
89© The Author(s) 2018
T. Lynn et al. (eds.), Heterogeneity, High Performance Computing,
Self-Organization and the Cloud, Palgrave Studies in Digital
Business & Enabling Technologies,
https://doi.org/10.1007/978-3-319-76038-4_4

CHAPTER 4

Application Blueprints and Service
Description

Ioan Dragan, Teodor-Florin Fortiș, Marian Neagul,
Dana Petcu, Teodora Selea, and Adrian Spataru

Abstract  In the context of creating a self-organising and self-managing
cloud infrastructure we propose a set of extensions to the existing Service
Description Languages (SDLs) and Application Blueprints in order to
establish a common ground for the various CloudLightning components.
By implementing this SDL and all the missing links one can assure that the
CloudLightning system works in such a way that users can easily interact
with it. In this chapter we present in detail the design decisions that were
made during the development of various components alongside with their
formal description.

I. Dragan (*)
Victor Babeș University of Medicine and Pharmacy, Timișoara, Romania

Institute e-Austria Timisoara, Timișoara, Romania
e-mail: idragan@ieat.ro

T.-F. Fortiș • M. Neagul • D. Petcu • T. Selea • A. Spataru
Institute e-Austria Timisoara, Timișoara, Romania

West University of Timișoara, Timișoara, Romania
e-mail: florin.fortis@e-uvt.ro; marian.neagul@e-uvt.ro; Dana.Petcu@e-uvt.ro;
adrian.spataru@e-uvt.ro

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-76038-4_4&domain=pdf
https://doi.org/10.1007/978-3-319-76038-4_4
mailto:idragan@ieat.ro
mailto:florin.fortis@e-uvt.ro
mailto:marian.neagul@e-uvt.ro
mailto:Dana.Petcu@e-uvt.ro
mailto:adrian.spataru@e-uvt.ro
mailto:adrian.spataru@e-uvt.ro

90 

Keywords  Service Description Language • CL Blueprints • CL Gateway
Service • Lifecycle and resource management

4.1   Introduction

To deliver the quality of service (QoS) expected by end users on a distrib-
uted multi-tenant infrastructure requires careful management of comput-
ing resources. This is particularly the case where there is a rapid growth in
usage such as cloud computing. Cloud service providers (CSPs) are faced
with a myriad of challenges in meeting the needs of a large and diverse
range of end users including, but not limited to, service transparency,
automated service provisioning, efficiently managing workload segmenta-
tion and portability, and managing virtual services instances at one level,
while optimising the utilisation of all resources at a different level (Sun
et al. 2012). The issues can be resolved through specialised and precise
cloud service specification models, Service Description Languages (SDLs),
describing cloud services, their deployment specifications, and the required
resources to run these cloud services. The majority of the existing SDLs
and associated frameworks implement tools, Application Programming
Interfaces (APIs), and strategies for managing the lifecycle of cloud appli-
cations and/or resources, and they are usually provided as a self-service
interface to Enterprise Application Operators (EAOs). This self-service
approach allows an EAO to have full control over the management of
applications as well as the underlying resources such as virtual machines
(VMs) and containers. It subsequently narrows down the opportunities
for CSPs to improve resource utilisation and potentially the quality of
services.

The CloudLightning architecture endeavours to create a service-
oriented architecture for the evolving heterogeneous cloud. In this respect,
it is imperative to maintain a separation between application lifecycle man-
agement and resource management. This separation of concerns imple-
ments a “what-how” approach where the user concentrates on “what”
needs to be done, while the CSP concentrates on “how” it should be
done. With such an approach, it will be possible to implement continuous
improvements, in terms of resource utilisation and service delivery, at the
resource level. From this perspective, SDLs facilitate both (a) application
lifecycle management by the user and (b) resource management by the
CSP. As such, they ensure a proper separation of concerns between stake-

  I. DRAGAN ET AL.

  91

holders, a core design principle of CloudLightning introduced in Chap. 1.
Particular service offerings are captured in blueprints to assist end users to
discover and select from an increasing catalogue of services and determine
an optimal, and potentially heterogeneous, set of resources to implement
them. The remainder of this chapter is organised as follows. The next sec-
tion provides an overview of two representative application lifecycle frame-
works and one representative resource management framework. This is
followed by an overview of the specific stakeholders whose concerns are of
interest to CloudLightning. The CloudLightning approach to separation
of concerns is then described followed by the Gateway Service and its
functionalities. Formal definition of the CloudLightning Service
Description Language (CL-SDL) is provided in Sect. 4.4 followed by an
exemplar implementation. This chapter concludes with a summary and
future work on the components and concepts presented in the chapter.

4.2   Representative Application Lifecycle
and Resource Management Frameworks

In order to identify concerns about the classical, vertical management
approach to cloud computing application lifecycle and resource manage-
ment, three representative frameworks are used for illustrative purposes:
OpenStack Solum, Apache Brooklyn, and OpenStack Heat.

The cloud application lifecycle management architecture is represented
in Fig. 4.1, using OpenStack Solum and Apache Brooklyn frameworks for
Platform as a Service (PaaS) cloud, and resource lifecycle management
using OpenStack Heat mainly for Infrastructure as a Service (IaaS) cloud.

Project Solum and Apache Brooklyn allow the user to deploy a cloud
application or a group of cloud applications previously described in a blue-
print, using an SDL. The main purpose of such an SDL is to provide a way
of expressing the management processes for cloud applications. Depending
on the actual implementations, this may include providing the ability for
describing the characteristics of the application components, deployments
scripting, dependencies, locations, logging, policies, and so on.

In the case of OpenStack Solum, the engine takes a blueprint as an
input and converts it to a Heat Orchestration Template (HOT) that can
be understood by the application and resource management engine
(OpenStack Heat). The Heat engine, thereafter, calls the corresponding
service APIs that are offered by the cloud infrastructure framework such
as OpenStack.

  APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION 

https://doi.org/10.1007/978-3-319-76038-4_1

92 

In contrast, Apache Brooklyn converts a blueprint into a series of API
calls (specifically, jCloud APIs) that can be used to directly contact the
underlying cloud infrastructure. For example, these calls may reach the
cloud infrastructure with a request for creating a VM in OpenStack; the
OpenStack Nova API service will capture the request and send it to nova-
scheduler, which, in turn, decides on the physical server on which the VM

Fig. 4.1  Lifecycle management for OpenStack Solum, Apace Brooklyn, and
OpenStack Heat

  I. DRAGAN ET AL.

  93

should be started on. This approach is based on a request-response pat-
tern, providing a simple, robust, and efficient implementation. However,
as each request is processed independently, when blueprints are specifying,
for example, placement constraints based on vicinity of resources, such a
constraint is hard to be captured and fully implemented by APIs with a
vertical approach.

4.3   CloudLightning Stakeholders and Associated
Concerns

Separation of concerns requires the identification of stakeholders and their
associated concerns. For illustrative purposes, three distinct entities are
identified—end users, Enterprise Application Operators and Developers
(EAO/EAD), and IaaS resource providers (CSPs) each with differing
concerns. The end user is the consumer of an application and/or service.
As such, their concerns are primarily related to cloud application continu-
ity, availability, performance, security, and business logic correctness. The
EAO/EAD has traditional enterprise concerns, for example, cloud appli-
cation configuration management, performance, load balancing, security,
availability, and the deployment environment. As discussed in Chap. 1, the
CSP’s business model is driven by cost effectiveness and scalability while at
the same time delivering the contracted service level. As such, their con-
cerns are primarily related to optimisation including resource availability,
operating costs (including power consumption), resource provisioning,
resource organisation, and partitioning (if applicable).

Under separation of concerns, each entity manages their own concerns,
to the extent that they can. Notwithstanding this, some concerns exist
across the entities. For example, in order to realise high availability, an
EAO may need to configure a load-balancer, while at the same time a CSP
must implement a host-affinity policy.

4.4   The CloudLightning Approach Based
on Separation of Concerns

4.4.1   CloudLightning Requirements

As discussed, the CloudLightning service delivery model depicted in
Fig. 4.2 is a blueprint-based one. In contrast to existing frameworks, this
service delivery model provides facilities for blueprint developers to specify

  APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION 

https://doi.org/10.1007/978-3-319-76038-4_1

94 

comprehensive constraints and quality of service parameters for services
and/or resources in the scope of a blueprint, by means of a specific SDL
(the CL-SDL). Based on the specified constraints and parameters, it is
then possible to provide an initial optimal deployment of the resources, a
capability which has not been accomplished by previous solutions: for
example, by placing resources (such as VMs) on the adjacent physical serv-
ers to minimise communication delay or allocating containers that have
Graphical Processing Units (GPUs) or Xeon Phis attached to them to bal-
ance between performance and cost.

More importantly, in order to separate the concerns of cloud applica-
tion lifecycle management and the resource lifecycle management, a
CloudLightning-specific blueprint (CL-Blueprint) must be decomposed
into two separate and interrelated blueprints, the first one for resource
management (offering the Resource Template) and the other one for
application/workflow management (defining framework-specific
templates). This process is shown in Fig. 4.3. It also implies that the

Fig. 4.2  CloudLightning service delivery model

  I. DRAGAN ET AL.

  95

Fi
g.

 4
.3

 
A

rc
hi

te
ct

ur
e

fo
r

C
lo

ud
L

ig
ht

ni
ng

 s
er

vi
ce

 d
el

iv
er

y

  APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION 

96 

CL-SDL shall be developed in such a way that a CL-Blueprint described
in the CL-SDL can be transformed to framework-specific blueprints
without losing generality.

A CL-Blueprint deployment starts from sending the raw Resource
Template to a Resource Discovery component and a Resource Selection
component, which are the two main components of a complementary
system (in this situation, the CloudLightning Self-Organising and Self-
Management [SOSM] framework), for optimal resource identification in
the scope of a blueprint, as indicated in Fig. 4.3. Once the optimal resource
identification process has finished, the initially received Resource Template
must be reconstructed in order to embed the received resource optimisa-
tion information and consequently send it to the resource lifecycle man-
agement engine, which will carry out the actual resource deployment on
the infrastructure it manages.

In addition, some of the optimisation information (e.g., on which
physical server should this VM be allocated) must be embedded into
resource requests (API calls), and this special information must be cap-
tured by the lower infrastructure management components.

The returns from the deployment process are the resource handlers
(e.g., a resource handler can be a login account with username, access key,
and Internet Protocol address to a VM, a container, a bare metal machine
with pre-installed operating system, or an existing High Performance
Computing [HPC] cluster). These resource handlers will then be returned
to the Gateway Service, which will reformulate the original workflow/
application blueprint along with the resource handlers.

The newly formulated workflow/application blueprint will then be
submitted to the corresponding workflow/application lifecycle manage-
ment framework to carry out the deployment of the cloud applications on
these pre-provisioned resources. This process is shown in Fig. 4.3. To this
end, a CL-Blueprint deployment process is complete.

Notice that this service delivery model is much more sophisticated
when compared to the current self-service model using a vertical
management approach, as the cloud application management and the
resource management operate independently. Moreover, the cloud appli-
cation management layer constantly needs to exchange information with
resource management layers in certain circumstances (e.g., when ending
the lifetime of a CL-Blueprint, a notification needs to be sent to the
resource management layer so that the underlying resources can be reused
or decommissioned).

  I. DRAGAN ET AL.

  97

In order to align with the design of the bespoke service delivery model,
and implement the separation of concerns, the specific SDL shall be devel-
oped with following capabilities:

	1.	 To describe characteristics of a cloud application
	2.	 To describe cloud application execution environment and

dependencies
	3.	 To specify cloud application deployment processes
	4.	 To specify resource type and resource requirements
	5.	 To express constraints between blueprint service elements
	6.	 To express quality of service parameters for each individual blueprint

service element
	7.	 To accommodate extensions for supporting specific/non-traditional

cloud applications such as HPC applications
	8.	 To fulfil above requirements without losing generality

4.4.2   Separation of Concerns

During the lifetime of the CL-Blueprint, the EADs/EAOs are responsible
for managing the cloud applications through specific frameworks, such as
Apache Brooklyn and OpenStack Solum, while the CloudLightning
SOSM system manages the underlying resources. A series of advantages of
this approach may be then highlighted:

	1.	 continuous improvement on quality of CL-Blueprint services
	2.	 improving service delivery and user experience by reusing resources

that have already been provisioned
	3.	 resource optimisations and energy efficiency optimisation
	4.	 flexible and extensible when integrating other management system

such as the OpenStack Mistral (Openstack.org 2017) workflow
management system

In CloudLightning, the functional components that realise the concept
of the “separation of concerns” are shown in Fig. 4.4 with the following
description.

4.4.2.1	 �Application Lifecycle Management

•	 Abstract Blueprint: used to represent specific application
requirements, constraints, and metrics defined by users, and describe

  APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION 

98 

the concrete and abstract services (referenced only by identification)
alongside with the collocation of the services.

•	 Blueprint: represents a fully qualified Cloud Application Management
for Platforms (CAMP) (Organization for the Advancement of
Structured Information Standards [OASIS] CAMP TC, 2014)
Document containing references to real resource types, resource
locations, and deployment mechanisms, which are fully understood
and handled by a CAMP-compliant implementation.

•	 Service Catalogue: it is a persistent collection of versioned services,
each of which includes service information, deployment informa-
tion, and CL-Resource specification.

Fig. 4.4  CloudLightning implementation of the “separation of concerns”

  I. DRAGAN ET AL.

  99

•	 Service Decomposition Engine (SDE): handles the transformation of
Abstract Blueprints to concrete Blueprints according to provided
requirements.

•	 Brooklyn: used for deploying and managing the applications via
Blueprints.

4.4.2.2	 �Resource Lifecycle Management

•	 CL-SOSM Layer: CloudLightning SOSM Layer aims to identify and
create/allocate the optimal CL-Resource for applications using prin-
ciples of SOSM.

•	 CL-RA Layer: CloudLightning Resource Abstraction Layer is used
for abstracting the CL-Resources in different ways (such as Bare
Metal, Virtualisation, Containerisation, and Direct Access) from
various hardware types (such as Central Processing Unit [CPU],
GPU, Data Flow Engine, and Many Integrated Core [MIC]).

•	 Heat Orchestration Template (HOT): describes the infrastructure
resource (such as servers, networks, routers, floating IPs, and volume)
for a cloud application, as well as the relationships between resources.

•	 Heat Interface: automatically generates HOTs in terms of the results
from SOSM Layer or dynamically modifies HOTs based on the
results from the Continued Improvement component.

•	 Heat Engine: manages the whole lifecycle of the provisioning
process.

•	 Continued Improvement: this management component together
with Heat and telemetry does the continued improvement for the
deployed blueprint during the lifetime.

4.5   The CloudLightning Gateway Architecture

Integration of the use cases provided in CloudLightning with the Gateway
Service will be done by following the CL-SDL (Xiong et al. 2016). The
proposed CL-SDL specification is built on top of the OASIS CAMP speci-
fication and introduces new concepts suitable for expressing the require-
ments of HPC applications.

The syntax of the CL-SDL is based on the Brooklyn blueprint YAML
(Yet Another Markup Language) and is used to describe the Resource
Template and the Resourced Blueprint. Both of these offer support for
CloudLightning Blueprint lifecycle management.

  APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION 

100 

The Blueprint is used to represent specific application requirements,
constraints, and metrics defined by either the EAD or the EAO, and
describe services by name and their relationships. As depicted in Fig. 4.5,
service definitions are predefined by EADs in special catalogues that fol-
low the Cloud Service Archive (CSAR) specifications (Breiter et al. 2012),
a subset of rules defined by the Topology and Orchestration Specification
for Cloud Applications (TOSCA) standard (OASIS Open 2013).

The Resourced Blueprint is obtained from the SDE. This operation
effectively invokes the underlying CL-SOSM subsystem that is responsible
for resource management, for available resources and resource definitions.
The resulting Resourced Blueprint is completely supported by a CAMP-
compliant CAMP Provider (Carlson et al. 2012).1

In the CL-Blueprint all references to CloudLightning-defined artefacts
are removed, except for specific CloudLightning handles (opaque to the
CAMP Provider). These handles are used for the creation of a session
between the resource scheduling (self-organisation) layer and the deployed
resources. This CL-Blueprint represents a fully qualified CAMP Document
containing reference to real resource types, resource locations, and deploy-
ment mechanisms, which are fully understood and handled by a CAMP-
compliant implementation.

4.5.1   Gateway Service Architecture

The CloudLightning Gateway Service builds upon the capabilities of the
Apache Brooklyn solution, providing “service decomposition” capabilities.
The Gateway Service completely reuses the rest of the features provided
by Apache Brooklyn, facilitating the reuse of existing Blueprints and inte-
gration. Of particular interest is the integration with various Configuration
Management Systems like Puppet, Chef, or Ansible (Fig. 4.6).

The Gateway Service has several roles, as follows:

	1.	 Receive/create abstract2 Blueprint definitions from EAO.
	2.	 Decompose the received Abstract Blueprint into individual services.

For each of the services check if it is a fully qualified service or has to
be further processed. This operation is further discussed in Sect.
4.5.2 (Service Decomposition).

	3.	 Once the Blueprint is fully qualified (it does not contain any abstract
service definitions), the Gateway Service triggers the services deploy-
ment and further execution.

  I. DRAGAN ET AL.

  101

Fi
g.

 4
.5

 
A

PI
 M

es
sa

ge
 r

el
at

io
ns

hi
ps

  APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION 

102 

The Gateway Service exposes a series of APIs usable by consumers
(EAOs and EADs) for controlling the application lifecycle.

4.5.2   Service Decomposition

The operation of Service Decomposition is implemented by the SDE and
represents one of the core CloudLightning contributions in the Gateway
Service. The SDE is responsible for the interaction with the SOSM subsys-
tem. The overall operation of the SDE can be summarised as follows:

	1.	 For each service, check if it can be instantiated directly (there exists
a single implementation of the service, and that implementation is
well known to the Gateway Service) or that it is an abstract service
(a service interface that could be implemented by several
implementations).

	2.	 If the service is an abstract service the SDE contacts the backend
SOSM system for selecting the proper implementations for the
service.

Fig. 4.6  Gateway Service overall architecture

  I. DRAGAN ET AL.

  103

	3.	 In order to facilitate the selection of the proper implementation, the
SDE transmits the user-provided requirements (in the form of
ClassAd [Solomon 2003] definitions). These requirements are used
by the SOSM subsystem for properly selecting the right
implementations.

	4.	 The selection of concrete implementations results in modifying the
original Blueprint, by replacing the abstract definition with the
resourced one (eventually after a user interaction for validating the
right solution) and submitting the Blueprint to the next stage.

4.5.3   Interaction with the SOSM System

After the successful query of available implementations for each abstract
service definition, the SDE component constructs a Resource Template
containing information about the specific requirements of each implemen-
tation. An example of such Resource Template is given in Listing 4.1

Consider a Blueprint containing a single service in order to maintain
better readability of the listing. Such a document contains a blueprint ID
that is unique for each request, a timestamp representing the request time,
a cost limit for the entire Blueprint, and the callback endpoint used by the
SOSM system to communicate back results of the optimisation steps.

The sample service has two implementation options between which the
SOSM will choose depending on their constraints and the overall cost of
the blueprint. The first one refers to the need for a single VM with a single
core (expressed by a computation range between 1 and 1), 1000 MB of
memory, 50 GB of storage, bandwidth between 100 Mbps and 1 Gbps,
and no accelerators.

The second implementation is of type MIC-CONTAINER, requiring
the CellManager to find or create a container, which has access to an MIC
accelerator. This service requires one container with one CPU core, mem-
ory between 100 and 1000 MB, storage between 10 and 50 GB, the same
bandwidth as the other implementation, and one MIC accelerator.

4.5.3.1	 �Resource Discovery
The Gateway Service and the SOSM system exchange information for two
operations: resource discovery and resource release.

•	 Resource discovery is the operation by which the SOSM system
chooses the most suitable service implementation and the resources
on which to deploy it, according to user constraints and system state.

  APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION 

104 

•	 Resource release is the operation by which the SOSM system is
informed that the services have been terminated, so the underlying
resources may be reallocated.

The aforementioned operations are modelled by Hypertext Transfer
Protocol (HTTP) Representational State Transfer (REST) methods, both
the Cell Manager and the SDE acting as REST servers.

Figure 4.7 describes the protocol for resource discovery and a POST
request with the body containing a ResourceTemplate of the structure, as
illustrated in Listing 4.1. If the Cell Manager encounters any problems
during the parsing of the body, the status code of the response will be 409
Conflict. Otherwise, the status code will be 201 Created and the resource

Listing 4.1  Resource template

  I. DRAGAN ET AL.

  105

discovery process will start. The Cell Manager is in charge of informing
the SDE when the result is ready.

When resources have been identified for all services, the Cell Manager
will use a POST request with the body containing the information about
the placement and implementation of each service, referred as a Resourced
Template. This will trigger the SDE to instantiate each abstract service and
update the Blueprint with concrete services and resource access informa-
tion. An example result is shown in Listing 4.2. The chosen implementa-
tion is CPU-VM, and the resource type is OPENSTACK ACCOUNT,
meaning that the SOSM is managing an OpenStack cluster as a resource.
In this case, access information consists of credentials for accessing the
OpenStack Nova API in order to create the VM.

4.5.3.2	 �Resource Release
The protocol for releasing the resources associated to a Blueprint is
depicted in Fig. 4.8. A DELETE request is made to the Cell Manager at
a path referencing the Blueprint ID. In case of successful resource release,
the response will have the status 204 No Content. Otherwise, the
response will have status 400 Bad Request and the body should provide
useful information that will be propagated to the user interface (UI).

Fig. 4.7  Resource discovery sequence diagram

  APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION 

106 

4.6   The CloudLightning Blueprint Extensions

Below is a summary of the technologies upon which the CloudLightning
Blueprints were developed.

4.6.1   CloudLightning Brooklyn Extensions

As part of CloudLightning project, Apache Brooklyn was adopted and
extended as the underlying platform for achieving the project’s ultimate

Listing 4.2  Resourced template

Fig. 4.8  Resource release sequence diagram

  I. DRAGAN ET AL.

  107

goal of both supporting HPC applications and adoption of modern cloud
technologies, thus creating a bridge between the HPC and Cloud end
user communities.

The decision to use the Apache Brooklyn framework is motivated by
the design decisions established in the conceptualisation of the
CloudLightning architecture (Morrison et al. 2016), the CloudLightning
protocol specification and APIs (Neagul et al. 2016), and the Gateway
Service (Dragan et al. 2017).

The main advantages of using Apache Brooklyn include:

	1.	 It provides the building blocks needed for developing the necessary
functionality expected from the Gateway Service.

	2.	 It offers support for “automatic blueprints” based on OASIS CAMP,
an extensible specification that can serve as the core specification for
the CloudLightning Blueprints.

	3.	 The Apache Project plans to support TOSCA in the near future.3
This could potentially allow further developments in the
CloudLightning SDL, supporting the TOSCA standard (OASIS
Open 2013).

	4.	 The harnessing of existing Apache Blueprints, providing HPC ven-
dors more choices without requiring more development effort.

The purpose of this section is to discuss how the adoption of the
Brooklyn Blueprints, particularly the expected additions to the Blueprint
YAML, is envisioned in CloudLightning. As previously noted, two differ-
ent kinds of blueprints are identified for use in CloudLightning: Abstract
Blueprints and Concrete Blueprints (referred further as “blueprints”).
Both types of Blueprints are built on top of Apache Brooklyn blueprints.

The translation between the Abstract Blueprint and Runnable Blueprints
is performed by means of a specialised component residing inside the
Gateway Service, component named “Service Decomposition Engine.”
The decomposition engine is responsible for interacting with the SOSM
infrastructure (Fig. 4.9).

Each of the two types of Blueprints is discussed in the following sec-
tions, outlining the changes to the vanilla (plain) Brooklyn Blueprints.
Note that the proposed extensions are subject to change as other parts of
the CloudLightning Project evolve and might also be influenced by out-
side changes in the Apache Brooklyn project, as, for example, the addition
of new functionality or deprecation of a current one.

  APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION 

108 

4.6.2   CloudLightning Abstract Blueprint

The Abstract Blueprint is represented by an extended version of the
Apache Brooklyn Blueprint, containing attributes holding CloudLightning-
specific entries, as described in Listing 4.3.

In this example, the Abstract Blueprint requires the deployment of a
Java web application and a computing resource providing raytracing
capabilities. Of interest in this case is the abstract computing service
identified by the name “RaytracingApplicationId”: the service cannot be
directly handled by the Apache Brooklyn framework as it does not

Fig. 4.9  CloudLightning Blueprint decomposition process

  I. DRAGAN ET AL.

  109

provide the required information (the cloudlightning.entity.meta.
RaytracingApp type is not known to Brooklyn).

This service is handled by the CloudLightning SDE by interpreting the
provided application information (in this case, the type) and the corre-
sponding matching information. The information needed for the normal
SDE operation is defined at the service level, under the cloudlightning.
config attribute.

The relevant attributes handled by the SDE at the “service-
requirements” level are:

•	 Type: this field defines the syntax used for expressing this require-
ment. Currently the only defined syntax is based on the ClassAds
system4.

Listing 4.3  An Abstract Blueprint

  APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION 

110 

•	 Requirements: this field defines the expression interpreted by the SOSM
system to identify the appropriate resource required for this service.

•	 Rank: this field defines the way of ranking the possible solutions
obtained from the underlying SOSM infrastructure; this expression
might be used to prefer resources by various attributes, eventually
based on power consumption or computing power.

The “requirements” attribute is aimed at restricting the resources that
the SOSM subsystem can consider for choosing the proper implementa-
tion for the user-requested service. This attribute is expected to be used by
HPC application to express their performance requirements, and it is
complemented by the “rank” attribute, used for expressing preference
regarding the available and matching resources.

4.6.3   CloudLightning Blueprint

The CloudLightning Blueprint represents the outcome of the Service
Decomposition Operation and basically represents a fully qualified
Blueprint document that can be handled by the CAMP framework (in our
case, Brooklyn).

As seen in Listing 4.4, all “abstract” specifications have been replaced
with concrete ones. For example, the cloudlightning.entity.meta.
RaytracingApp type has been replaced with another type understood by
Brooklyn (cloudlightning.entity.impl.HPCCluster). This new type is
complemented by a new set of attributes that provide deployment-specific
information.

It is important to note that the “location” attribute has been custom-
ised to provide CloudLightning-specific information; particularly in this
case, it contains a handle provided by the underlying SOSM subsystem
that can be used at deployment time for synchronising information
between the various subsystems. Notice that the cloudlightning.entity.
impl.HPCCluster is known to Brooklyn due to the fact that it is regis-
tered by the EAO in the corresponding catalogue.

4.7   Example of Application Creation
and Deployment

The architecture of the CloudLightning Gateway Service was presented
previously in Sect. 4.5. This section demonstrates, using an example of a
raytracing application, the ease with which the application topology can be
created and deployed using the CloudLightning Gateway Service. This

  I. DRAGAN ET AL.

  111

use case is used to illustrate a user’s interactions with the Gateway Service,
enhancing the resource optimisation feature. The remainder of this sec-
tion provides a brief overview of the steps to be taken to safely create,
optimise, and deploy the raytracing application on the CloudLightning
environment. Some of the essential steps are also depicted in screenshots
taken from the actual system.

The process is as follows:

Step 1:	 To initialise the system, start Alien4Cloud service.
Step 2:	 Add the plugin to the desired orchestrator (CloudLightning

uses Brooklyn-TOSCA as the underlying orchestrator). After
the plugin is loaded, Alien4Cloud will present the orchestrator
in the list of available plugins.

Step 3:	 Create a new orchestrator from the UI and link it to the newly
added plugin.

Step 5:	 Before one can connect the orchestrator instance from
Alien4Cloud to the underlying orchestrator (basically, the
SOSM subsystem), one has to ensure that the Gateway Service
Orchestrator is running. This step is not a mandatory step to
be taken but it is advised.

Listing 4.4  The CloudLightning Blueprint

  APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION 

112 

Step 6:	 From the web console one can connect to the bespoke orches-
trator. Before any further steps can be taken, wait until the
orchestrator state is CONNECTED.

Step 7:	 After the orchestrator is connected, download the CSAR
archive from a remote git repository.5

The orchestrator comes with git integration functionalities,
and the only requirement is to have stored all custom CSAR
files in such a repository. In case of the raytracing example, one
has to enter the predefined git credentials and URL. The
download process of the CSAR archive starts only after one
clicks the Import button.

Step 8:	 Add the CloudLightning plugin to have access to the
CloudLightning functionalities.

Step 9:	 For the creation of new applications one has to use the func-
tionalities exposed by Alien4Cloud, more precisely the New
Application panel. The CSAR archive may contain already
defined application templates, and one can select some of those
for the intended application design.

Step 10:	 As soon as the application creation step is finished, one can
view the design and application in its home panel.

Step 11:	 The previously defined topology contains four types of nodes,
which can be viewed in the Topology tab (see Fig. 4.10). It is
also possible to view the newly created topology in YAML for-
mat by pressing the YAML tab in the designer.

Step 12:	 Next, enter the CloudLightning Optimisation Panel and start
the optimisation process from the SOSM Optimiser button
(see Fig. 4.11). On the left-hand side, one can view the end-
point for the SDE.

Step 13:	 Check that the SDE is up and running, and when the optimisa-
tion process is finished, one can notice that the abstract nodes
have been replaced with concrete ones also in the application
designer.

Step 14:	 As a final step prepare for the deployment of application by
entering into the Deployment Panel. The orchestrator has
already sent information about locations to Alien4Cloud and
one has only to select the desired location.

Step 15:	 By moving to Deploy tab one can trigger the actual deploy-
ment of the application. This step is performed by pressing the
Deploy button and wait until it finishes. Once pressed one can
follow the explicit progress of the deployment also in the
orchestrator console.

  I. DRAGAN ET AL.

  113

Fi
g.

 4
.1

0 
A

pp
lic

at
io

n
to

po
lo

gy
: C

lo
ud

L
ig

ht
ni

ng
 C

or
e

1
no

de

  APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION 

114 

Fi
g.

 4
.1

1 
St

ar
t

of
 t

he
 o

pt
im

is
at

io
n

pr
oc

es
s

  I. DRAGAN ET AL.

  115

4.8   Conclusion

This chapter presented the CloudLightning Gateway Service, a user-
friendly interface that enables users to create and deploy applications with
minimum knowledge regarding the resource selection process. The
Gateway Service is a key component of the CloudLightning system that
facilitates application lifecycle management in the context of a cloud envi-
ronment. Users can design the application topology using the Drag &
Drop mechanism of the Gateway Service UI and link together the compo-
nents of their application. From here, the topology is sent to the SDE,
which is responsible for interacting with the SOSM system. The SDE
translates the information from the application topology, into a specific
CloudLightning Blueprint, using the CloudLightning Service Description
Language. Next, SOSM handles the resource discovery process, assigning
the most suitable set of resources for a user application, based on the
received CloudLightning blueprint. In the following step, the SOSM sends
back to the SDE a CloudLightning blueprint, with a proposed resource
for each component of the application topology. In the end, the user may
review the final version of its application topology, with the assigned
resources, and start the process of application deployment.

4.9   Chapter 4 Related CloudLightning Readings

	1.	 Dragan, I., Fortis, T. F., & Neagul, M. (2016). Exposing HPC ser-
vices in the cloud: The CloudLightning approach. Scalable
Computing: Practice and Experience, 17(4), 323–330.

	2.	 Selea, T., Dragan, I., & Fortiş, T. F. (2017, April). The
CloudLightning approach to cloud-user interaction. In Proceedings
of the 1st International Workshop on Next generation of Cloud
Architectures, Vol. 4, ACM.

Notes

1.	 The term CAMP provider is used in the sense as defined by the CAMP
specification, basically “an implementation of the service aspects of this
specification.”

2.	 Abstract Blueprints are those blueprints that will be later on filled with con-
crete resources by the CL-System.

3.	 https://brooklyn.apache.org/learnmore/theory.html
4.	 https://research.cs.wisc.edu/htcondor/classad/classad.html
5.	 One keeps definitions of services in CSAR format in a remote repository.

  APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION 

https://brooklyn.apache.org/learnmore/theory.html
https://research.cs.wisc.edu/htcondor/classad/classad.html

116 

References

Apache Software Foundation. (n.d.). Apache Brooklyn. Retrieved October 15,
2017, from https://brooklyn.apache.org/

Apache Software Foundation. (n.d.). Apache jClouds®. Retrieved October 15,
2017, from https://jclouds.apache.org/start

Breiter, G., Leymann, F., & Spatzier, T. (2012, May). Topology and orchestration
specification for cloud applications (TOSCA): Cloud service archive (CSAR).
International Business Machines Corporation.

Carlson, M., Chapman, M., Heneveld, A., Hinkelman, S., Johnston-Watt, D.,
Karmarkar, A., et al. (2012). OASIS, Tech. Rep. Cloud Application Management
for Platforms. Retrieved October 10, 2017, from http://cloudspecs.org/
CAMP/CAMP_v1-0.pdf

Dragan, I., Selea, T., & Fortis, T.-F. (2017). D5.2.1 Gateway Service.
CloudLightning consortium. Retrieved October 15, 2017, from.

Morrison, J., Xiong, H., Dong, D., & Momani, B. (2016). D3.1.2 Architecture.
CloudLightning Consortium. Retrieved October 15, 2017, from.

Neagul, M., Dragan, I., & Craciun, C. (2016). D4.1.1 protocol specification and
API. CloudLightning Consortium. Retrieved October 15, 2017, from.

OASIS Open. (2013). Topology and orchestration specification for cloud applications
version 1.0. Retrieved October 10, 2017, from http://docs.oasis-open.org/
tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html

Openstack.org. (2017). OpenStack Mistral. Retrieved October 18, 2017, from
https://docs.openstack.org/mistral/latest/

Openstack.org. OpenStack Solum. Retrieved October 18, 2017, from https://
docs.openstack.org/solum/latest/

Openstack.org. Heat—OpenStack. Retrieved October 15, 2017, from https://
docs.openstack.org/heat/pike/

Solomon, M. (2003). The ClassAd Language Reference Manual, Version 2.1.
Computer Sciences Department, University of Wisconsin, Madison, WI, USA.

Sun, L., Dong, H., & Ashraf, J. (2012, October). Survey of service description
languages and their issues in cloud computing. In Eighth International
Conference on Semantics, Knowledge and Grids (SKG) (pp. 128–135). IEEE.

Xiong, H., Dong, D., Morrison, J., Antoniadis, I., Neagul, M., Giannoutakis, K.,
et al. (2016). D5.1.1 service description format. CloudLightning Consortium.
Retrieved 15 October, 2017, from https://cloudlightning.eu/blog/service-
description-format/d5-1-1-service-description-format-3/

  I. DRAGAN ET AL.

https://brooklyn.apache.org/
https://jclouds.apache.org/start
http://cloudspecs.org/CAMP/CAMP_v1-0.pdf
http://cloudspecs.org/CAMP/CAMP_v1-0.pdf
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
https://docs.openstack.org/mistral/latest/
https://docs.openstack.org/solum/latest/
https://docs.openstack.org/solum/latest/
https://docs.openstack.org/heat/pike/
https://docs.openstack.org/heat/pike/
https://cloudlightning.eu/blog/service-description-format/d5-1-1-service-description-format-3/
https://cloudlightning.eu/blog/service-description-format/d5-1-1-service-description-format-3/

  117

Open Access  This chapter is licensed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (http://
creativecommons.org/licenses/by-nc-nd/4.0/), which permits any noncommer-
cial use, sharing, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if you modified the licensed
material. You do not have permission under this license to share adapted material
derived from this book or parts of it.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to
the material. If material is not included in the chapter’s Creative Commons license
and your intended use is not permitted by statutory regulation or exceeds the per-
mitted use, you will need to obtain permission directly from the copyright holder.

  APPLICATION BLUEPRINTS AND SERVICE DESCRIPTION 

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Chapter 4: Application Blueprints and Service Description
	4.1 Introduction
	4.2 Representative Application Lifecycle and Resource Management Frameworks
	4.3 CloudLightning Stakeholders and Associated Concerns
	4.4 The CloudLightning Approach Based on Separation of Concerns
	4.4.1 CloudLightning Requirements
	4.4.2 Separation of Concerns
	4.4.2.1	 Application Lifecycle Management
	4.4.2.2	 Resource Lifecycle Management

	4.5 The CloudLightning Gateway Architecture
	4.5.1 Gateway Service Architecture
	4.5.2 Service Decomposition
	4.5.3 Interaction with the SOSM System
	4.5.3.1	 Resource Discovery
	4.5.3.2	 Resource Release

	4.6 The CloudLightning Blueprint Extensions
	4.6.1 CloudLightning Brooklyn Extensions
	4.6.2 CloudLightning Abstract Blueprint
	4.6.3 CloudLightning Blueprint

	4.7 Example of Application Creation and Deployment
	4.8 Conclusion
	4.9 Chapter 4 Related CloudLightning Readings
	References

