queried before
using oracle ddh.

We say that EG has pseudorandom embeddings under parameter subversion
attacks (also called EPR-PSA) if the function Advepr-psa

EG,A,· is negligible for every
A. In the game, b is a challenge bit. When b = 1, the challenge embedding
c∗ is generated by sampling an exponent using EG.S and embedding the group
generator raised to the exponent with EG.E. If b = 0 the adversary is given an
embedding sampled uniformly from the embedding space. Given the group and
the embedding, the adversary outputs a guess b′ and wins if b′ equals b. The
parameters used in the game are provided by the adversary making a single
call to the oracle Init. All of our instantiations sample exponents such that the
resulting embeddings are statistically close to uniform on EG.ES(k, π), and hence
achieve this notion statistically.

Diffie-Hellman problem with respect to EG. The computational Diffie-
Hellman problem for a cyclic group G of order n, which is generated by g, asks
to compute gxy given gx and gy, where x, y ←$ Zn. In the strong computational
Diffie-Hellman problem introduced by Abdalla et al. in [2] the adversary addi-
tionally has access to an oracle, which may be used to check whether Y x = Z for
group elements Y,Z ∈ G. We provide a definition for the strong computational
Diffie-Hellman problem with respect to eeg families EG, which allows parameter
subversion. An additional difference is that y is not chosen uniformly from Zn

but instead sampled using EG.S.
Thus, consider game Gscdh-psa

EG,A (k) of Fig. 8. The game is associated to eeg
family EG, adversary A and security parameter k. The adversary has access to
an oracle Init setting up a problem instance according to the parameters it is
provided. Let

Advscdh-psa
EG,A (k) := Pr

[
Gscdh-psa

EG,A (k)
]
.

We say that the strong computational Diffie-Hellman problem under parameter
subversion (also called sCDH-PSA) is hard with respect to EG if Advscdh-psa

EG,A (·)
is negligible for every adversary A.
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Fig. 9. KEM KE1 = eegToKE1[EG, m] built from eeg family EG and polynomial m
via our transform. The KE has key space KE.KS(k) = {0, 1}m(k) and ciphertext space
KE.CS(k, π) = EG.ES(k, π).

4.2 Key Encapsulation from Efficiently Embeddable Group Families

In this section we give a generic construction of a key encapsulation mecha-
nism from an eeg family EG. Its security is based on the strong Diffie-Hellman
problem, i.e. if sCDH-PSA is hard with respect to EG, the KEM is IND-PSA.
If additionally EG has pseudorandom embeddings, the KEM has pseudorandom
and well-distributed ciphertexts. The construction is similar to the standard El
Gamal based key encapsulation mechanism as for example used in [2,23]. As an
intermediate step in the proof that the construction is CPR-PSA we obtain that
it is IND-PSA. The proof of this property follows the outlines of the proofs given
in [2,23]. Afterwards we use the pseudorandomness of the eeg family’s embed-
dings to show, that our construction achieves pseudorandom and well-distributed
ciphertexts.

Formally, we define a transform eegToKE1 that associates to an eeg family
EG and a polynomial m : N → N a KEM KE = eegToKE1[EG,m]. The param-
eter generation, key generation, encryption and decryption algorithms of KE are
in Fig. 9. The construction is in the ROM, so that encryption and decryption
invoke the RO oracle. The key space is KE.KS(k) = {0, 1}m(k). The ciphertext
space KE.CS(k, π) = EG.ES(k, π) is the embedding space of EG. It is easy to
verify that KE.de = EG.ie, meaning the decryption error of the KEM equals the
inversion error of the eeg family.

Security of the construction. The following says that if sCDH-PSA is hard
with respect to eeg family EG then eegToKE1[EG,m] has desirable security
properties.

Theorem 4. Let KE = eegToKE1[EG,m] be the KEM associated to eeg family
EG and polynomial m : N → N as defined in Fig. 9. Assume that EG is EPR-PSA
and that sCDH-PSA is hard with respect to EG. Then

(i) KE has pseudorandom ciphertexts under parameter subversion attacks.
(ii) KE has well-distributed ciphertexts under parameter subversion attacks.
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Moreover, if EG is parameter-free so is KE. Concretely, given an adversary A
making at most q(k) queries to RO the proof specifies adversaries B1 and B2

having the same running time as A satisfying

Advcpr-psa
KE (A)(k) ≤ Advscdh-psa

EG,B1
(k) + Advepr-psa

EG,B2
(k),

where B2 makes at most q(k) queries to ddh. Furthermore given an adversary
A′ the proof specifies an adversary B′ having the same running time as A′ such
that,

Advwdc-psa
KE,A′ (k) ≤ Advepr-psa

EG,B′ (k) + EG.ie(k).

The proof of the theorem can be found in the full version of this paper [4]. In
the full version of this paper [4] we also provide a transform eegToKE2, which
achieves security under the weaker CDH-PSA assumption with respect to EG.

5 Efficiently Embeddable Group Families from
Curve-Twist Pairs

In this section we give instantiations of eeg families based on elliptic curves.
The main tool of the constructions is a bijection of [34] mapping points of an
elliptic curve and its quadratic twist to an interval of integers. We first give a
construction using parameters, the parameter being a prime p of length k serving
as the modulus of the prime field the curves are defined over. The construction
has embedding space [2p+1]. Since we assume, that the parameter shared by all
users might be subject to subversion, security of this construction corresponds
to the assumption that there exist no inherently bad choices for p, i.e. that for
any sufficiently large prime p it is possible to find elliptic curves defined over Fp

on which the strong computational Diffie-Hellman assumption holds.
As an alternative we also give parameter-free eeg-families whose security is

based on the weaker assumption that for random k-bit prime p it is possible to
find elliptic curves defined over Fp, such that the strong computational Diffie-
Hellman assumption holds. Since in this construction the modulus p is sampled
along with the curve, it is no longer possible to use [2p + 1] as the embedding
space of the eeg family. We propose two solutions to overcome this, one using
rejection sampling to restrict the embedding space to the set [2k], the other one
is based on a technique from [33] and expands the embedding space to [2k+1].

5.1 Elliptic Curves

Let p ≥ 5 be prime and Fp a field of order p. An elliptic curve over Fp can be
expressed in short Weierstrass form, that is as the set of projective solutions of
an equation of the form

Y Z2 = X3 + aXZ2 + bZ3,

where a, b ∈ Fp with 4a3 + 27b2 �= 0. We denote the elliptic curve generated by
p, a, b by E(p, a, b). E(p, a, b) possesses exactly one point with Z-coordinate 0,
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the so called point at infinity O = (0 : 1 : 0). After normalizing by Z = 1 the
curve’s other points can be interpreted as the solutions (x, y) ∈ F

2
p of the affine

equation y2 = x3 + ax + b. It is possible to establish an efficiently computable
group law on E(p, a, b) with O serving as the neutral element of the group. We
use multiplicative notation for the group law to be consistent with the rest of
the paper.

Twists of Elliptic Curves. In [34, Sect. 4] Kaliski establishes the following
one-to-one correspondence between two elliptic curves defined over Fp which are
related by twisting and a set of integers.

Lemma 5. Let p ∈ N≥5 be prime. Let u ∈ Zp be a quadratic nonresidue modulo
p and a, b ∈ Zp such that 4a3 + 27b2 �= 0. Consider the elliptic curves E0 :=
E(p, a, b) and E1 := E(p, au2, bu3). Then |E0| + |E1| = 2p + 2. Furthermore, the
functions l0 : E0 −→ [2p + 2] and l1 : E1 −→ [2p + 2] defined as

l0 (P ) =

⎧
⎪⎨

⎪⎩

p if P = O0

(ux mod p) if (P = (x, y)) ∧ (0 ≤ y ≤ (p − 1)/2),
(ux mod p) + p + 1 if (P = (x, y)) ∧ ((p − 1)/2 < y)

l1(P ) =

⎧
⎪⎨

⎪⎩

2p + 1 if P = O1

x if (P = (x, y)) ∧ (0 < y ≤ (p − 1)/2)
x + p + 1 if (P = (x, y)) ∧ ((y = 0) ∨ ((p − 1)/2 < y))

are injective with nonintersecting ranges, where O0 and O1 denote the neutral
elements of E0 and E1 respectively.

Lemma 6. The functions l0 and l1 can be efficiently inverted. That is, given
z ∈ [2p + 1], one can efficiently compute the unique (P, δ) ∈ E0 ∪ E1 × {0, 1}
such that lδ(P ) = z.

The proof of the lemma can be found in the full version of this paper [4].

Definition 7. A curve-twist generator TGen on input of security parameter 1k

and a k-bit prime p returns (G0, G1), where G0 = (〈E0〉, n0, g0) and G1 =
(〈E1〉, n1, g1) are secure cyclic elliptic curves defined over the field Fp. More
precisely we require E0 := E(p, a, b) and E1 := E(p, au2, bu3) for a, b ∈ Fp

such that (4a3 + 27b2) �= 0 and quadratic nonresidue u. Furthermore we require
that g0 generates E0 and g1 generates E1 as well as |E0| = n0, |E1| = n1 and
gcd(n0, n1) = 1.

Generation of secure Twisted Elliptic Curves. There exist several pro-
posals for properties an elliptic curve over a prime field Fp should have to be
considered secure (e.g., [18,27]). Firstly, the elliptic curve’s order is required
to be either the product of a big prime and a small cofactor—or preferably
prime. Secondly, several conditions preventing the transfer of discrete logarithm
problems on the curve to groups, where faster algorithms to compute discrete
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logarithms may be applied, should be fulfilled. Finally, for our applications we
need both the elliptic curve and its quadratic twist to be secure, a property usu-
ally called twist security. For concreteness, we suggest to implement TGen(1k, p)
by sampling the necessary parameters a, b, u with rejection sampling such that
the resulting curve E(p, a, b) fulfills the three security requirement mentioned
above. This way, TGen can be implemented quite efficiently1 and furthermore,
with overwhelming probability, the resulting curve fulfills all relevant security
requirements from [18,27] that are not covered by the three security properties
explicitly mentioned above.

Computational problems associated to TGen. Let TGen a curve-twist gen-
erator. We give two versions of the strong computational Diffie-Hellman assump-
tion with respect to TGen. In the first version the prime p on which TGen
is invoked is chosen by the adversary, while in the second version p is sam-
pled uniformly at random from all k-bit primes. For d ∈ {0, 1} consider games
Gtwistd-cp-scdh

TGen,A (·) and Gtwistd-up-scdh
TGen,A (·) of Fig. 10. We define advantage functions

Advtwistd-cp-scdh
TGen,A (k) = Pr

[
Gtwistd-cp-scdh

TGen,A (k)
]
,

Advtwistd-up-scdh
TGen,A (k) = Pr

[
Gtwistd-up-scdh

TGen,A (k)
]
.

Definition 8. Let TGen be a curve-twist generator. We say the strong
computational Diffie-Hellman assumption for chosen (uniform) primes holds
with respect to curve-twist generator TGen, if both Advtwist0-cp-scdh

TGen,A (·) and
Advtwist1-cp-scdh

TGen,A (·) (or Advtwist0-up-scdh
TGen,(Pk)k,A (·) and Advtwist1-up-scdh

TGen,(Pk)k,A (·) respec-
tively) are negligible for all adversaries A.

5.2 An Eeg Family from Elliptic Curves

In [34] Kaliski implicitly gives an eeg family based on elliptic curves. The family
is parameter-using, the parameter being a prime p serving as the modulus of
the field the elliptic curves are defined over. The definition of eeg family EGtwist

may be found in Fig. 11. Parameter generation algorithm EGtwist.P on input
of security parameter 1k returns a randomly sampled k-bit prime2 p. Group
generation algorithm EGtwist.G on input of parameter π = p checks, whether p is
1 In [29] Galbraith and McKee consider elliptic curves E chosen uniformly from the

set of elliptic curves over a fixed prime field Fp. They give a conjecture (together
with some experimental evidence) for a lower bound on the probability of |E| being
prime. Using a similar technique [27] argue, that the probability of a uniformly
chosen elliptic curve over a fixed prime field Fp to be both secure and twist secure
is bounded from below by 0.5/log2(p). Since their definition of security of an elliptic
curve includes primality of the curve order and since due to Lemma 5 the orders of
curve and twist sum up to 2p + 2, this in particular implies that the curve and its
twist are cyclic and have coprime group order.

2 In practice one would preferably instantiate EGtwist with a standardized prime.
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Fig. 10. Experiments for the sCDH problem for chosen (uniform) primes with respect
to d ∈ {0, 1}, adversary A and curve-twist generator TGen.

indeed a prime of appropriate length, and—if so—runs a curve-twist generator
TGen(1k, π) to obtain the description of two cyclic secure cyclic elliptic curves
G0 = (〈E0〉, n0, g0) and G1 = (〈E1〉, n1, g1). Its output is (〈G〉, n, g), where
G ← E0 × E1 is the direct product of the two elliptic curves, n ← n0 · n1 and
g ← (g0, g1). Here we assume that the description 〈G〉 of G includes the values
n0 and n1, which are used by EGtwist’s other algorithms. Note that |G| = n and
since n0 and n1 are coprime, g generates G. Furthermore, if we regard E0 and
E1 as subgroups of G = E0 × E1 in the natural way, we may rewrite the set
E0 ∪ E1 ⊆ G as

E0 ∪ E1 = {(h0,O1) | h0 ∈ E0} ∪ {(O0, h1) | h1 ∈ E1}
= {(g0, g1)y | y ∈ Zn : y ≡ 0 mod n0 or y ≡ 0 mod n1}

Algorithm EGtwist.S uses this property to efficiently sample y ∈ Zn such that
gy ∼ UE0∪E1 . It first samples z ←$ Z2p+1. If z < n0 it returns ϕcrt(z, 0). Else it
returns ϕcrt(0, z − n0 − 1). Here ϕcrt denotes the canonical isomorphism ϕcrt :
Zn0 × Zn1 → Zn. As a result y ←$ EGtwist.S(1k, G) satisfies y ∼ UM , where
M := {y ∈ Zn | y ≡ 0 mod n0 or y ≡ 0 mod n1}. Embedding algorithm
EGtwist.E receives as input 1k, π, G and h = (h0, h1) ∈ G. It first checks, whether
h lies outside of the support [EGtwist.S(1k, π,G)] of the sampling algorithm, i.e.
whether both h0 �= O0 and h1 �= O1. In this case the element is mapped to 0.
If h is an element of [EGtwist.S(1k, π,G)], algorithm EGtwist.E returns l0(h0) if
h1 = O1, and l1(h1) if h1 �= O1. Here l0 : E0 → [2p + 2] and l1 : E1 → [2p + 2]
denote the maps of Lemma 5. By Lemma 5 the map EGtwist.E(1k, G, ·)|E0∪E1 is
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Fig. 11. Definition of eeg family EGtwist with embedding space EGtwist.ES(k, π) =
[2p + 1]. l0 and l1 denote the maps from Lemma 5, ϕcrt the canonical isomorphism
Zn0 × Zn1 → Zn.

a bijection between E0 ∪ E1 and [2p + 1] and we obtain EGtwist.E(1k, G, gy) ∼
U[2p+1] for y sampled with EGtwist.S(1k, G). We obtain the following.

Lemma 9. EGtwist as defined in Fig. 11 is an eeg family with embedding space
EGtwist.ES(k,G) = [2p + 1] and inversion error EGtwist.ie(k) = 0. Furthermore
EGtwist has pseudorandom embeddings. More precisely, for every (potentially
unbounded) adversary A we have

Advepr-psa
EGtwist,A(k) = 0.

A proof of the lemma can be found in the full version of the paper [4]. Concerning
the hardness of sCDH-PSA with respect to EGtwist we obtain the following.

Lemma 10. Let EGtwist be the embeddable group generator constructed with
respect to twisted elliptic curve generator TGen as described above. If the strong
Diffie-Hellman assumption for chosen primes holds with respect to TGen, then
the strong Diffie-Hellman assumption holds with respect to EGtwist.

Concretely for every adversary A against game Gscdh-psa
EGtwist,A(·), which makes at

most Q queries to its DDH-oracle, there exist adversaries B0, B1 against games
Gtwist0-cp-scdh

TGen,B0
(·) or Gtwist1-cp-scdh

TGen,B1
(·) respectively making at most Q queries to

their DDH-oracles, satisfying

Advscdh-psa
EGtwist,A(k) ≤ Advtwist0-cp-scdh

TGen,B0
(k) + Advtwist1-cp-scdh

TGen,B1
(k).

The proof of the lemma can be found in the full version of this paper [4].

5.3 A Parameter-Free Eeg Family Using Rejection Sampling

Eeg family EGtwist of Sect. 5.2 is parameter-using, the parameter being the size p
of the field Fp. Correspondingly, hardness of sCDH-PSA with respect to EGtwist
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Fig. 12. Parameter-free eeg family EG�
twist-rs.

follows from the assumption, that the elliptic curves output by curve-twist gen-
erator TGen are secure, independently of the prime p the curve-twist generator
TGen is instantiated with. In this section we show how EGtwist can be used to
construct an eeg family EG�

twist-rs for which hardness of sCDH-PSA follows from
the weaker assumption that TGen instantiated with a randomly chosen prime is
able to sample secure elliptic curves. The construction is parameter-free and has
embedding space [2k]. The size p of the field over which the elliptic curves are
defined is now sampled as part of the group generation. The embedding algo-
rithm uses rejection sampling to ensure that embeddings of group elements gy for
y sampled with EG�

twist-rs.S are elements of [2k]. The specification of EG�
twist-rs’s

algorithms may be found in Fig. 12.

Theorem 11. Let � : N → N be a polynomial. EG�
twist-rs as described above is

an eeg family with embedding space EG�
twist-rs.ES(k, π) = [2k] and inversion error

EG�
twist-rs.ie(k) ≤ 2−�(k). Furthermore EG�

twist-rs has pseudorandom embeddings.
More precisely, for every (potentially unbounded) adversary A we have

Advepr-psa
EG�

twist-rs,A
(k) ≤ 2−�(k).

The proof of the theorem can be found in the full version of this paper [4].
As discussed above, we obtain that—assuming that TGen invoked on randomly
sampled prime p returns a secure curve-twist pair—the sCDH-PSA-problem with
respect to eeg family EG�

twist-rs is hard.

Lemma 12. Let � : N → N be a polynomial and EG�
twist-rs the eeg family

with underlying curve-twist generator TGen as described above. If the sCDH
assumption for uniform primes holds with respect to TGen, then sCDH-PSA is
hard with respect to EG�

twist-rs. Concretely, for every adversary A against game
Gscdh-psa

EG�
twist-rs,A

(·) making at most Q queries to its DDH-oracle there exist adver-

saries B0, B1 against Gtwist0-up-scdh
TGen,B0

(·) or Gtwist1-up-scdh
TGen,B1

(·) respectively, making
at most Q queries to their DDH-oracles and running in the same time as A,
which satisfy

Advscdh-psa
EG�

twist-rs,A
(k) ≤ 3

(
Advtwist0-up-scdh

TGen,B0
(k) + Advtwist1-up-scdh

TGen,B1
(k)

)
+ 2−�(k)

for all k ∈ N≥6.
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Fig. 13. Definition of eeg family EGtwist-re with embedding space EGtwist-re.ES(k, π) :=
[2k+1]. ψG denotes the bijection [2p + 1] → [EGtwist.S(1k, p, G′)] defined in Sect. 5.4.

The proof of the lemma can be found in the full version of this paper [4].

5.4 A Parameter-Free Family Using Range Expansion

In this section we modify the algorithms of EGtwist to obtain an embeddable
group family EGtwist-re with embedding space EGtwist-re.ES(k, π) = [2k+1]. The
eeg family has inversion error EGtwist-re.ie(k) = 0 and achieves uniformly dis-
tributed embeddings. The construction is building on a technique introduced
by Hayashi et al. [33], where it is used to expand the range of one way permu-
tations. As in Sect. 5.3, the hardness sCDH-PSA with respect to EGtwist-re is
based on the hardness of the sCDH problem for uniform primes with respect to
TGen. The sampling algorithm—in contrast to the construction based on rejec-
tion sampling—needs access to only one uniformly random sampled integer,
performs at most one exponentiation in the group and uses at most one evalu-
ation of EGtwist.E to output y with the correct distribution. Furthermore, expo-
nents sampled by EGtwist-re.S are distributed such that the eeg family achieves
EGtwist-re.ie(k) = 0 and for every (potentially unbounded) adversary A we addi-
tionally have Advepr-psa

EGtwist-re,A(k) = 0.
The description of EGtwist-re may be found in Fig. 13. We now discuss the

construction in greater detail. Let (G′, p) = G ∈ [EGtwist-re.G(k, π)], where G′ =
(〈G〉, n, g). The idea of the construction is to partition [EGtwist.S(1k, p,G′)] into
two sets M1, M2 with M1 ∪M2 = [EGtwist.S(1k, p,G′)], {EGtwist.E(1k, p,G′, gy) |
y ∈ M1} = {2k+1 − (2p + 1), · · · , 2p} and {EGtwist.E(1k, p,G′, gy) | y ∈ M2} =
{0, · · · , 2k+1−(2p+2)}. The sampling algorithm EGtwist-re.S is constructed such
that for y sampled by EGtwist-re.S(1k, π,G), the probability Pr[y = y′] equals 2−k

for all y′ ∈ M2 and 2−(k+1) for all y′ ∈ M1. Embedding algorithm EGtwist-re.E
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on input (1k, π,G, h) first computes c ← EGtwist.E(1k, p,G′, h). If c ∈ {2k+1 −
(2p + 1), · · · , 2p} its output remains unchanged. Otherwise it is shifted to {2p +
1, · · · , 2k+1 −1} with probability 1/2. In this way we achieve embeddings, which
are uniformly distributed on EGtwist-re.ES(k, π) = [2k+1].

Our construction relies on the existence of a bijection ψG : [2p + 1] →
[EGtwist.S(1k, p,G′)] for all (G′, p) = G ∈ [EGtwist-re.G(1k, π)]. We use the bijec-
tion, which was implicitly given in the definition of EGtwist.S. That is, for
z ∈ [2p + 1] we define

ψG(z) :=

{
ϕcrt(z, 0) if z < n0

ϕcrt(0, z − n0 − 1) else,

where ϕcrt denotes the canonical isomorphism Zn0 × Zn1 → Zn.

Theorem 13. EGtwist-re as specified in Fig. 13 is an embeddable group fam-
ily with embedding space EGtwist-re.ES(k, π) = [2k+1] and inverson error
EGtwist-re.ie(k) = 0. Furthermore EGtwist-re has pseudorandom embeddings. More
precisely, for every (potentially unbounded) adversary A we have

Advepr-psa
EGtwist-re,A(k) = 0.

The proof of the theorem can be found in the full version of this paper [4].
As in the case of EG�

twist-rs, we obtain that—assuming that TGen invoked on
randomly sampled prime p returns a secure curve-twist pair—sCDH-PSA with
respect to eeg family EGtwist-re is hard.

Lemma 14. Let EGtwist-re be the eeg family defined above with underlying curve-
twist generator TGen. If the sCDH assumption holds with respect to TGen, then
sCDH-PSA is hard with respect to EGtwist-re. Concretely, for every adversary
A against Gscdh-psa

EGtwist-re,A(·) making at most Q queries to its DDH-oracle there
exist adversaries B0, B1 against Gtwist0-up-scdh

TGen,B0
(·) or Gtwist1-up-scdh

TGen,B1
(·) respec-

tively running in the same time as A and making at most Q queries to their
DDH-oracles, which satisfy

Advscdh-psa
EGtwist-re,A(k) ≤ 2

(
Advtwist0-up-scdh

TGen,B0
(k) + Advtwist1-up-scdh

TGen,B1
(k)

)
.

The proof of the lemma can be found in the full version of this paper [4].
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