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Nico Döttling1(B), Sanjam Garg2, Mohammad Hajiabadi2,
and Daniel Masny2(B)

1 Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
nico.doettling@fau.de

2 University of California, Berkeley, USA
{sanjamg,mdhajiabadi,daniel.masny}@berkeley.edu

Abstract. Recently, Döttling and Garg (CRYPTO 2017) showed how
to build identity-based encryption (IBE) from a novel primitive termed
Chameleon Encryption, which can in turn be realized from simple number
theoretic hardness assumptions such as the computational Diffie-Hellman
assumption (in groups without pairings) or the factoring assumption. In
a follow-up work (TCC 2017), the same authors showed that IBE can
also be constructed from a slightly weaker primitive called One-Time
Signatures with Encryption (OTSE).

In this work, we show that OTSE can be instantiated from hard learn-
ing problems such as the Learning With Errors (LWE) and the Learning
Parity with Noise (LPN) problems. This immediately yields the first
IBE construction from the LPN problem and a construction based on a
weaker LWE assumption compared to previous works.

Finally, we show that the notion of one-time signatures with encryp-
tion is also useful for the construction of key-dependent-message (KDM)
secure public-key encryption. In particular, our results imply that a
KDM-secure public key encryption can be constructed from any KDM-
secure secret-key encryption scheme and any public-key encryption
scheme.

1 Introduction

Identity-based encryption (IBE) is a form of public key encryption that allows
a sender to encrypt messages to a user without knowing a user-specific public
key, but only the user’s name or identity and some global and succinct public
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parameters. The public parameters are issued by a key authority which also
provides identity-specific secret keys to the users.

The notion of IBE was originally proposed by Shamir [Sha84], and in two
seminal results Boneh and Franklin [BF01] and Cocks [Coc01] provided the first
candidate constructions of IBE in the random oracle model from groups with
pairings and the quadratic residue problem respectively. Later works on IBE
provided security proofs without random oracles [CHK04,BB04,Wat05,Wat09,
LW10,BGH07] and realized IBE from hard lattice problems [GPV08,CHKP12,
ABB10].

In a recent result, Döttling and Garg [DG17b] showed how to construct IBE
from (presumably) qualitatively simpler assumptions, namely the computational
Diffie-Hellman assumption in groups without pairings or the factoring assump-
tion. In a follow-up work, the same authors [DG17a] provided a generalization
of the framework proposed in [DG17b]. In particular, the authors show that
identity-based encryption is equivalent to the seemingly simpler notion of One-
Time Signatures with Encryption (OTSE) using a refined version of the tree-
based IBE construction of [DG17b].

An OTSE-scheme is a one-time signature scheme with an additional encryp-
tion and decryption functionality. Informally, the encryption functionality allows
anyone to encrypt a plaintext m to a tuple consisting of a public parameter pp,
a verification key vk, an index i and a bit b, to obtain a ciphertext c. The plain-
text m can be deciphered from c by using a pair of message-signature (x, σ) that
is valid relative to vk and which satisfies xi = b. Security of the OTSE asserts
that an adversary knowing a pair of message-signature (x, σ) and the underlying
public parameter pp and verification key vk cannot distinguish between encryp-
tions of two plaintexts encrypted to (i, 1 − xi) under (pp, vk), for any index i of
the adversary’s choice. (Note that this security property implies the one-time
unforgeability of the signature.) The OTSE also needs to be compact, meaning
the size of the verification key grows only with the security parameter, and does
not depend on the size of messages allowed to be signed.

1.1 PKE and IBE from Learning with Errors

We will briefly review constructions of public-key encryption and identity-based
encryption from the Learning with Errors (LWE) problem.

The hardness of LWE is determined by its dimension n, modulus q, noise mag-
nitude parameter α and the amount of samples m. Regev [Reg05] showed that
among the latter three parameters, in particular the noise magnitude parameter
α is of major importance since it directly impacts the approximation factor of
the underlying lattice problem.

Theorem 1 [Reg05]. Let ε = ε(n) be some negligible function of n. Also, let
α = α(n) ∈ (0, 1) be some real and let p = p(n) be some integer such that
αp > 2

√
n. Assume there exists an efficient (possibly quantum) algorithm that

solves LWEp,α. Then there exists an efficient quantum algorithm for solving the
following worst-case lattice problems:
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1. Find a set of n linearly independent lattice vectors of length at most Õ(λn(L)·
n/α).

2. Approximate λ1(L) within Õ(n/α).

Here, λk is the minimal length of k linearly independent vectors in lattice
L. To find such vectors within a constant or slightly sublinear approximation
is known to be NP-hard under randomized reductions [ABSS93,Ajt98,Mic98,
Kho04,HR07], while for an exponential approximation factor, they can be found
in polynomial time using the LLL algorithm [LLL82]. Regev [Reg05] introduced
the first PKE based on LWE for a choice of α = Õ(1/

√
n), more precisely α =

1/(
√

n log2 n). The first lattice based IBEs, by Gentry et al. [GPV08], Cash et al.
[CHKP10] and by Agrawal et al. [ABB10] require α = Õ(1/n), α = Õ(1/(

√
kn)),

where k is the output length of a hash function, and α = Õ(1/n2).
The reason for this gap between PKE and IBE is that all the known IBE

constructions use an additional trapdoor in order to sample short vectors as
secret keys. This sampling procedure increases the norm of sampled vectors,
such that the initial noise of a ciphertext must be decreased to maintain the
correctness of the schemes. By losing a factor

√
n in the sampling procedure

[MR04,GPV08,MP12,LW15], α needs to be chosen by a factor
√

n smaller.
Therefore, this methodology unavoidably loses at least an additional

√
n factor.

This explains why these techniques cause a gap compared to Regev’s PKE where
α is at least a factor

√
n larger, which decreases the approximation factor by at

least a factor of
√

n. This results in a stronger assumption with respect to the
underlying short vector problem.

1.2 Our Results

As the main contribution of this work, we remove the requirement of the collision-
tractability property of the hash function in the construction of [DG17a]. Specif-
ically, we replace the notion of Chameleon Encryption with the simpler notion
of Hash Encryption, for which no collision tractability property is required. The
notion of Hash Encryption naturally arises from the notion of laconic Oblivi-
ous Transfer [CDG+17]. We provide simple and efficient constructions from the
Learning With Errors (LWE) [Reg05] and (exponentially hard) Learning Parity
with Noise (LPN) problem [YZ16].

Our overall construction of IBE from hash encryption proceeds as follows. We
first show that we can use any CPA PKE to build a non-compact version of One-
Time Signatures with Encryption (OTSE), in which, informally, the size of the
verification key of the OTSE is bigger than the size of the messages allowed to be
signed. We then show how to use hash encryption to boost non-compact OTSE
into compact OTSE, under which arbitrarily large messages could be signed
using a short public parameter and a short verification key, while preserving
the associated encryption-decryption functionalities. Our transformation makes
a non-black-box use of the non-compact OTSE primitive.
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Using a recent result by Döttling and Garg [DG17a], we transform our com-
pact OTSE to an IBE. Hence, we obtain the first constructions of IBE from the
LWE assumption used by Regev’s PKE and the first construction from an LPN
problem.

Further, we show how to use non-compact OTSE to transform key-
dependent-message (KDM) secure private key encryption to KDM-secure pub-
lic key encrpyption. Informally, a private-key encryption scheme is F-KDM
secure, for a function class F , if the scheme remains semantically secure even
if the adversary is allowed to obtain encryptions of f(k), for f ∈ F , under
the secret key k itself. This notion is analogously defined for PKE. A large
body of work, e.g., [BHHO08,ACPS09,BG10,BHHI10,App14,Döt15], shows
how to build KDM-secure schemes from various specific assumptions. Briefly,
in order to construct KDM-secure schemes for a large class of functions, they
first show how to build KDM-secure schemes for a basic class of functions
[BHHO08,BG10,ACPS09] (e.g., projections, affine) and then use KDM amplifi-
cation procedures [BHHI10,App14] to obtain KDM security against richer func-
tions families. We show that for any function family F , an F-KDM secure PKE
can be obtained from a non-compact OTSE (and hence a CPA PKE) together
with a G-KDM secure private-key encryption scheme, where G is a class of
functions related to F . (See Sect. 6 for a formal statement.) Using the result
of [App14] we obtain that F-KDM-secure PKE, for any F , can be based on
projection-secure private-key encryption and CPA PKE. We mention that prior
to our work it was not known whether projection-secure PKE (which is sufficient
for KDM PKE) could be constructed (in a black-box or a non-black-box way)
from the combination of CPA PKE and projection-secure private-key encryption.

An overview of the contributions of this work is given in Fig. 1.

exLPN LWE

HE

PKE LPN

NC-OTSE KDM-SKE

KDM-PKEOTSE

IBE

Sec. 3.3 Sec. 3.2 Sec. 4 [ACPS09]

Sec. 6Sec. 5

[DG17a]

Fig. 1. Overview of the results in this work, bold arrows are contributions of this work.
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1.3 Technical Outline

We will start by providing an outline of our construction of hash encryption from
LWE. The LPN-based construction is similar in spirit, yet needs to account for
additional subtleties that arise in the modulus 2 case. We will then sketch our
construction of IBE from hash encryption.

Hash Encryption from LWE. The hashing key k of our hash function is given
by a randomly chosen matrix A ← Z

m×κ
p . To hash a message, we encoded it as

a vector x ∈ {0, 1}m ⊆ Z
m and compute the hash value h ← x� · A. It can be

shown that under the short integer solution (SIS) problem [Reg05] this function
is collision resistant.

We will now specify the encryption and decryption procedures. Our encryp-
tion scheme is a variant of the dual-Regev [GPV08] encryption scheme. For a
matrix A, let A−i denote the matrix obtained by removing the i-th row of A,
and let ai be the i-th row of A. Likewise, for a vector x let x−i denote the vector
obtained by dropping the i-th component of x. Given the hashing key k = A,
a hash-value h, an index i and a bit b, we encrypt a message m ∈ {0, 1} to a
ciphertext c = (c1, c2) via

c1 ← A−i · s + e−i

c2 ← (h − b · ai)s + ei + �p/2� · m,

where s ← Z
κ
p is chosen uniformly at random and e ∈ Z

m
p is chosen from an

appropriate discrete gaussian distribution.
To decrypt a ciphertext c using a preimage x, compute

μ ← c2 − xT
−ic1,

output 0 if μ is closer to 0 and 1 if μ is closer to p/2. Correctness of this scheme
follows similarly as in the dual Regev scheme [GPV08]. To argue security, we
will show that a successful adversary against this scheme can be used to break
the decisional extended LWE problem [AP12], which is known to be equivalent
to standard LWE.

Compact OTSE from Non-compact OTSE and Hash Encryption. To obtain
a compact OTSE scheme, we hash the verification keys of the non-compact
OTSE-scheme using the hash function of the hash encryption primitive. While
this resolves the compactness issue, it destroys the encryption-decryption func-
tionalities of the non-compact OTSE. We overcome this problem through a
non-blackbox usage of the encryption function of the base non-compact OTSE-
scheme.

KDM Security. We sketch the construction of a KDMCPA-secure PKE from a non-
compact OTSE NC and a KDMCPA-secure secret-key encryption scheme SKE =
(Enc,Dec). We also need a garbling scheme (Garble,Eval), which can be built
from SKE.
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The public key pk = (pp, vk) of the PKE is a public parameter pp and a
verification key vk of NC and the secret key is sk = (k, σ), where k is a key of
the secret-key scheme and σ is a valid signature of k w.r.t. vk.

To encrypt m under pk = (pp, vk) we first form a circuit C which on input
k′ returns Enc(k′,m). We then garble C to obtain a garbled circuit C̃ and input
labels (Xι,0,Xι,1) for every input index ι. For all ι and bit b, we OTSE-encrypt
Xι,b relative to the index ι and bit b (using pp and vk) to get ctι,b. The resulting
ciphertext is then ct = (C̃, {ctι,b}ι,b).

For decryption, using (k, σ) we can OTSE-decrypt the proper ctι,b’s to obtain
a matching garbled input k̃ for k. Then evaluating C̃ on k̃ we obtain ct′ =
Enc(k,m). We can then decrypt ct′ using k to recover m.

Using a series of hybrids we reduce the KDM security of the PKE to the
stated security properties of the base primitives.

1.4 Concurrent Works

In a concurrent and independent work, Brakerski et al. [BLSV17] provided a con-
struction of an IBE scheme from LPN with a very low noise rate of Ω(log(κ)2/κ),
using techniques similar to the construction of OTSE from sub-exponentially
hard LPN in this work. Also in a concurrent and independent work, Kitagawa
and Tanaka [KT17] provided a construction of KDM-secure public key encryp-
tion from KDM-secure secret key encryption and IND-CPA secure public key
encryption using techniques similar to ours.

2 Preliminaries

We use {0, 1}m
k to denote the set of binary vectors of length m with hamming

weight k and [m] to denote the set {1, . . . , m}. We use A−i to denote matrix
A where the ith row is removed. The same holds for a row vector x−i, which
denotes vector x where the ith entry is removed.

Lemma 1. For m ∈ N and 1 ≤ k ≤ m, the cardinality of set {0, 1}m
k is lower

bounded by
(

m
k

)k and upper bounded by
(

em
k

)k.

Definition 1 (Bias). Let x ∈ F2 be a random variable. Then the bias of x is
defined by

bias(x) = Pr[x = 0] − Pr[x = 1].

Remark 1. The bias of x is simply the second Fourier coefficient of the proba-
bility distribution of x, the first Fourier coefficient being 1 for all distributions.
Thus, as Pr[x = 1] = 1 − Pr[x = 0] it holds that Pr[x = 0] = 1

2 + 1
2bias(x).

In the following, we summarize several useful properties of the bias of random
variables.
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– If x ← Bρ, then bias(x) = 1 − 2ρ.
– Let x1, x2 ∈ F2 be independent random variables. Then it holds that bias(x1+

x2) = bias(x1) · bias(x2).
– Assume that the distribution of x is the convex combination of two distribu-

tions via px = αpx1 + (1 − α)px2 . Then bias(x) = αbias(x1) + (1 − α)bias(x2).

Proof. Convolution theorem

Lemma 2. Let v ∈ F
n
2 be a vector of weight t and e ∈ F

n
2 a distribution for which

each component is iid distributed with bias ε. Then it holds that Pr[〈v, e〉 = 0] =
1
2 + 1

2εt.

Proof. As v has weight t, it holds that

bias(〈v, e〉) = bias(
∑

i=1,...,n;vi=1

ei) = εt,

where the second equality follows by the properties of the bias. Consequently, it
holds that Pr[〈v, e〉 = 0] = 1

2 + 1
2εt. ��

2.1 Hard Learning Problems

We consider variants of the learning problems LWE and LPN that are known to
be as hard as the original problems. These variants are called extended LWE or
LPN, since they leak some additional information about the noise term.

Definition 2 (Extended LWE). A ppt algorithm A = (A1,A2) breaks
extended LWE for noise distribution Ψ , m samples, modulus p and dimension
κ if

|Pr[A2(st, A,As + e, x, xT e) = 1] − Pr[A2(st, A,B, x, xT e) = 1]| ≥ ε,

where (x, st) ← A1(1κ) and the randomness is taken over A ← Z
m×κ
p , B ← Z

m
p ,

s ← Z
κ
p , e ← Ψ and a non-negligible ε.

Lemma 3 [AP12, Theorem 3.1]. For dimension κ, modulus q with smallest
prime divisor p, m ≥ κ + ω(log(κ)) samples and noise distribution Ψ , if there is
an algorithm solving extended LWE with probability ε, then there is an algorithm
solving LWE with advantage ε

2p−1 as long as p is an upper bound on the norm
of the hint xT e.

When p = 2 and the noise distribution Ψ = Bρ is the Bernoulli distribution,
we call the problem LPN. The LPN problem was proposed by [BFKL94] for the
private key setting. A series of works [Ale03,DMQN12,KMP14,Döt15] provided
public key encryption schemes from the so-called low-noise LPN problem where
the error term has a noise-rate of O(1/

√
κ). In a recent work, Yu and Zhang

[YZ16] provided public key encryption schemes based on LPN with a constant
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noise-rate but a sub-exponential number of samples m = 2O(
√

κ). We refer to
this variant as (sub-) exponentially hard LPN.

For our LPN based encryption scheme, we need to be able to embed a suf-
ficiently strong binary error correction code such that decryption can recover a
message. Therefore, we define a hybrid version of extended LPN that is able to
hide a sufficiently large generator matrix of such a code.

Definition 3 (Extended Hybrid LPN). A ppt algorithm A = (A1,A2)
breaks extended LPN for noise distribution Bρ, m samples, modulus p, dimension
κ and � hybrids if

|Pr[A2(st, A,AS + E, x, xT E) = 1] − Pr[A2(st, A,B, x, xT E) = 1]| ≥ ε,

where (x, st) ← A1(1n) and the randomness is taken over A ← Z
m×κ
p , B ←

Z
m×�
p , S ← Z

κ×�
p , E ← Bm×�

ρ and non-negligible ε.

A simple hybrid argument yields that if extended hybrid LPN can be bro-
ken with probability ε, then extended LPN can be broken with probability ε/�.
Therefore we consider extended hybrid LPN as hard as extended LPN.

2.2 Weak Commitments

In our LPN-based hash encryption scheme, we will use a list decoding procedure
to receive a list of candidate messages during the decryption of a ciphertext. To
determine which candidate message has been encrypted, we add a weak form
of a commitment of the message to the ciphertext that hides the message. In
order to derrive the correct message from the list of candidates, we require that
the commitment is binding with respect to the list of candidates, i.e. the list
decoding algorithm.

Definition 4 (Weak Commitment for List Decoding). A weak commit-
ment scheme WCD with respect to a list decoding algorithm D consists of three
ppt algorithms Gen, Commit, and Verify, a message space M ⊂ {0, 1}∗ and a
ranomness space R ⊂ {0, 1}∗.

– Gen(1κ): Outputs a key k.
– Commit(k,m, r): Outputs a commitment wC(m, r).
– Verify(k,m, r,wC): Outputs 1 if and only if wC(m, r) = wC.

For hiding, we require that for any ppt algorithm A = (A1,A2)

|Pr[A2(st,wC(m0, r)) = 1] − Pr[A2(st,wC(m1, r)) = 1]| ≤ negl,

where (m0,m1, st) ← A1(k) and the randomness is taken over the random coins
of A, k ← Gen(1κ) and r ← R. For binding with respect to D, we require that
for any m ∈ M

Pr[Verify(k,m, r,wC(m′, r′)) = 1 ∧ m �= m′] ≤ negl,

where the randomness is taken over (m′, r′) ← D(1n,m, r), the random coins of
Verify, D, k ← Gen(1κ) and r ← R.
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Since D does not depend on the key k, a wCD can be easily instantiated with
a universal hash function. The key k corresponds to the hash function h and
wC(m, r) := h(m, r) is the hash of m and r. In the following we define universal
hash functions and show with two lemmata that our construction of a weak
commitment is hiding as well as binding.

Definition 5. For n,m ∈ N, m > n, a family of functions H from {0, 1}m to
{0, 1}n is called a family of universal hash functions if for any x, x′ ∈ {0, 1}m

with x �= x′

Prh←H[h(x) = h(x′)] ≤ 2−n.

Lemma 4. h is weakly binding with respect to D. In particular,

Prh←H[∃i ∈ [�] : h(m, r) = h(mi, ri) ∧ m �= mi] ≤ �2−n,

where {(mi, ri)}i∈[�] ← D(1n,m, r) and � is the output list length of D.

Proof. D outputs a list of at most � tuples of the form (m1, r1), . . . , (m�, r�). For
each of the tuples with mi �= m,

Prh←H[h(m, r) = h(mi, ri)] ≤ 2−n

holds. Using a union bound, we receive the statement of the lemma.

The work of Hastad et al. [HILL99] shows that for an r with sufficient entropy,
for any m, h(r,m) is statistical close to uniform. Therefore it statistically hides
the message m.

Lemma 5 ([HILL99] Lemma 4.5.1). Let h be a universal hash function from
{0, 1}m to {0, 1}n and r ← {0, 1}|r| for |r| ≥ 2κ + n, then for any m, h(r,m) is
statistically close to uniform given h.

2.3 Secret- and Public-Key Encryption

We will briefly review the security notions for secret- and public-key encryption
this work is concerned with.

Definition 6. A secret-key encryption scheme SKE consists of two algorithms
Enc and Dec with the following syntax

– Enc(k,m): Takes as input a key k ∈ {0, 1}κ and a message m ∈ {0, 1}� and
outputs a ciphertext c.

– Dec(k, ct): Takes as input a key k ∈ {0, 1}κ and a ciphertext ct and outputs
a message m.



12 N. Döttling et al.

For correctness, for all k ∈ {0, 1}κ and m ∈ {0, 1}� we have:

Dec(k,Enc(k,m)) = m.

The standard security notion of secret-key encryption is indistinguishability
under chosen plaintext attacks (IND-CPA). However, the notion of interest in
this work is the stronger notion of key-dependent-message security under chosen-
plaintext attacks. A secret-key encryption scheme SKE = (Enc,Dec) is called
key-dependent-message secure under chosen plaintext attacks (KDMCPA) if for
every PPT-adversary A the advantage

AdvKDMCPA(A) =
∣
∣
∣
∣Pr[KDMCPA(A) = 1] − 1

2

∣
∣
∣
∣

is at most negligible advantage in the following experiment (Fig. 2):

Experiment KDMCPA(A):

1. k
$←− {0, 1}κ

2. b∗ $←− {0, 1}
3. b′ ← AKDMb∗,k(·)(1κ)

where the oracle KDM is defined by KDM0,k(f) = SKE.Enc(k, f(k))
and KDM1,k(f) = SKE.Enc(k, 0�).

4. Output 1 if b′ = b∗ and 0 otherwise.

Fig. 2. The KDMCPA(A) experiment

Definition 7. A public-key encryption scheme PKE consists of three (random-
ized) algorithms KeyGen, Enc and Dec with the following syntax.

– KeyGen(1κ): Takes as input the security parameter 1κ and outputs a pair of
public and secret keys (pk, sk).

– Enc(pk,m): Takes as input a public key pk and a message m ∈ {0, 1}� and
outputs a ciphertext c.

– Dec(sk, c): Takes as input a secret key sk and a ciphertext c and outputs a
message m.

In terms of correctness, we require that for all messages m ∈ {0, 1}� and
(pk, sk) ← KeyGen(1κ) that

Dec(sk,Enc(pk,m)) = m.
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A public-key encryption scheme PKE = (KeyGen,Enc,Dec) is called INDCPA-
secure, if for every PPT-adversary A the advantage

AdvINDCPA(A) =
∣
∣
∣
∣Pr[INDCPA(A) = 1] − 1

2

∣
∣
∣
∣

is at most negligible in the following experiment (Fig. 3):

Experiment INDCPA(A):

1. (pk, sk) ← PKE.KeyGen(1κ)
2. (m0,m1) ← A1(pk)

3. b∗ $←− {0, 1}
4. c∗ ← PKE.Enc(pk,mb∗)
5. b′ ← A2(pk, c∗)
6. Output 1 if b′ = b∗ and 0 otherwise.

Fig. 3. The INDCPA(A) experiment

A public-key encryption scheme PKE = (KeyGen,Enc,Dec) is called key-
dependent-message secure under chosen plaintext attacks (KDMCPA), if for every
PPT-adversary A the advantage

AdvKDMCPA(A) =
∣
∣
∣
∣Pr[KDMCPA(A) = 1] − 1

2

∣
∣
∣
∣

is at most negligible in the following experiment (Fig. 4):

Experiment KDMCPA(A):

1. (pk, sk) ← PKE.KeyGen(1κ)

2. b∗ $←− {0, 1}
3. b′ ← AKDMb∗,sk(·)(pk)

where the oracle KDM is defined by KDM0,sk(f) =
PKE.Enc(pk, f(sk)) and KDM1,sk(f) = PKE.Enc(pk, 0�).

4. Output 1 if b′ = b∗ and 0 otherwise.

Fig. 4. The KDMCPA(A) experiment



14 N. Döttling et al.

2.4 One-Time Signatures with Encryption [DG17a]

Definition 8. A One-Time Signature Scheme with Encryption consists of five
algorithms (SSetup,SGen,SSign,SEnc,SDec) defined as follows:

– SSetup(1κ, �): Takes as input a unary encoding of the security parameter 1κ

and a message length parameter � and outputs public parameters pp.
– SGen(pp): Takes as input public parameters pp and outputs a pair (vk, sk) of

verification and signing keys.
– SSign(sk, x): Takes as input a signing key sk and a message x ∈ {0, 1}� and

outputs a signature σ.
– SEnc(pp, (vk, i, b),m): Takes as input public parameters pp, a verification key

vk, an index i, a bit b and a plaintext m and outputs a ciphertext c. We will
generally assume that the index i and the bit b are included alongside.

– SDec(pp, (vk, σ, x), c): Takes as input public parameters pp, a verification key
vk, a signature σ, a message x and a ciphertext c and returns a plaintext m.

We require the following properties.

– Compactness: For pp ← SSetup(1κ, �) and (vk, sk) ← SGen(pp) it holds that
|vk| < �, i.e. vk can be described with less than � bits.

– Correctness: For all security parameters κ, message x ∈ {0, 1}�, i ∈ [�] and
plaintext m: If pp ← SSetup(1κ, �), (vk, sk) ← SGen(pp) and σ ← SSign(sk, x)
then

SDec(pp, (vk, σ, x),SEnc(pp, (vk, i, xi),m)) = m.

– Selective Security: For any PPT adversary A = (A1,A2,A3), there exists
a negligible function negl(·) such that the following holds:

Pr[INDOTSIG(A) = 1] ≤ 1
2

+ negl(κ)

where INDIBE(A) is shown in Fig. 5.

Experiment INDOTSIG(A):
1. pp ← SSetup(1κ, �)
2. (vk, sk) ← SGen(pp)
3. x ← A1(pp, vk)
4. σ ← SSign(sk, x)
5. (i,m0,m1) ← A2(pp, vk, σ)

6. b∗ $←− {0, 1}
7. m∗ ← mb∗

8. c∗ ← SEnc(pp, (vk, i, 1 − xi),m∗)
9. b′ ← A3(pp, vk, σ, c∗)

10. Output 1 if b′ = b∗ and 0 otherwise.

Fig. 5. The INDOTSIG(A) experiment
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We remark that multi-challenge security (i.e. security in an experiment in
which the adversary gets to see an arbitrary number of challenge-ciphertexts)
follows via a simple hybrid argument. We also remark that in the definition of
[DG17a], the message x was not allowed to depend on vk. The definition given
here is stronger and readily implies the definition of [DG17a].

If an OTSE scheme does not fulfill the compactness property, then we refer
to such a scheme as a non-compact OTSE-scheme or NC-OTSE.

Döttling and Garg [DG17a] showed that (compact) OTSE implies both fully
secure IBE and selectively secure HIBE.

Theorem 2 (Informal). Assume there exists an OTSE-scheme. Then there
exists a fully secure IBE-scheme and a HIBE-scheme.

2.5 Garbled Circuits

Garbled circuits were first introduced by Yao [Yao82] (see Lindell and
Pinkas [LP09] and Bellare et al. [BHR12] for a detailed proof and further dis-
cussion). A projective circuit garbling scheme is a tuple of PPT algorithms
(Garble,Eval) with the following syntax.

– Garble(1κ,C) takes as input a security parameter κ and a circuit C and outputs
a garbled circuit C̃ and labels eC = {Xι,0,Xι,1}ι∈[n], where n is the number
of input wires of C.

– Projective Encoding: To encode an x ∈ {0, 1}n with the input labels eC =
{Xι,0,Xι,1}ι∈[n], we compute x̃ ← {Xι,xι

}ι∈[n].
– Eval(C̃, x̃): takes as input a garbled circuit C̃ and a garbled input x̃, represented

as a sequence of input labels {Xι,xι
}ι∈[n], and outputs an output y.

We will denote hardwiring of an input s into a circuit C by C[s]. The garbling
algorithm Garble treats the hardwired input as a regular input and additionally
outputs the garbled input corresponding to s (instead of all the labels of the
input wires corresponding to s). If a circuit C uses additional randomness, we
will implicitly assume that appropriate random coins are hardwired in this circuit
during garbling.

Correctness. For correctness, we require that for any circuit C and input x ∈
{0, 1}n we have that

Pr
[
C(x) = Eval(C̃, x̃)

]
= 1

where (C̃, eC = {Xι,0,Xι,1}ι∈[n])
$←− Garble(1κ,C) and x̃ ← {Xι,xι

}.

Security. For security, we require that there is a PPT simulator GCSim such that
for any circuit C and any input x, we have that
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(C̃, x̃) ≈c GCSim(C,C(x))

where (C̃, eC = {Xι,0,Xι,1}ι∈[n]) ← Garble(1κ,C) and x̃ ← {Xι,xι
}.

3 Hash Encryption from Learning Problems

Intuitively, our hash encryption scheme can be seen as a witness encryption
scheme that uses a hash value and a key to encrypt a message. The decryption
procedure requires the knowledge of a preimage of the hash value to recover
an encrypted message. Given key a k, an algorithm Hash allows to compute a
hash value for an input x. This hashing procedure is tied to the hash encryption
scheme. More concretely, the encryption procedure encrypts a message with
respect to a bit c for an index i. Given knowledge of a preimage, where the ith
bit has the value c, one can successfully decrypt the initially encrypted message.
Due to this additional constraint, a hash encryption is more restrictive than a
witness encryption for the knowledge of the preimage of a hash value.

3.1 Hash Encryption

Definition 9 (Hash Encryption). A hash encryption (HE) consists of four
ppt algorithms Gen, Hash, Enc and Dec with the following syntax

– Gen(1κ,m): Takes as input the security parameter κ, an input length m and
outputs a key k.

– Hash(k, x): Takes a key k, an input x ∈ {0, 1}m and outputs a hash value h of
κ bits.

– Enc(k, (h, i, c),m): Takes a key k, a hash value h an index i ∈ [m], c ∈ {0, 1}
and a message m ∈ {0, 1}∗ as input and outputs a ciphertext ct. We will
generally assume that the index i and the bit c are included alongside.

– Dec(k, x, ct): Takes a key k, an input x and a ciphertext ct as input and outputs
a value m ∈ {0, 1}∗ (or ⊥).

Correctness. For correctness, we require that for any input x ∈ {0, 1}m, index
i ∈ [m]

Pr[Dec(k, x,Enc(k, (Hash(k, x), i, xi),m)) = m] ≥ 1 − negl,

where xi denotes the ith bit of x and the randomness is taken over k ←
Gen(1κ,m).

Security. We call a HE secure, i.e. selectively indistinguishable, if for any ppt
algorithm A

Pr[INDHE(1κ,A) = 1] ≤ 1
2

+ negl,

where the game INDHE is defined in Fig. 6.
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Experiment INDHE(A):

1. (x, st1) ← A1(1κ)
2. k ← Gen(1κ, m)
3. (i ∈ [m],m0,m1, st2) ← A2(st1, k)
4. b ← {0, 1}
5. ct ← Enc(k, (Hash(k, x), i, 1 − xi),mb)
6. b′ ← A3(st2, ct)
7. Output 1 if b′ = b and 0 otherwise.

Fig. 6. The INDHE(A) experiment

3.2 Hash Encryption from LWE

We use the same parameters as proposed by the PKE of [Reg05], i.e. Gaussian
noise distribution Ψα(κ) for α(κ) = o

(
1√

κ log(κ)

)
, prime modulus κ2 ≤ p ≤ 2κ2,

m = (1 + ε)(1 + κ) log(κ) for ε > 0. For hash domain {0, 1}m and message space
M = {0, 1}, we define our LWE based HE as follows.

– Gen(1κ,m): Sample A ← Z
m×κ
p .

– Hash(k, x): Output xT A.
– Enc(k, (h, i, c),m): Sample s ← Z

κ
p , e ← Ψm

α(κ) and compute

c1 := A−is + e−i

c2 := (h − c · ai)s + ei + �p/2� · m.

Output ct = (c1, c2).
– Dec(k, x, ct): Output 1 if c2 − xT

−ic1 is closer to p/2 than to 0 and otherwise
output 0.

Depending on the concrete choice of m = (1+ε)(1+κ) log(κ), the compression
factor of the hash function is determined. For our purposes, the construction of
an IBE, any choice of ε > 0 is sufficient.

Lemma 6. For the proposed parameters, the LWE based HE is correct.

Proof. If ct = (c1, c2) is an output of Enc(k, (h, i, c),m), then for any x with
Hash(k, x) = h, c2 has the form

c2 = (xT A − c · ai)s + ei + �p/2� · m.

Therefore, on input x, c = xi, Dec computes

c2 − xT
−ic1 = (xT A − c · ai)s + ei + �p/2� · m − xT

−iA−is − xT
−ie−i

= (xi − c) · ais + ei + �p/2� · m − xT
−ie−i

= �p/2� · m + ei − xT
−ie−i.
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By [Reg05, Claim 5.2], for any x ∈ {0, 1}m, |ei − xT
−ie−i| < p/4 holds with

overwhelming probability. Hence, the noise is sufficiently small such that Dec
outputs m. ��
Theorem 3. The LWE based HE is INDHE secure under the extended LWE
assumption for dimension κ, Gaussian noise parameter α(n) = o

(
1√

n log(n)

)
,

prime modulus κ2 ≤ p ≤ 2κ2, and m = (1 + ε)(1 + κ) log(n) samples.

Proof. For proving the theorem, we will show that if there is an adversary A
that successfully breaks the INDHE security of the proposed HE then there is an
algorithm A′ that breaks the extended LWE assumption with the same proba-
bility.

We construct A′ = (A′
1,A′

2) as follows:

1. A′
1(1

κ): (x, st1) ← A1(1κ), Return x
2. A′

2(x,A,B, xT e): k := A
3. (i ∈ [m],m0,m1, st2) ← A2(st1, k)
4. b ← {0, 1}
5. c1 := B−i, c2 := (−1)xi+1Bi + �p/2� · mb − xT

−ie−i + xT
−ic1

6. b′ ← A3(st2, ct = (c1, c2))
7. Return 1 if b′ = b and 0 otherwise.

In the LWE case, B = As + e. Therefore A′ creates ct with the same distri-
bution as in game INDHE. This is easy to see for c1 = B−i = A−is + e−i. For c2,
we have

c2 = (−1)xi+1Bi + �p/2� · mb − xT
−ie−i + xT

−ic1

= (−1)xi+1ais + (−1)xi+1ei + �p/2� · mb − xT
−ie−i + xT

−iA−is + xT
−ie−i

= (−1)xi+1ais + (−1)xi+1ei + �p/2� · mb + xT
−iA−is

= (h − ((−1)xi + xi)ai)s + (−1)xi+1ei + �p/2� · mb

= (h − (1 − xi)ai)s + (−1)xi+1ei + �p/2� · mb.

Notice since ei is Gaussian with mean 0, −ei and ei have the same distribution.
In the uniform case, B is uniform and therefore A′s guess b′ is independent

of b. Hence, A′
2 outputs 1 with probability 1

2 . A′ breaks extended LWE with
advantage

|Pr[A3(st′, A,As + e, x, xT e) = 1] − Pr[A3(st′, A,B, x, xT e) = 1]|
=

∣
∣
∣
∣Pr[INDHE(A) = 1] − 1

2

∣
∣
∣
∣ .

��
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3.3 Hash Encryption from Exponentially Hard LPN

For LPN, we use a Bernoulli noise distribution Bρ with Bernoulli parameter
ρ = cρ and hash domain x ∈ {0, 1}m

k , where k = ck log(κ) for constants cρ and
ck. G ∈ Z

(|m|+κ)×�
2 is the generator matrix of a binary, list decodeable error

correction code that corrects an error with 1/poly bias, where |m| is the message
length and � the dimension of the codewords. For this task, we can use the error
correction code proposed by Guruswami and Rudra [GR11]. Further, we use a
weak commitment scheme WC with respect to the list decoding algorithm of G.

– Gen(1κ,m): Sample A ← Z
m×log2(κ)
2 , output k := A.

– Hash(k, x): Output xT A.
– Enc(k, (h, i, c),m): Sample S ← Z

log2(κ)×�
2 , E ← Bm×�

ρ , and a random string
r ← RWC and compute

c0 := kWC ← GenWC(1κ)
c1 := A−iS + E−i

c2 := (h − c · ai)S + Ei + (m||r) · G

c3 := wC(m, r) ← Commit(kWC,m, r).

Output ct = (c1, c2, c3).
– Dec(k, x, ct): Use code G to list decode c2 − xT

−ic1. Obtain from the list of
candidates the candidate (m||r) that fits Verify(c0,m, r, c3) = 1. Output this
candidate.

The choice of the constant ck will determine the compression factor of
the hash function Hash. The compression is determined by the ratio between
|{0, 1}m

k | and the space of the LPN secret 2log
2(κ). By Lemma 1, the cardinality

of |{0, 1}m
k | is lower bounded by ( m

ck log(κ) )
ck log(κ). m := cκ yields a compression

factor of at least ck(c − log(ck log(κ))
log κ ), which allows any constant compression

factor for a proper choice of the constants c and ck.
For the correctness, we need to rely on the error correction capacity of code G

and the binding property of the weak commitment scheme. For properly chosen
constants cρ and k, the proposed HE is correct.

Lemma 7. For ρ = cρ ≤ 1
4 , k = ck log(κ), and an error correction code G that

corrects an error with a bias of 2−4cρκ−4cρck and let WC be a weak commitment
that is binding with respect to the list decoding of G, then the LPN based HE is
correct.

Proof. ct = (c0, c1, c2, c3) is an output of Enc(k, (h, i, c),m), then for any x with
Hash(k, x) = h, c2 has the form

c2 = (xT A − c · ai)S + Ei + (m||r) · G.
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Therefore, on input x, c = xi, Dec computes

c2 − xT
−ic1 = (xT A − c · ai)S + Ei + (m||r) · G − xT

−iA−iS − xT
−iE−i

= (xi − c) · aiS + Ei + (m||r) · G − xT
−iE−i

= (m||r) · G + Ei − xT
−iE−i.

By Lemma 2, for each component ej , j ∈ [�] of e := Ei − xT
−iE−i and ρ ≤ 1

4 ,

ρ′ := Pr[ej = 1] =
1
2
(1 − (1 − 2ρ)k+1) ≤ 1

2

(
1 − 2−4cρ(ck log(κ)+1)

)

=
1
2

(
1 − 2−4cρκ−4cρck

)
.

This lower bounds the bias of each component of the noise term Ei − xT
−iE−i by

bound 2−4cρκ−4cρck . This bound is polynomial in κ and therefore correctable by
a suitable error correction code with list decoding. Hence, (m||r) is contained in
the output list of canidates of the list decoding. By the binding of WC, there is
with overwhelming probability only a single candidate of the polynomially many
candidates that fits Verify(c0,m, r, c3) = 1, which corresponds to the initially
encrypted message m. Otherwise, the list decoding of G would break the binding
property of WC. ��

The security analysis is simliar to the one of the LWE based scheme with the
difference that now a ciphertext also contains a commitment which depends on
the encrypted message. In a first step, we use the LPN assumption to argue that
all parts of the ciphertext are computationally independent of the message. In a
second step, we use the hiding property of the commitment scheme to argue that
now the whole ciphertext is independent of the encrypted message and therefore
an adversary cannot break the scheme.

Theorem 4. Let WC be a weak commitment scheme that is hiding, then the
LPN based HE is INDHE secure under the extended hybrid LPN assumption for
dimension log2(κ), m samples, � hybrids and noise level ρ.

Proof. Consider the following hybrid experiments:

Hybrid H1:

1. (x, st1) ← A1(1κ)
2. k := A ← Gen(1κ,m)
3. (i ∈ [m],m0,m1, st2) ← A2(st1, k)
4. b ← {0, 1}
5. S ← Z

log2(κ)×�
2 , E ← Bm×�

ρ , r ← RWC,
c0 := kWC ← GenWC(1κ), c1 := A−iS + E−i, c2 := (h − (1 − xi) · ai)S + Ei +
(mb||r) · G, c3 := wC(mb, r) ← Commit(kWC,mb, r),

6. b′ ← A3(st2, ct = (c0, c1, c2, c3))
7. Return 1 if b′ = b and 0 otherwise.
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Hybrid H2:

1. (x, st1) ← A1(1κ)
2. k := A ← Gen(1κ,m)
3. (i ∈ [m],m0,m1, st2) ← A2(st1, k)
4. b ← {0, 1}
5. B ← Z

m×�
2 , r ← RWC,

c0 := kWC ← GenWC(1κ), c1 := B−i, c2 := Bi, c3 := wC(mb, r) ←
Commit(kWC,mb, r),

6. b′ ← A3(st2, ct = (c0, c1, c2, c3))
7. Return 1 if b′ = b and 0 otherwise.

Lemma 8. Let A be an adversary that distinguishes H1 and H2 with advantage
ε. Then there is an algorithm A’ that breaks the extended hybrid LPN assumption
with advantage ε.

Proof. We construct A′ = (A′
1,A′

2) as follows:

1. A′
1(1

κ): (x, st1) ← A1(1κ) Return x
2. A′

2(st1, x, A,B, xT E): k := A
3. (i ∈ [m],m0,m1, st2) ← A2(st1, k)
4. b ← {0, 1}
5. r ← RWC,

c0 := kWC ← GenWC(1κ), c1 := B−i, c2 := Bi + (mb||r) · G − xT
−iE−i + xT

−ic1,
c3 := wC(mb, r) ← Commit(kWC,mb, r),

6. b′ ← A3(st2, ct = (c0, c1, c2, c3))
7. Return 1 if b′ = b and 0 otherwise.

In the LPN case, B = AS+E. Therefore A’ creates ct with the same distribu-
tion as in game INDHE. This is easy to see for c0, c3 and c1 = B−i = A−iS+E−i.
For c2, we have

c2 = Bi + (mb||r) · G − xT
−iE−i + xT

−ic1

= aiS + Ei + (mb||r) · G − xT
−iE−i + xT

−iA−iS + xT
−iE−i

= aiS + Ei + (mb||r) · G + xT
−iA−iS

= (h + (1 − xi)ai)S + Ei + (mb||r) · G,

which results in the same distribution over Z2.
In the uniform case, B and hence c2 are uniform. Therefore A’ simulates H2.

A′ breaks extended hybrid LPN with advantage

|Pr[A2(st1, x, A,AS + E, x, xT E) = 1] − Pr[A2(st1, x, A,B, x, xT E) = 1]|
= |Pr[H1(1κ,A) = 1] − Pr[H2(1κ,A) = 1]|.

��
Lemma 9. If there is an adversary A with Pr[H2(1κ,A) = 1] = 1

2 + ε, then
there is an algorithm A′ that breaks the hiding property of WC with advantage
2ε.
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Proof. We construct A′ = (A′
1,A′

2) as follows.

1. A′
1(kWC): (x, st1) ← A1(1κ)

2. k := A ← Gen(1κ,m)
3. (i ∈ [m],m0,m1, st2) ← A2(st1, k), Return (m0,m1)
4. A′

2(kWC, st2,wC): b ← {0, 1}
5. B ← Z

m×�
2 ,

c0 := kWC, c1 := B−i, c2 := Bi, c3 := wC
6. b′ ← A3(st2, ct = (c0, c1, c2, c3))
7. Return 1 if b′ = b and 0 otherwise.

It is easy to see that A’ correctly simulates H2. When A guesses b with his
guess b′ correctly, then also A’ does. Therefore

1
2

Pr[A′
2(kWC, st2,wC(m1, r)) = 1] +

1
2

Pr[A′
2(kWC, st2,wC(m0, r)) = 0]

= Pr[H2(1κ,A) = 1] =
1
2

+ ε.

Hence,

Pr[A′
2(kWC, st2,wC(m1, r)) = 1] − Pr[A′

2(kWC, st2,wC(m0, r)) = 1] = 2ε.

��
��

4 Non-compact One-Time Signatures with Encryption

In this Section we will construct a non-compact OTSE scheme NC from any
public-key encryption scheme PKE = (KeyGen,Enc,Dec).

– SSetup(1κ, �): Output pp ← (1κ, �).
– SGen(pp): For j = {1, . . . , �} and b ∈ {0, 1} compute (pkj,b, skj,b) ←

PKE.KeyGen(1κ). Set vk ← {pkj,0, pkj,1}j∈[�] and sgk ← {skj,0, skj,1}j∈[�].
Output (vk, sgk).

– SSign(pp, sgk = {skj,0, skj,1}j∈[�], x): Output σ ← {skj,xj
}j∈[�].

– SEnc(pp, (vk = {pkj,0, skj,1}j∈[�], i, b),m): Output c ← PKE.Enc(pki,b,m).
– SDec(pp, (vk, σ = {skj,xj

}j∈[�], x), c): Output m ← PKE.Dec(ski,xi
, c).

Correctness of this scheme follows immediately from the correctness of PKE.

Security. We will now establish the INDOTSIG-security of NC from the INDCPA-
security of PKE.

Theorem 5. Assume that PKE is INDCPA-secure. Then NC is INDOTSIG-secure.
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Proof. Let A be a PPT-adversary against INDOTSIG with advantage ε. We will
construct an adversary A′ against the INDCPA experiment with advantage ε

2� .
A′ gets as input a public key pk of the PKE and will simulate the INDOTSIG-
experiment to A. A′ first guesses an index i∗ $←− [�] and a bit b∗ $←− {0, 1}, sets
pki∗,b∗ ← pk and generates 2� − 1 pairs of public and secret keys (pkj,b, skj,b) ←
KeyGen(1κ) for j ∈ [�] and b ∈ {0, 1} with the restriction that (j, b) �= (i∗, b∗).
A′ then sets vk ← {pkj,0, pkj,1}j∈[�] and runs A on input vk. If it holds for the
message x output by A that xi∗ = b∗, then A′ aborts the simulation and outputs
a random bit. Once A outputs (m0,m1, i), A′ checks if (i, b) = (i∗, b∗) and if
not aborts and outputs a random bit. Otherwise, A′ sends the message-pair
(m0,m1) to the INDCPA-experiment and receives a challenge-ciphertext c∗. A′

now forwards c∗ to A and outputs whatever A outputs.
First notice that the verification key vk computed by A′ is identically dis-

tributed to the verification key in the INDOTSIG experiment. Thus, vk does not
reveal the index i∗ and the bit b∗, and consequently it holds that (i, b) = (i∗, b∗)
with probability 1

2� . Conditioned on the event that (i, b) = (i∗, b∗), it holds that
the advantage of A′ is identical to the advantage of A. Therefore, it holds that

AdvINDCPA(A′) =
AdvINDOTSIG(A)

2�
,

which concludes the proof. ��

5 Compact One-Time-Signatures with Encryption via
Hash-Encryption

In this Section, we will show how a non-compact OTSE scheme NC can
be bootstrapped to a compact OTSE scheme OTSE using hash-encryption.
Let NC = (SSetup,SGen,SSign,SEnc,SDec) be a non-compact OTSE scheme,
HE = (HE.Gen,HE.Hash,HE.Enc,HE.Dec) be a hash-encryption scheme and
(Garble,Eval) be a garbling scheme. The scheme OTSE is given as follows.

– SSetup(1κ, �): Compute p̄p ← NC.SSetup(1κ, �), k ← HE.Gen(1κ, �′) (where �′

is the size of the verification keys vk generated using p̄p) and output pp ←
(p̄p, k).

– SGen(pp = (p̄p, k)): Compute (v̄k, ¯sgk) ← NC.SGen(p̄p). Compute h ←
HE.Hash(k, v̄k), set vk ← h, sgk ← (v̄k, ¯sgk) and output (vk, sgk).

– SSign(pp = (p̄p, k), sgk = (v̄k, ¯sgk), x): Compute the signature σ′ ←
NC.SSign(p̄p, ¯sgk, x). Output σ ← (v̄k, σ′).

– SEnc(pp = (p̄p, k), (vk = h, i, b),m): Let C be the following circuit.
C[p̄p, i, b,m](v̄k) : Compute and output NC.SEnc(p̄p, (v̄k, i, b),m)1.

1 We also need to hardcode the randomness for NC.SEnc into C, but for ease of notation
we omit this parameter.
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(C̃, eC) ← Garble(1κ,C[p̄p, i, b,m])
Parse eC = {Yj,0, Yj,1}j∈[�′]
fC ← {HE.Enc(k, (h, j, b′), Yj,b′)}j∈[�′],b′∈{0,1}
Output ct ← (C̃, fC).

– SDec(pp = (p̄p, k), (vk = h, σ = (v̄k, σ′), x), ct = (C̃, fC)):

Parse fC = {cj,b′}j∈[�′],b′∈{0,1}
y ← v̄k
ỹ ← {HE.Dec(k, y, cj,yj

)}j∈[�′]

c′ ← Eval(C̃, ỹ)
m ← NC.SDec(p̄p, (v̄k, σ′, x), c′)
Output m

Compactness and Correctness. By construction, the size of the verification key
vk = HE.Hash(k, v̄k) depends on κ, but not on �′ or �. Therefore, OTSE is com-
pact.

To see that the scheme is correct, note first that since it holds that h =
HE.Hash(k, v̄k) and fC = {HE.Enc(k, (h, j, b′), Yj,b′)}j∈[�′],b′∈{0,1}, by correctness
of the hash-encryption scheme HE we have

ỹ = {HE.Dec(k, y, cj,yj
)}j∈[�′] = {Yj,yj

}j∈[�′].

Thus, as (C̃, eC) = Garble(1κ,C[p̄p, i, b,m]) and by the definition of C, it holds
by the correctness of the garbling scheme (Garble,Eval) that

c′ = Eval(C̃, ỹ) = C[p̄p, i, b,m](v̄k) = NC.SEnc(p̄p, (v̄k, i, b),m),

as y = v̄k. Finally, as σ′ = NC.SSign(p̄p, ¯sgk, x) it holds by the correctness of the
non-compact OTSE-scheme NC that

NC.SDec(p̄p, (v̄k, σ′, x), c′) = m,

which concludes the proof of correctness.

Security. We will now establish the INDOTSIG-security of OTSE from the secu-
rity of the hash-encryption scheme HE, the security of the garbling scheme
(Garble,Eval) and the INDOTSIG-security of NC.

Theorem 6. Assume that HE is an INDHE-secure hash-encryption scheme,
(Garble,Eval) is a secure garbling scheme and NC is INDOTSIG-secure. Then OTSE
is an INDOTSIG-secure OTSE-scheme.

Proof. Let A be a PPT-adversary against the INDOTSIG-security of OTSE. Con-
sider the following hybrid experiments.

Hybrid H0. This experiment is identical to INDOTSIG(A).
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Hybrid H1. This experiment is identical to H0, except that fC is computed
by fC ← {HE.Enc(k, (h, j, b′), Yj,yj

)}j∈[�′],b′∈{0,1}, i.e. for all j ∈ [�′] the mes-
sage Yj,yj

is encrypted, regardless of the bit b′. Computational indistinguisha-
bility between H0 and H1 follows from the INDHE-security of HE. The reduc-
tion R first generates the public parameters p̄p ← NC.SSetup(1κ, �), the keys
(v̄k, ¯sgk) ← NC.SGen(p̄p) and sends v̄k as its selectively chosen message to the
INDHE-experiment. It then obtains k, computes h ← HE.Hash(k, v̄k) and sets
pp ← (p̄p, k), vk ← h, sgk ← (v̄k, ¯sgk) and then simulates H0 with these param-
eters with A. Instead of computing the ciphertexts fC by itself, R sends the
labels {Yj,0, Yj,1}j∈[�′] to the multi-challenge INDHE-experiment and obtains the
ciphertexts fC . R continues the simulation and outputs whatever A outputs.
Clearly, if the challenge-bit of R’s INDHE-experiment is 0, then from the view of
A the reduction R simulates H0 perfectly. On the other hand, if the challenge-
bit is 1, then R simulates H1 perfectly. Thus R’s advantage is identical to A’s
distinguishing advantage between H0 and H1. It follows that H0 and H1 are
computationally indistinguishable, given the INDHE-security of NC.

Hybrid H2. This experiment is identical to H1, except that we compute
C̃ by (C̃, ỹ) ← GCSim(C,C[p̄p, i, b,m](v̄k)) and the value and fC by fC ←
{HE.Enc(k, (h, j, b′), ỹj)}j∈[�′],b′∈{0,1}. Computational indistinguishability of H1

and H2 follows by the security of the garbling scheme (Garble,Eval).
Notice that C[p̄p, i, b,m](v̄k) is identical to NC.SEnc(p̄p, (v̄k, i, b),m∗). Thus,

by the security of the non-compact OTSE-scheme NC, we can argue that A’s
advantage in H2 is negligible. ��

6 KDM-Secure Public-Key Encryption

In this section, we will build a KDMCPA-secure public-key encryption scheme
from a KDMCPA-secure secret-key encryption scheme and a non-compact OTSE-
scheme. The latter can be constructed from any public-key encryption scheme
by the results of Sect. 4.

Let NC = (SSetup,SGen,SSign,SEnc,SDec) be a non-compact OTSE scheme,
SKE = (Enc,Dec) be a KDMCPA-secure secret-key encryption scheme and
(Garble,Eval) be a garbling scheme. The public-key encryption scheme PKE is
given as follows.

– KeyGen(1κ): Sample k
$←− {0, 1}κ, compute pp ← NC.SSetup(1κ, κ), compute

(vk, sgk) ← NC.SGen(pp) and σ ← NC.SSign(pp, sgk, k). Output pk ← (pp, vk)
and sk ← (k, σ).

– Enc(pk = (pp, vk),m): Let C be the following circuit: C[m](k): Compute and
output SKE.Enc(k,m).2

2 We also need to hardcode the randomness for SKE.Enc into C, but for ease of notation
we omit this parameter.
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(C̃, eC) ← Garble(1κ,C[m])
Parse eC = {Kj,0,Kj,1}j∈[κ]

fC ← {NC.SEnc(pp, (vk, j, b),Kj,b)}j∈[κ],b∈{0,1}
Output ct ← (C̃, fC).

– Dec(sk = (k, σ), ct = (C̃, fC)):

k̃ ← {NC.SDec(pp, (vk, σ, k), fCj,kj
)}j∈[κ]

c′ ← Eval(C̃, k̃)
m ← SKE.Dec(k, c′)
Output m

Note in particular that the secret key sk does not include the signing key sgk.

6.1 Correctness

We will first show that the scheme PKE is correct. Let therefore (pk, sk) ←
PKE.KeyGen(1κ) and ct ← PKE.Enc(pk,m). By the correctness of the OTSE-
scheme NC it holds that k̃ = {Kj,kj

}. Thus, by the correctness of the garbling
scheme it holds that ct′ = C̃[m](k) = SKE.Enc(k,m). Finally, by the correctness
of SKE it holds that SKE.Dec(k, ct′) = m.

6.2 Security

We will now show that PKE is KDMCPA-secure.

Theorem 7. Assume that NC is an INDOTSIG-secure OTSE-scheme and
(Garble,Eval) is a secure garbling scheme. Let F be a class of KDM-functions and
assume that the function gpp,sgk : x �→ (x,NC.SSign(pp, sgk, x)) is in a class G
(e.g. affine functions). Assume that SKE is a KDMCPA-secure secret-key encryp-
tion scheme for the class F◦G. Then PKE is a KDMCPA-secure public key encryp-
tion scheme for the class F .

Note that if both F and G are the class of affine functions, e.g. over F2, then
F ◦G is again the class of affine functions (over F2). Thus, every function in F ◦G
can also be implemented as an affine function, i.e. by a matrix-vector product
followed by an addition.

Proof. Let A be a PPT-adversary against the KDMCPA-security of PKE. Con-
sider the following hybrids, in which we will change the way the KDM-oracle is
implemented. For sake of readability, we only provide 3 hybrids, where in actual-
ity each hybrid consists of q sub-hybrids, where q is the number of KDM-queries
of A.

Hybrid H1: This hybrid is identical to the KDMCPA-experiment.

Hybrid H2: This hybrid is identical to H1, except that fC is computed by fC ←
{NC.SEnc(pp, (vk, j, b),Kj,kj

)}j∈[κ],b∈{0,1}, i.e. for each j ∈ [κ] we encrypt Kj,kj
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twice, instead of Kj,0 and Kj,1. By the INDOTSIG-security of NC the hybrids H1

and H2 are computationally indistinguishable.

Hybrid H3: This hybrid is identical to H2, except that we compute C̃ and fC
by (C̃, k̃) ← GCSim(C,C[m](k)). Computational indistinguishability between H2

and H3 follows by the security of the garbling scheme (Garble,Eval). Notice that
it holds that C[m∗](k) = SKE.Enc(k,m∗).

We will now show that the advantage of A is negligible in H3, due to the
KDMCPA-security of SKE. We will provide a reduction R such that RA has the
same advantage against the KDMCPA-security of SKE as A’s advantage against
H3.

Before we provide the reduction R, notice that R does not have access to its
own challenge secret key k, which is part of the secret key sk = (k, σ) of the
resulting PKE. Also, since σ is a signature on k, R does not know the value
of σ either. Thus, R cannot on its own simulate encryptions of messages that
depend on (k, σ). We overcome this problem by using the KDM-oracle provided
to R which effectively allows R to obtain encryptions of key-dependent messages
sk = (k, σ). Details follow.

The reduction R first samples pp ← NC.SSetup(1κ, κ) and (vk, sgk) ←
NC.SGen(pp) and invokes A on pk = (pp, vk). Then R simulates H3 for A with
the following differences. Whenever A queries the KDM-oracle with a function
f ∈ F , the reduction R programs a new function f ′ ∈ F ◦ G which is defined by

f ′(k) = f(k,NC.SSign(pp, sgk, k)).

We assume for simplicity that the signing procedure NC.SSign is deterministic,
if not we require that the same randomness r is used for NC.SSign at each KDM-
query3.

We claim that R simulates H3 perfectly from the view of A. If the challenge-
bit in R’s KDMCPA-experiment is 0, then the outputs of A’s KDM-oracle on
input f are encryptions of f ′(k) = f(sk), and therefore, from the view of A
the challenge-bit in H3 is also 0. On the other hand, if the challenge-bit in R’s
KDMCPA-experiment is 1, then the outputs of A’s KDM-oracle on input f are
encryptions of 0�, and therefore, from A’s view the challenge-bit in H3 is 1. We
conclude that the advantage of RA is identical to the advantage of A against H3.
It follows from the KDMCPA-security of SKE that the latter is negligible, which
concludes the proof. ��

3 This does not pose a problem as we always sign the same message k at each KDM-
query.
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