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Abstract. Moving event verification plays an important role in intel-
ligent traffic supervision systems. We propose a novel event-verification
framework using a deep convolutional neural network (CNN) in a pro-
posed augmented foreground-motion space. First, we use a Gaussian mix-
ture model for extracting foreground targets and generate multi-scaled
regions to speed-up object or behaviour detection in high-resolution
input video frames. Second, we use an augmented foreground motion
space to reduce (in a group of adjacent frames) the given video data,
motion, and scale information. A CNN-based deep neural network is
organised for joint object detection and behaviour verification. The con-
tribution of this paper is to propose a solution for multi-scale event
verification. We verify the performance of multi-scale event verification
for three typical events via real complex road-intersection surveillance
videos.
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1 Introduction

Vision-based intelligent surveillance is an active field due to its high credibility
and relatively low costs [8]. Moving event verification plays an important role in
intelligent traffic supervision systems, especially for traffic-violation monitoring
and recording. The majority of related algorithms are divided into two main
categories.

In the first category, the whole frame, possibly also including time-adjacent
frames, is used to obtain a conclusive verification result of the current scene.
These coarse scene-understanding frameworks have been widely used for the
analysis of abnormal events, such as traffic-accident detection.

In the second category, there is a wide diversity of research focusing on
object-centric event descriptions. Here, two steps are implemented in traditional
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event-verification frameworks, being object detection (recognition), and object
behaviour analysis (recognition) in an interval of time.

In this paper, we focus on the second category and combine moving object
detection as well as event verification with a convolutional neural network in
a novel compressed feature space. Motion information is compressed into a 3-
dimensional (3D) augmented foreground motion space for event representation.
Then, a deep regional convolutional neural network is used for object-oriented
event verification. We list the contributions of this paper:

1. an augmented foreground motion space for event feature representation,
2. a fast Gaussian mixture model (GMM) based region proposal method for

automatically generating a group of regions of interest for real-time traffic
event recognition, and

3. a particular deep convolutional neural network (CNN), trained for integrated
object detection and behaviour recognition in video data.

The remainder of this paper is organized as follows. Section 2 presents related
work. Section 3 details the specification of an augmented foreground motion
space for feature representation and compression. A joint CNN framework for
object detection and event verification is given in Sect. 4. Section 5 shows exper-
imental results for verifying the proposed method. Section 6 concludes.

2 Related Work

There is already a considerable diversity of existing work in traffic-event detec-
tion and verification.

Scene-oriented approaches are used for abnormal event detection [16,19] in
videos; this has been tackled directly without locating any moving objects. A
conclusive classification (i.e., normal or abnormal) is video-frame-based.

To obtain a precise description for an event, we use two steps which include
moving object detection and behaviour understanding, to verify an object-based
traffic event.

First, it is beneficial to detect objects of interest and extract the spatial
location for further object-based event verification. The GMM is used in [24]
for vehicle detection in complex urban traffic scenes. We show that GMM is
also of benefit for time-efficient multi-object detection and tracking while this
algorithm alone can only be used to extract foreground regions and generate
coarse hypotheses.

Template-related algorithms have also been proposed for object detection and
event hypothesis generation. A robust object-detection framework can be based
on Haar-like features and the use of a cascade AdaBoost classifier [21]. This is
verified to be an effective and fast method for rigid and one-class object detection.
Deformable part models (DPMs) [5] are proposed for vehicle verification by using
a support vector machine (SVM) and histogram-of-gradient (HOG) features. The
active basis model [22] has also been widely employed for vehicle detection [10,15]
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in traffic surveillance. With the assistance of a shared skeleton method, it can
be easily trained with a considerable detection performance.

Recently, deep learning [13] achieves remarkable advances to solve these prob-
lems. It dramatically develops the performance of frame-wise object detection
and recognition [6,12,18]. However, it is also time consuming to detect, track,
and understand the objects, frame by frame, using a deep neural network.

Second, object tracking methods [7,17,23] reconstruct the moving path of
the detected object for further moving pattern matching. These tracking-based
behaviour understanding algorithms are able to represent various moving pat-
terns, but they highly rely on continuous and accurate detection results. Sub-
sequently, hidden Markov models (HMM) [1], Bayesian approaches [3], or 3D
models [9] can also be used to understand the trajectory of moving targets.

On the other hand, we can directly use a recurrent neural network (RNN)
and long-short-term memory (LSTM) mechanisms [2] to construct a system for
spatial-temporal event recognition and verification. However, we need a large
number of labeled samples for each possible event category to train such a
network.

Different to existing work, our contribution in this paper is an integrated
framework for real-time and multi-class event recognition for road intersections.
Motion detection and event recognition are conducted with a deep convolutional
neural network for a proposed augmented foreground motion space.

3 Feature Representation

This section presents our event feature representation method using an aug-
mented foreground motion space. See Fig. 1 for an outline. It is subject to the
following considerations:

Simplified Data Dimension. In our application, it is time-consuming to detect
multi-class events in series of high resolution and colour frames. Hence, an
event representation with simplified data dimensions is greatly beneficial for
speed-up. We verified that it is more significant to include motion information
of objects in multiple frames than colour information.

High Information Density. Usually, traditional multi-frame image processing
methods (e.g. background subtraction, or optical flow) result in some infor-
mation loss compared to the given images. We expect to have a simplified
event representation method which is still close to ensuring completeness of
information for subsequent object detection, objet tracking, and behaviour
recognition, after multi-frame compression.

Effectiveness. Considering the real-world applications, the feature representa-
tion method should be effective for fast regional proposals, accurate event
recognition for different kinds of objects, and an adaption for multi-scale
objects.

A common RGB colour image I has pixel values u(x, y) = (IR, IG, IB), where
0 ≤ IR, IG, IB ≤ Gmax [11]; coordinates x and y define the pixel locations in an
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Fig. 1. Framework of the proposed method. Left: Generation of a group of region
proposals for moving objects. Middle: The procedure for feature representation merges
original gray-scale images, foreground object detection results, and scale information
for compressing the motion information of multiple frames via space re-grouping. Right:
Further processing of an extracted region for joint event detection and recognition.

image. Value Gmax usually equals 28 − 1, or 216 − 1. For video analysis, we
extend this to a 4D video V which has pixel values v(x, y) = (IR, IG, IB , t),
where t corresponds to the time slot of a frame in a video.

In this paper, we represent pixel descriptors also in another 3D value space
M ; we set the value of each pixel as M(x, y) = (MU ,MV ,MS) where MU , MV ,
and MS are the proposed 3D features at a pixel location (x, y) with respect to a
short video sequence. MU belongs to the original image space for the considered
time slot t, MV is the complementary foreground space information of this pixel
location during this short video sequence, and MS refers to the complementary
relative scale space feature; for details see below.

The Original Image Space. The first value MU at position (x, y) is the original
gray level αIR + βIG + γIB of the current frame. It is used to preserve the
local skeleton and texture features for object classification. In this paper, for
convenience, we use α = β = γ = 1

3 .

Complementary Foreground Region. To record motion information for a
short sequence of adjacent frames, we use the second value MV for specifying the
foreground space. Using GMM, the pixel value at position (x, y) is described by
{X1,...,Xt} = {I(x, y, i) : 1 ≤ i ≤ t}. Here, I(x, y, t) corresponds to the intensity
value at position (x, y) at time t. All the pixels are represented by K (3 ≤ K ≤ 5)
states, and each state can be approximated using a Gaussian distribution:

p(Xt) =
K∑

k=1

ωk,t · Γ (Xt

∣∣μk,t,Σk,t )
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where ωk,t is the weight of kth Gaussian distribution at time t, and
Γ (Xt |μk,t,Σk,t ) is the probability density function of the kth Gaussian dis-
tribution. By μk,t and Σk,t we denote the mean and covariance. Thus,

Γ (Xt |μk,t, Σk,t ) =
1√

2π · |Σk|
exp

[
−1

2
(xt − μk)�Σ−1

k (xt − μk)
]

A comparison between pixel value Xt and the Gaussian cluster is given as
follows for matching:

Xt ∈ Γ (Xt |μk,t,Σk,t ), if |Xt − μk,t| < 2.5 · σk,t

where σk,t is the variance of the kth cluster. Let T be an indicative function,

T (α) =
{

1 if α is true
0 otherwise (1)

Then, an updating process of weights is implemented by

ωk,t = (1 − ε)ωk,t−1 + ε · T (Xt−1 ∈ Γ (Xt−1 |μk,t−1,Σk,t−1 ))

where ε is the updating learning rate of the video. Further updating, for a
matched kth cluster, is implemented by

μk,t = (1 − δ)μk,t−1 + δXt

σk,t
2 = (1 − δ)σk,t−1

2 + δ(Xt − μk,t−1)T (Xt − μk,t−1)

δ = ε · Γ (Xt |μk,t−1,Σk,t−1 )

The first H distributions are taken as a model for the background, with

H = arg min
l

(
l∑

k=1

ωk,t ≥ τ)

for a threshold τ > 0. H corresponds to the minimum number of distributions
to construct the model of the background. Pixel value MV in the second layer
equals

MV =
Gmax

2
· T (Xt /∈ H)

where T (·) is still the indicative function as defined above.
In this layer, we try to include the dynamic motion information which refers

to a micro-event related to object motion. As the initial region proposal is given
by GMM, feature re-organization will only take very little time.

Complementary Relative Scale Space. As we expect to detect all the multi-
scale targets and events in a wide supervising range, we need to handle objects
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at different scales. For example, for a hypothesis “a human” we search for a
vertical rectangle, and for “a forward-looking vehicle” we search for a square.

We identify each proposed region hypothesis with a rectangle, and then with
a square of minimum size, denoted by S ∈ R

k×k, for k = max(w, h). Here, S is
the proposed region for further event verification, and w and h refer to width
and height of the detected foreground hypothesis. Then, in the third layer of the
proposed pixel value representation space, we compress the scale information
into

MS =
Gmax

2
· T ((x, y) /∈ S |So )

where (x, y) is the position of the current pixel, S is the generated square hypoth-
esis region (i.e. a square block of complementary scale information; see Fig. 1),
and So is the original multi-scale hypothesis region (i.e. the gray area in the
square block of the complementary scale information in Fig. 1).

4 Deep CNN for Micro-Event Detection and Verification

This section explains our framework for event verification. The proposed method
consists of two phases. The first phase addresses the region proposal process.
Each hypothetical motion region is extracted via this phase for further process-
ing (aimed at verification). In the second phase, we train a deep convolution
neural network to solve the problem of integrated object detection and event
verification.

Region Proposal. Aiming at reducing the time-complexity of event verifica-
tion, we avoid scanning each pixel or generating a large number of hypotheses
with methods like selective search [20] in such large sized frames. As we only
focus on events in the supervised region corresponding to moving targets in the
video, the proposed method in this paper relies on GMM for the region proposal.
The region proposal process is illustrated in Fig. 2.

Fig. 2. Left to right: Illustration of the process of region proposal formation using
GMM.

A detected (i.e. proposed) region is resized into 227×227×3 for further deep
feature extraction and classification.

Network Layer Overview. In this paper, we use a convolutional layer, a max
pooling layer, rectified linear units (ReLUs), and fully connected (FC) layers to
construct our traffic event verification network.
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Input data pass through all the organised layers to generate the final verifi-
cation outputs. In the convolution layers, a group of kernels is used to filter the
input such as to produce feature maps for deeper feature extraction. The func-
tion of the pooling layer is to calculate the overall response of a neighbour area
in a feature map, which is one of the outputs of the convolution layer. Being
aware of the problem of over-fitting, dropout layers are proposed for training
optimisation. Finally, by using the softmax optimisation method, a multi-class
identification result is given with an FC layer.

Network Architecture. We use a pre-trained model from the ImageNet
Dataset [12]. During the training stage, over a million URLs of images have
been used to obtain parameters for this network, and the whole architecture
used in this paper is as shown in Fig. 3. At the end of this pre-trained network,
the layers are designed to classify 1,000 objects.

conv2
256@27x27

pool1
96@27x27

conv1 
96@55x55

pool2
256@13x13

FC1
4096@1x1

FC2
4096@1x1

Output
k@1x1

conv3
384@13x13

conv4
384@13x13

conv5
258@13x13

conv6
258@6x6

Input video
f@MxN

Input region
3@227x227

Region proposal Deep feature extraction Classification

Fig. 3. Framework of the proposed micro-event verification using a deep CNN.

The detailed architecture of the deep neural network, adopted in this paper,
consists of five convolution layers, seven ReLU layers, three max-pooling layers,
and three FC layers. We generally divided this network into three main parts.
First, the proposed region of interest is resized into 227×227×3. In deep feature
extraction, there are five main layers.The first convolutional layer has 96 kernels
(all of size 11 × 11 × 3).

After the convolution process with stride [4,4] and padding [0,0] and ReLU
activity, we perform a normalisation with 5 channels per element. Then, a 3 × 3
max-pooling is used with stride [2,2] and padding [0,0]. Similarly, the second
main layer of Part 2 consists of one convolutional layer sized 256@5 × 5 × 48
with stride [1,1] and padding [0,0], ReLu activity, cross channel normalisation,
and the same max-pooling as before. The third, fourth and fifth main layers
all encompass one convolution layer (384@3 × 3 × 256, 384@3 × 3 × 192, or
384@3 × 3 × 192, respectively), and one ReLU activity layer.

After an additional max-pooling layer with stride [2,2] and padding [0,0], we
extract a deep feature sized 1× 4, 096. There are three FC layers and two ReLU
layers in the third part for multi-class classification.
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Learning Details. Even though there is a big difference between the image
in the ImageNet dataset for pre-training and the actually re-organised event
representation in the augmented foreground motion space, it is still available to
use the pre-trained network for further transfer learning. The reasons are:

The re-organised event representation in the augmented foreground motion space
has three dimensions for each pixel. This is the same for the original colour
image in the ImageNet dataset.

According to the examples of the event representation in the augmented fore-
ground motion space, the skeleton of objects has been contained in the orig-
inal image space. Information in this space can be easily learned from the
pre-trained network.

Information in two other spaces (i.e. complementary foreground region and com-
plementary relative scale space) also conclude relative edge and texture fea-
tures for the original image. As a result, we can use a fine-tuning technology to
abstract from the representation in these two augmented foreground motion
spaces, respectively.

With such a deep convolutional neural network architecture, we use transfer
learning technology to rebuild our own (event detection and verification) deep
classifier for traffic scenes based on supervised learning. In this paper, we keep the
architecture with the learned weights except for the last five layers. As we choose
several events as our target, we segment the deep convolution neural network
into two stages. The first 16 layers are taken for deep feature extraction, and the
last 7 layers in our simulation are for classification.

Fig. 4. Samples with some micro events in the augmented foreground motion space.

Totally, 3,622 event samples (see Fig. 4) are extracted and labeled manually
from a video for further training for some special events such as vehicle horizontal
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traversal, motorcycle horizontal traversal, a motorcycle or pedestrian vertical
traversal. The final seven layers are reorganized for event verification. First, we
use an FC layer with 64 nodes, followed by an ReLU layer. Third, another FC
layer with four nodes is given. The softmax optimisation process provides the
final classification output.

Specifically, at the training stage, the batch size is set to be equal 128 in this
paper, and the learning rate is set to be equal 0.0001 to fine-tune the network.
There are 20 cycles being run at this training stage, each epoch means one
complete pass through the training data. This training process costs 2,410.27 s
with the assistance of a GPU in the used computer.

5 Experiments

The experimental report is divided into three segments. Detailed information
of the dataset is given at the beginning. Then, we compare the performance of
event localisation for different methods. Finally, we present the performance of
event verification for extensive data recorded at a real traffic intersection using
the proposed method.

Datasets. To evaluate the proposed method, we collect a dataset from down-
town road intersections with a camera located about 8 meters over the road
surface. Our videos record top or rear views of vehicles moving below the cam-
era level. It is also possible to observe in the recorded data vehicles, motorcycles,
and pedestrians on the other side of the intersection. We use four videos to evalu-
ate the proposed method of moving object detection and behaviour verification.
The videos were recorded at a frequency of 25 frames per second.

For event localisation, event descriptions of three time intervals of traffic
videos are listed in Table 1. Each dataset contains 500 frames. The resolution
of each frame is 2, 592 × 2, 048. We use each 10 adjacent frames to construct
an event validation unit. The initial 5 frames are used for foreground region
extraction and region proposals. Then, the last 5 frames are used for integrated
object detection and behaviour verification.

Table 1. Validation datasets for traffic target detection and tracking, and event
supervision.

Resolution Frames Frames showing
Event 1

Frames showing
Event 2

Frames showing
Event 3

Dataset 1 2, 592 × 2, 048 500 48 44 35

Dataset 2 2, 592 × 2, 048 500 107 129 27

Dataset 3 2, 592 × 2, 048 500 68 50 -

Event Localisation. Normally, robust object detection and tracking are nec-
essary for event localisation. In this paper, we compare the proposed integrated
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method and the traditional object detection method in a traffic scene at the
intersection. In order to identify vehicle movements showing Event 1, we extract
two hundred frames from the datasets and locate moving vehicles with the active
basis model of [10], the deformable part model of [4], and our proposed method.

The active basis model performs well for rear-view vehicles, but it is difficult
to train it for accurate vehicle event localisation in case of other viewing-angles.
The deformable part based model is very accurate for detecting objects with a
rigid structure, but it costs too much time to tackle one frame for one kind of
targets even when using a cascade speed-up technology. Besides, we even need to
cope with whole frames several times to extract different objects. The method
proposed by us shows comparable results but proves to be much more time-
efficient for extract multiple moving objects of interest. A further validation of
verification accuracy is given in the next section.

Event Recognition. In this paper, we consider three types of significant events
at a traffic intersection as examples, briefly identified as (i) vehicle horizontal
traversal (i.e. left-to-right or right-to-left), (ii) motorcycle or bicycle horizontal
traversal, or (iii) a motorcycle, bicycle, or pedestrian vertical traversal (i.e. top-
down or bottom-up). We call those (i) Event 1, (ii) Event 2, and (iii) Event 3.
Note that they may occur concurrently. They have been manually labeled, frame
by frame, for having ground truth available. The total number of frames, showing
each event, is given in Table 1.

Based on automatic detection and behaviour verification results, the perfor-
mance of the proposed method is verified by using measures Recall, Precision,
and a false-positive rate CFR, defined as follows:

Recall =
detected events 1, 2, or 3

total number of events 1, 2, or 3

Precision =
detected events 1, 2, or 3

detected events 1, 2, or 3 + false positives (per event)

CFR =
false positives (per frame)
total number of frames

Table 2. Comparisons of event localisation (object detection), computational costs,
and available detection classes.

Detection rate Processing speed Categories for
verification

Active basis
model

54% 0.51 fps Vehicle

Deformable part
model

94% 0.03 fps Vehicle

Proposed method 91% 2.00 fps Vehicle, motorcycle,
and pedestrian
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By using the proposed event verification framework, each moving object of inter-
est showing a specific behaviour is detected, frame by frame. The performance
is given in Table 2, and also illustrated in Fig. 5.

The entire algorithm is implemented in Matlab 2016a and CUDA in OS
Windows 10 with 12 GB RAM and a GTX960M GPU processor. Processing is
on average at 4.3 fps (Table 3).

Fig. 5. Event verification at a road intersection. Three events are detected, recognized
and labelled by a red rectangle (Event 1), a yellow rectangle (Event 2), and a green
rectangle (Event 3). An object is detected when it moves; this generates an event to
be classified; static objects are not labelled. (Color figure online)

Table 3. Performance of event verification in complex traffic scenes.

Verification performance

of Event 1

Verification performance

of Event 2

Verification performance

of Event 3

Comprehensive

false alarm

Recall Precise Recall Precise Recall Precise CFR

Dataset 1 91.6% 99.3% 95.5% 98.3% 82.9% 100.0% 1.8%

(44/48) (408/411) (42/44) (356/362) (29/35) (243/243) (9/500)

Dataset 2 92.5% 99.9% 89.1% 99.7% 88.9% 84.8% 9.6%

(99/107) (1033/1034) (115/129) (1060/1063) (24/27) (228/272) (48/500)

Dataset 3 88.2% 93.2% 80.00% 98.7% - - 10.8%

(60/68) (616/661) (40/50) (710/719) - - (54/500)

6 Conclusions

This paper presents a novel integrated object-oriented event verification frame-
work using a deep convolutional neural network. A new feature representation
space is proposed to compress multi-frame and multi-object motion information
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into one colour image, which proved to be very helpful for integrated detection,
tracking and behaviour understanding.

Considering the limited number of training samples from road-intersection
traffic scenes, we initialised the neural network with a pre-trained ImageNet
network. The experiments show that the proposed method outperforms previous
work on multi-class object event localisation either in accuracy or in run-time.
The accuracy of event classification has been improved as demonstrated for real
data.
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Provincial Key Laboratory of Automotive Electronics and Technology, Institute of
Automation, Shandong Academy of Sciences.
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