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Abstract. Lane detection is already a basic component in modern vehi-
cle control systems, with satisfying accuracy on labeled roads. There are
still occasional problems of low accuracy and robustness in cases of chal-
lenging lighting, shadows, or in cases that road marking is missing. The
paper proposes a new algorithm combining a model of road structure
with an extended Kalman filter. Lane borders are detected by an adap-
tive edge detection operator based on scan lines. A new parameter space
is defined to adjust the algorithm to the current lane model. All can-
didate lanes are extracted by voting of edge points. Road boundaries
are obtained by considering various constraints. A new driveway model
is specified according to roadway geometry and vehicle dynamics. The
estimation of parameters is expanded for also covering driveway informa-
tion. Coordinates of lane border points are tracked and estimated using
an extended Kalman filter. Special attention is paid to enhancing stabil-
ity and robustness of the algorithm. Results indicate that the proposed
algorithm is robust under various lighting conditions and road scenarios;
it is also of low computational complexity.

1 Introduction

Advanced driver assistance systems are gradually being incorporated into vehi-
cles. Such a system can either alert the driver in dangerous situations, or take on
an active part in the driving process. The systems are expected to become more
and more complex towards full autonomy during the next decade. The percep-
tion problems are the main bottleneck in the development of such systems.
One of the perception problems is road and lane detection, tracking, and
analysis, and another one is obstacle detection [1-3]. We consider the first one in
this paper. The main perceptual cues for human driving include road color and
texture, road boundaries, and lane markings. Autonomous vehicles are expected
to share the road with human drivers, at least for some time, and will therefore
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most likely continue to rely on the same perceptual cues that human drivers
do. It is unrealistic to expect the huge investments required to construct and
maintain special infrastructure for autonomous vehicles only. Road and lane
perception via traditional cues remains the most likely scenario for autonomous
driving; see, for example, [1,3,4].

The road and lane detection task can be broken down into five functional
modules. They are image pre-processing, feature extraction, road/lane model
fitting, temporal integration, and image-to-world correspondence; see [1,5,6].
Yu and Jain [7] proposed in 1997 a method based on multi-resolution Hough
transform to detect lane boundaries. The geometric information of the lane was
used to limit the parameter range of the Hough transform. Hough-transform
based methods are still in use today for well-marked highway driving. Lee [§]
proposed a lane departure warning system to estimate the subsequent direction
of a lane through an edge distribution function (EDF) and direction changes of
vehicle movement. The EDF failed on roads with curved and dashed lanes. Kang
and Jung [9] estimated the initial position of a road boundary based on edge
direction and amplitude of the lane based on assuming a flat road surface.

The analysis of connected components and an energy density function in
dynamic programming are used to obtain the best location of a lane. Wang et al.
[10] provided an initial position for a B-snake model in 2004. The lane detection
problem can be changed into the problem of control points to determine a spline
curve following a road model. In 2010, Zhou and Jiang[11] estimated the param-
eters from the main direction and the edge direction, and the best lane model
was selected by a Gabor filter. In 2012, Mechat [12] detected a lane using a sup-
port vector machine (SVM) based method; the model of the lane was defined by
a Catmull-Rom curve, and the standard Kalman filter was adopted to estimate
and track the parameters of control points. Kortli et al. [13] established a region
of interest (ROI) in road images, used a Gauss filter for data pre-processing, and
then applied the Canny edge detector to enhance lane boundaries; a method was
proposed to extract lane boundaries based on color information and image seg-
mentation by using a histogram threshold, Hough transform; the current vehicle
position was obtained. Shin et al. [14] extended a particle-filter-based approach
for lane detection, also addressing challenging road situations. Lee et al. [15]
proposed a real-time lane detection and tracking algorithm using filters (e.g. a
Kalman filter) for an embedded lane departure warning system (LDWS). Lane
detection modules provide currently already stable results in general, but their
performance under special (i.e. challenging) conditions is still a research topic;
those conditions might be defined by strong sunlight, hard to identify lanes (e.g.
missing lane marks, confusing marks on the road, or cars parked along a road),
shadows caused by trees or other objects, sidewalks, zebra crossings, or text
logos on the road.

In view of this, we propose a lane detection algorithm by combining a road
structure model with an extended Kalman filter. Considering the characteristics
of the lane and according to the roadway geometry and vehicle dynamics, a
new lane model is proposed which enhances the stability and anti-jamming of
the lane-detection system. The parameter space is defined to accommodate the



384 J. Xiao et al.

algorithm for the lane model. Due to algorithmic developments in the area of
Hough transform [16], there is good progress to improve the processing speed.
The extended Kalman filter is used to estimate and track the lane, which is
the major factor for improved accuracy in the proposed lane detection. The
effectiveness and robustness of the algorithm are demonstrated in this paper.

The paper is structured as follows. Section 2 reports about the used lane (or
road) and vehicle model. Section 3 describes our combination of road model and
of an extended Kalman filter. Section 4 informs about our experiments and the
performed evaluation. Section 5 concludes.

2 Processing in the Basic Layer

In this paper, estimated parameters for lane detection are related to lane shape
and the pose of the ego-vehicle (i.e. the vehicle where the lane-detector operates
in). These parameters involve lane width, lane curvature, and the motion of the
ego-vehicle (described, e.g., by the pitch angle or horizontal angle).

2.1 Algorithm Outline

Figure 1 shows the flowchart of our lane detection algorithm. Parameter estima-
tion is divided into two parts. The first part is the pose (i.e. position and viewing
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Fig. 1. Schematic diagram of lane detection algorithm
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direction) of the camera and the road environment information obtained from
the in-vehicle camera. The second part estimates the parameters of the road
using the road lane information. The flowchart of our algorithm, presented in
this paper, begins with reading a frame of the recorded video sequence. The adap-
tive edge detection operator, based on scan line processing, is used to extract the
edge points from the R channel of the image. We select a region of interest in the
algorithm. The image pixel coordinate system is mapped to the road plane coor-
dinate system. Edge points are voted in a customized parameter space to obtain
candidate lines. We collect geometrical characteristics and estimate spatial con-
tinuity of the lane. The information of the lane in the image pixel coordinate
system, and the lane road plane coordinate system is used to exclude non-lane
lines. Inner boundary points and an extended Kalman filter are combined to
estimate and update lane model parameters.

2.2 Detection of Edge Points

Due to the perspective effect of the camera, visible information differs for dif-
ferent ranges in the image of the road plane. We divide the regions of interest
into several areas. A preset area is selected according to the image coordinates
which are converted using the vanishing point coordinates and the real coordi-
nates. The customized edge-detection operator is based on scan-line processing
for reducing the amount of computations. An image row forms a scanning line.
If the number of calculated scan lines is greater than the maximum value, the
scan lines are set under the real world coordinates with the same distance of
each line. These lines are translated into the image pixel coordinate system. A
set of scan lines is shown in Fig. 2, left. By scanning through each pixel in a
selected scan line, the edge strength of each pixel is calculated by the following
equation. E(i) is the edge strength of a pixel in the scanning line, (i) represents

Fig. 2. Left: a set of scan lines. Right: examples of detected edge points; input image
is as shown on the left
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the image value of the i-th pixel, and L; defines the neighborhood of the pixel
at i

-1 L;
E(i)y=— > Ili+k)+> I(i+k) (1)
k=1

k=—L;

Our method is not using the same neighborhood for all the pixels; the pixel
neighborhood parameter L;, also called the scale here, is chosen adaptively for
edge detection; it may change based on the position of the pixel in the image.

We consider the perspective effect of the lane in the road image. The length
that each pixel represents in world coordinates on a scanning line is computed
after coordinate conversion. The width of the lane is used to be divided by the
proportion for each scan line. Then, the pixels can be identified which are needed
to compute the edge strength. Pixels which have a maximum or minimum value
of edge strength are edge points. This customized edge detection operator can
greatly reduce the processing time. Edge detection results are shown in Fig. 2,
right. The figure shows that the operator can detect edge points in all the lanes;
accuracy and efficiency can be called “very good” in general.

2.3 Obtain Candidate Lane from Voting in Parameter Space

After edge points are detected, they need to be aggregated into a candidate lane.
The amount of computations for the traditional Hough transform [17] is large but
can be reduced [16]. Aiming at the lane model, the parameter space is defined
conveniently for our algorithm. The edge points are voting in the parameter
space. A diagram of the customized parameter space is shown in Fig.3. The
parameter space is spanned by two parameters p and g. The lane in the region
of interest is defined by = = p 4+ y(q/d). Parameter p represents the position of
the line on the = axis; parameter ¢ identifies the slope, i.e. the lateral position.
The flowchart of our voting algorithm includes three parts:

qu y ar

P

Fig. 3. Parameter space
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1. The coordinates of edge points are transformed. The edge points obtained
from the edge detection are in the image pixel coordinate system. The edge
points need to be converted to the world coordinate system, in which the
perspective effect is removed.

2. All the edge points in the selected area are traversed by parameter g. The
corresponding p was obtained through the look-up table. The accumulator
increases by 1. ¢ is translated from the tilt angle of the lanes. ¢ is discretized
and the range of value is [—88°,88°]. p is discretized and the range of value
is [-5m, 5m]| in the world coordinate system.

3. Different p,q denote different lines. From the mapping relationship of the
parameter space, the larger the value of the accumulator of p,q, there are
more edge points in the lane which are represented by this parameter. All
possible candidate lines are identified by searching for the maximum value.

The wrong candidate lines are parallel to the right lane boundary in many cases.
After searching for all local maximum value, it needs to check whether any pair of
candidate line is crossed. If a pair of candidate lines is crossed, the line in which
has a smaller value in the parameter space will be discarded. The judgment for
determining cross-line is as follows:

(pa—pB) - (PB —PA+aqB—qa) >0 (2)

The candidate lines can be gotten by the voting algorithm in the parame-
ter space. The geometrical characteristics and spatial continuity of the lane are
still needed to exclude the unwanted points and unwanted lanes. The dual infor-
mation of lane in the image pixel coordinates system and the lane road plane
coordinate system is useful too. The final candidate lanes are shown in Fig. 4
left, which detect the current two lanes accurately.

The lane edge points need to be selected for the lane model after the above
steps. All the points should be selected, but only ten points are selected if the
total number of edge points is greater than ten. The ten points are selected by
same distances. The selected points are shown in Fig. 4 right. The perspective

Fig. 4. Left: candidates of lane boundary lines. Right: selected boundary points
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effect in the road line image should be considered in the selection of boundary
points which can ensure the reasonableness and accuracy of the lane tracking
and estimating in the later.

3 Combining Lane Model and Extended Kalman Filter

Vehicle shaking, light changing and vehicle interference, all can lead to the jitter
of the collected images. One or several frames cannot identify the lane lines due
to the reasons of broken lane, dirty road, shadows, and so on. The filter algorithm
is used to track the lane, which can greatly improve the ability of stability and
anti-jamming for the system [18]. Therefore, the information of road structure
model is combined with extended Kalman filter. The extended Kalman filter
is used to track after the lane lines were detected, which greatly improved the
accuracy of lane identification. The effectiveness and robustness of the algorithm
are ensured too.

3.1 Lane Model

The lane model is built according to the roadway geometry and vehicle dynamics
[19,20]. The road boundary model is defined as follows:

zi(2) = %kWt + e+ 02 + %coﬁtzz + éclﬁtz:g (3)

x5 (%) is the position for the point of lane boundary which has a distance

of z from the vehicle at time ¢. k£ denotes the left or right side of the lane with

k = —1 or k = 1. ¢; is the lateral offset between the center of the vehicle and

the center of the lane. 6; is the yaw angle between driving direction and the

lane. cg+, ¢+ are the curvature and the change rate of curvature. ¢ is the pitch

angle between the optical axis and the plane of the road plane. The estimated
parameters are described as follows:

z(t) = (étaetaétaet7cl,ta30,t7‘:0tth> 4)

The “” on the letters in the formula expresses the change rate of correspond-
ing parameters. Compared with the models [19,20], the model in this paper
increases two new estimated parameters, that is, the change rate of the yaw
angle 0, and the lateral offset ¢;,. The tracking estimation parameters of lane
information increase, the stability, anti-jamming and detection rate of the lane
detection system can be corresponding improved.

3.2 Parameter Estimation

When the candidate lanes have been detected preliminarily, they are tracked
and estimated by Kalman filter. The traditional Kalman filter is useful when the
state equation and measurement equation of system are both linear system. The
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system noise and measurement noise are consistent with the gaussian distribu-
tion. The parameters can be estimated by the principle of minimum mean square
error. But the state equation and measurement equation of the lane model in this
paper are nonlinear. The traditional Kalman filter is not practicable in this sys-
tem. So the nonlinear system should be approximated by a linear problem. The
Taylor series expansion is the most commonly used linearization method, which
ignores the higher order term. So the Kalman filter is replaced by the extended
Kalman filtering (EKF) [21]. The update processing of extended Kalman filter
is shown as following:

The process has a state vector x € R™. It is now governed by the non-linear
stochastic difference equation:

z(t) = flax(t —1),ult —1),w(t —1))
y(t) = h(z(t),v(t))

where the random variables w(-) and v(-) represent the process and measurement
noise with zero-mean. The u(t — 1) is the driving function. The time update
of state vector and the observation vector for extended Kalman filter are as
following:

(5)

Zp(t) = f(2(t —1),u(t —1),0)

p(t) = APt — DA®) T + WHQE — )W (H)T

(6)

where Z,(t) is the priori state estimate at time ¢. #(¢) is the posteriori state
estimate at time t. A(t) and W(t) are the process Jacobians at time t. Where
P,(t) is the priori estimate error covariance. P(t) is the posteriori estimate error
covariance. Q(t) is the process noise covariance. The Kalman gain in the update
of measurement is shown as following;:

K(t) = [P, HM T [HOPOHE T +VOROV(HT] (7)

where H(t) and V(¢) are the measurement Jacobians at time t. R(t) is the
measurement noise covariance. The covariance matrix of posteriori estimation
error in the measurement update is shown as:

P(t) = By(t) — K(1)H(t) Py (1) (8)

The updated estimation of observation vector in the measurement update is
the following expression:

B(t) = p(t) + K (1) [y(t) — h(Zp(1),0)] 9)
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According to the change of traffic variables and vehicle dynamics, the system
matrix can be obtained as follows [19]:

1000 0O 000
At1 0 0 A5Y2 0 0
0010AZ-V3000
00At1 0 000
Alt) = 0000 1 000 (10)
0000 At-V 100
0000 O 010
0000 O 001

where V' is the vehicle’s speed. The observation vector is set as x,.qq. Because
the estimation points which are selected to estimate parameters are image pixels,
the points need to be converted:

Yimg = _f - f TPt
Zroad (11)
Timg = fxroad
Zroad

In keeping with road plane, x;,,4 is image’s ordinate and ¥,y is abscissa. The
Jacobian matrix for the partial derivatives of h respect to x is defined as follows:

i,j] = (i'kao)
[4,5] 6x[j]
(12)
o axirng 8$img 8ximg aximg 8$img 8ximg aximg 8xim,g
~ \ 0z[0] " 0x[1]’ 0z[2] T 0x[3] " Ox[4] * Ox[5] " Ox[6]  0z[7]
So, from (11) there are:
8xiﬂ%g f 8x'road .
= . =0,1,...
02li] ~ zoma Owf] l L 0BT
(13)
arimg - 8ximg 0%road
0x[6]  0Zpoaa 0x[6]
From (3), we obtain that
1 1, 1,
Troad = 5 kWit €t + OtZroad + 5C042r00d T GCLIZroad (14)

Note the definition of (¢) in (4), we have x (t) = (9t, O, €1, €4, C1 8, Coty Pt Wt) ,
so:

O0Troad O%road O0Troad O%road O0Troad O%road ) 0% road
0z|0] * Ox[1] * 0x[2]  0x[3] W Ox[4] W dx[5] W 0x[7]
(15)

1 1 1
= <07 Zroads 07 17 ngoa(h izgoada Yy 2k>
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with
axToad

1
= et + Co,t2road + 7cl,t272‘ou,d (16)

aZroad 2

So, from Egs. (11), (14), and (16) we have that

6ximg o f 8xroad
= 2 * | Zroad * — Troad

8Zroad Zroad azmad
(17)
Fo/1 L, 1 .1
— B z — kW, —
Zgoad QCO,tZroad + 3cl7tzroad 92 t— €t

According to the relationship between angle and ordinate in image, from (11)

it can be gotten that 2,004 = ﬁ Note that z[6] is ¢; in (4), so:
0 roa 0 roa 2. h
Zroad _ Zroad _ f - (18)
(9!1)[6] a¢t (yimg + f : ¢t)
Then
f f . 22 d f * Zroad 8ximg 6Zroad k- f
Hi 1 07 707 ) o ) ) ) 19
(w7l ( f Zroad 6 2 azroad al’[G} 2+ Zroad ( )

The 7th item in the Jacobian matrix H can be obtained by the above formula.
The parameters of lane model can be expressed by the state vector and the
covariance matrix of estimation error. The abscissas of the lane boundary points
in the original input image selected from the above steps, are gotten by the
extended Kalman filter to conduct iterative estimation. If the extracted lane
candidate boundary points include the noise introduced by observation, but not
include wrong identification points, then the unit of standard deviation for noise
is pixel. If the value of the variance for estimation error is o2, then the maximum
change of each parameter is 3o. Assuming that the standard deviation of zjng
is o, the search area of candidate points is (Zimg — 30, Yimg) ~ (Timg + 30, Yimyg)
for the next time. The selection of lane curvature can be narrowed down, too.

4 Experiments and Analysis

The numerous experiments were implemented to verify the validity of the pro-
posed algorithm with the programming development environment VS2005 on the
platform of Intel Core i5-3470 K processor at 3.2 GHz 4 GB cache. The operating
system is Windows XP. The algorithm is based on monocular vision, and the
road images obtained via an industrial camera: Basler pial900-32 gm/gc. The
focal length is 8 mm. The maximum frame rate of image is 32 frames per second.
The size of image is 1,920 x 1,080 in pixels. Images obtained from camera are
transferred to the computer through a Gigabit Ethernet port.

To verify the effectiveness and robustness of the proposed algorithm, the road
video data captured from Erdos in Inner Mongolia is selected to test. These data
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Table 1. Detection efficiency for RANSAC and proposed algorithm

Video | Total number | Number of correctly | Recognition rate
index |of frames detected frames

Proposed | RANSAC |Proposed | RANSAC
algorithm |algorithm |algorithm | algorithm
1 4060 4028 3947 99.21% 97.22%
2 3660 3610 3519 98.63% 96.15%
3 3120 3101 3017 99.39% 96.70%
4 3540 3509 3368 99.12% 95.14%

include a variety of road conditions, such as trees shadow, pedestrian, vehicle
interference, strong light and shadow, curve and so on. Test results of four video
sequences are shown as example. The comparison algorithm is RANSAC algo-
rithm based on template [3]. Table 1 is the statistics result for the lane detection,
which include the total number of the test frames and the recognition rate. From
the data in Table 1, the recognition rate of the proposed algorithm in this paper
is 2% to 4% higher than the RANSAC algorithm. The algorithm has good sta-
bility and high recognition rate up to 99.39%. The proposed algorithm in this
paper has good accuracy and robustness for the structural road environment.
The state equation and measurement equation of the lane model here are non-
linear, which are not suitable for the traditional Kalman filter. So the nonlinear
system should be approximated by a linear problem. The extended Kalman Fil-
ter is used to estimate and track the road lane, which improved the accuracy
of the lane detection. Due to the extended Kalman filter, the detection result
is very stable and the problems of jitter and low fitting precision in traditional
algorithm are missed.

Next, it is necessary to discuss the robustness of the lane detection algorithm
under different road environment. The comparative analysis of lane detection
effect for complex road environment are shown in Figs.5,6,7 and 8. It includes
lane-changing, curve, zebra crossing, strong light and shadow trees, vehicles, etc.

Fig.5. Detection results for RANSAC. Left to right: lane-changing, curve, zebra
crossing
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Fig. 6. Detection results of the proposed method. Left to right: lane-changing, curve,
zebra crossing

Fig. 7. Detection results of RANSAC. Left to right: vehicle, strong light, shadow

In Fig. 5, the RANSAC algorithm has mistaken identification during chang-
ing lanes, while the proposed algorithm solves the problem well in Fig. 6. The
RANSAC algorithm has the problem of instability and inaccuracy fitting in curve
lane, while the proposed algorithm still has high stability and robustness. In the
case of closing to the zebra crossing, the RANSAC algorithm makes a mistake
in detection, but the proposed algorithm has a better result.

In Fig. 7 the length of right lane detected by RANSAC algorithm is greatly
reduced because of the vehicle, while the detection result of the proposed algo-
rithm is still very accurate in Fig.8, although there are lots of mistaken edge
points. With the strong light, the RANSAC algorithm detected the right lane
only, while both lanes are detected by the proposed algorithm. RANSAC algo-
rithm can detect the left lane correctly which has less shadow, but it is unable to
identify right lane with serious shadow. The proposed algorithm can accurately
detect it with high robustness.

Fig. 8. Detection results for the proposed method. Left to right: vehicle, strong light,
shadow
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From the comparison of detection results above in various complex road
conditions, such as lane-changing, curve, the zebra crossing, strong light, shadow
trees and vehicles, etc. The efficient and stability of the proposed algorithm are
higher than the RANSAC algorithm. The proposed algorithm in this paper can
accurately identify the lane for various special road conditions. At the same
time, it can achieve real-time processing speed (20 frames per second), which
has higher recognition rate and reliability compared with RANSAC algorithm.

Of course, the proposed algorithm also has some shortcomings. For exam-
ple, in Fig. 9, when the vehicle changes the lane and there are long interference
lines which are parallel to the lanes at the same time, there will be a mistaken
detection. Further research will be needed later.

Fig. 9. False detection results for the proposed method

5 Conclusions

The paper proposes a new lane detection algorithm based on monocular vision.
The algorithm uses the structure of the lane, roadway geometry, and vehicle
dynamics; those components have not been fully combined before by traditional
methods. A new driveway model is introduced with an increased number of
parameters of driveway information to be evaluated. A customized parameter
space, which is suitable for the proposed algorithm, is established. The tradi-
tional Hough transform is improved in the proposed algorithm for improved
processing speed. The combination of the lane model with an extended Kalman
filter for lane detection guarantees effectively the stability of the algorithm. This
also enhances accuracy for lane fitting. Experiments show that the algorithm
has good recognition rates and robustness in various challenging lane environ-
ments. The algorithm does not yet provide high confidence levels for some of the
challenging lane detection situations. This requires further studies.
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