
Efficient GPU Implementation
of Informed-Filters for Fast Computation

Takuro Oki1(B) and Ryusuke Miyamoto2

1 Department of Computer Science, Graduate School of Science and Technology,
Meiji University, Tokyo, Kanagawa 2148571, Japan

o tkr@cs.meiji.ac.jp
2 Department of Computer Science, School of Science and Technology,

Meiji University, Tokyo, Kanagawa 2148571, Japan
miya@cs.meiji.ac.jp

Abstract. Human detection is an important task for several practi-
cal applications that require high-speed processing with good detection
accuracy. This paper proposes a high-speed implementation of Informed-
Filtersthat shows excellent accuracy in human detection. Our implemen-
tation reduces memory access during feature calculation and realizes effi-
cient computation on an NVIDIA GPU where a thread is allocated to a
detection sub-window. Experimental results using top-view images con-
sidering surveillance from UAVs showed that the processing speed was
about 100 fps for 2560×1352 images on an NVIDIA 980Ti GPU, whereas
it was 5.4 fps on an Intel Xeon 2.30 GHz CPU.

1 Introduction

Vital sensing during exercise on the basis of multi-hop sensor networks is useful
for preventing sudden unwellness and for improving the effectiveness of training
[1]. To realize such sensor networks, a novel routing scheme is indispensable
because conventional schemes that use RSSI or GPS cannot account for the high
density and moving speed of sensor nodes attached to humans doing exercise.
The target applications of these sensor networks are not limited to only one kind
of exercise but include several kinds of exercises as shown in Fig. 3. Therefore,
vital sensor networks should work well for several node densities and moving
speeds.

To enable the effective routing useful for such multi-hop networks, the authors
are trying to realize Image Assisted Routing where the locations of sensor nodes
are determined with visual information obtained from several cameras mounted
on unmanned aerial vehicles (UAVs). An overview of the Image Assisted Rout-
ing is shown in Fig. 4. Remarkable advances in object detection and tracking
enable accurate localization of humans wearing vital sensors; however, real-time
processing of the localization on embedded systems has not been achieved yet.
The huge computation requirements are an especially significant problem in the
implementation of human detection on embedded systems.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Paul et al. (Eds.): PSIVT 2017, LNCS 10749, pp. 302–313, 2018.
https://doi.org/10.1007/978-3-319-75786-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-75786-5_25&domain=pdf


Efficient GPU Implementation of Informed-Filters 303

Several schemes aim to quickly compute object detection [2,3]. The authors
are taking several approaches toward realizing accurate and high-speed object
detection [4–8]. However, the classification accuracy of [2] is insufficient for human
detection, and [3] requires stixel images obtained from a stereo camera that is not
used in generic scene and especially in aerial images that are used in our project.
Moreover, the classification accuracy of [3] is worse than Informed-Filters [9] that
exhibit state-of-the-art classification accuracy in human detection. A novel app-
roach [10,11] for object detection that does not use exhaustive search on the basis
of sliding windows has been developed. [10,11] show good accuracy for multi-class
object detection; however, the accuracy of one-class object detection for human
target is not sufficient. Therefore, the authors are trying to speed-up Informed-
Filters-based human detection by using an NVIDIA GPU.

GPU implementation of Informed-Filtersis more difficult than that of Inter-
gral channel features [12] and Aggregate channel features [13] because feature
computation of Informed-Filtersis more complex than that of intergral channel
features and aggregate channel features, which use simple rectangular features
as shown in Fig. 1; integral images can drastically reduce computation time in
these schemes. In Informed-Filters, ternary features as shown in Fig. 2 are used
to improve classification accuracy considering the complicated shapes of detec-
tion targets but feature computation using ternary features requires data to be
accessed more frequently to generated integral images than intergral channel fea-
tures and aggregate channel features. To solve this problem, a novel and parallel
implementation that reduces the number of data access to pixels for feature com-
putation and parallel implementation by using an NVIDIA GPU is shown. Our
implementation reduces branch divergence and minimizes data transfer between
a CPU and a GPU to achieve high speed processing without deteriorating of
detection accuracy.

Fig. 1. Square features Fig. 2. Ternary features

Fig. 3. Several kinds of motion patterns during exercise



304 T. Oki and R. Miyamoto

Fig. 4. Concept of image assisted routing

2 How to Reduce the Frequency of Data Access
in the Informed-Filters

This section analyzes the processing flow of Informed-Filtersand shows how to
reduce the frequency of data access in feature computation on the basis of an
appropriate division of rectangular features that is much more efficient than
intergral channel features and aggregate channel features.

2.1 The Frequency of Data Access During Feature Computation

In the Informed-Filters, a strong classifier is constructed with many decision
trees from weak classifiers selected by boosting. These decision trees calculate
the score for classification using rectangular features called filters as shown in
Fig. 2. The types and locations of these filters composed of cells are determined
at the training process by boosting. A cell is a unit rectangle and has a label
assigned from {+1,−1, 0}. In the Informed-Filters, a feature F corresponding to
a filter is computed by the following equation:

F =
n∑

i=0

L(celli) · I(celli), (1)

where n, I(celli), and L(celli) mean the number of cells included in the filter,
the sum of pixels included in a celli, and a label assigned to a celli, respectively.

Equation (1) shows that feature computation requires frequent data access
to pixels. A straightforward implementation of this computation needs width×
height× n read operations from pixels when the size of a cell is width× height.



Efficient GPU Implementation of Informed-Filters 305

The number of read operations is still 4 × n even if integral images are used
in feature computation; this is about n times as large as the number of read
operations used in intergral channel features or aggregate channel features.

2.2 Reduction of Read Operations in Feature Calculation by Filter
Division

To reduce the number of read operations for feature calculation in Informed-
Filters, the authors decided to divide a filter into several rectangles whose sizes
are as large as possible: this division minimizes the number of divided regions.
Using this division, the sizes of rectangles are larger than the sizes of cells, and
the number of read operations can be reduced. In the proposed dividing scheme,
first cells included in a filter are merged to a composite rectangle according to
their labels, and then the generated composite rectangle is divided into several
rectangles while minimizing the number of divisions. In the proposed scheme,
this division is performed by [14], whose procedure can be summarized as follows:

Phase 1. Obtain degenerate chords from a composite rectangle and divide
the composite rectangle according to the degenerate chords,
Phase 2. store vertices in a divided region clockwise,
Phase 3. scan the stored vertices and sort all horizontal line segments in
descending order about y−coordinate, and
Phase 4. divide a composite rectangle by the most appropriate pattern
selected from Fig. 6.

These operations are detailed in the rest of this subsection.

Fig. 5. Degen-
erate chords

Fig. 6. Pattern

Phase 1. This operation obtains degenerate chords that minimize the number
of divisions from a composite rectangle. A degenerate chord is a line segment
included in a composite rectangle whose both endpoints are recessed points
having the same x−coordinate or y−coordinate. Figure 5 shows examples of



306 T. Oki and R. Miyamoto

degenerate chords as dashed lines where V1 and V2 are recessed points. If a com-
posite rectangle has any degenerate chords, the composite rectangle is divided
into several rectangles with no degenerate chords. After this division, a minimum
division of the composite rectangle can be obtained by a minimum division of the
rectangles generated by this division. In this operation, appropriate degenerate
chords must be selected because a minimum division of the composite rectangle
is not obtained if the selected degenerate chords are dependent as shown in [14].

A problem in obtaining a maximum independent set of degenerate chords can
be represented by a bipartite graph G(Vd, E) that is composed of line segments
generated from endpoints of overlapping degenerate chords. Vd and E show a set
of degenerate chords and line segments generated from endpoints of overlapping
degenerate chords, respectively. A maximum independent set of vertices V ′

d shows
a maximum set that does not have any common edges among vertices included
in the set. Therefore, the maximum set is equal to a maximum set of dependent
degenerate chords. A maximum independent set of vertices can be computed by
the following equation(Gallai) using a minimum vertex cover MinVcover obtained
from maximum matching M ′ of a bipartite graph G(König)

V ′
d = Vd −MinVcover (2)

Phase 2. In this operation, vertices included in a composite rectangular are
scanned as internal regions and are located at the left side of the edge between
the current and the next vertices. This scan order is represented by the word
“clockwise”.

Phase 3. In this operation, a scanning direction for a line segment is stored.
Sorted horizontal line segments are stored in YList according to y−coordinate,
and vertical line segments are stored in XList whose initial state is empty accord-
ing to x−coordinate.

Phase 4. The following operations are applied to a line segment H obtained from
YList. One pattern is selected from eight patterns shown in Fig. 6 considering
the direction of the line segment H and the number of line segments included in
XList that includes both endpoints of H. After this classification, some operations
corresponding to the selected type are executed as shown in Fig. 6, and division
is applied to a composite rectangle if possible. The above operations are applied
to all horizontal line segments.

3 GPU Implementation of the Informed-Filters

This section explains how to apply parallel processing to Informed-Filtersusing
a GPU, the effect of the soft cascade structure, and the improvement of memory
access for high-speed processing.



Efficient GPU Implementation of Informed-Filters 307

3.1 Parallel Implementation Strategy on a GPU

Both search windows and weak classifiers can be computed in parallel in the
case of detection by exhaustive search on the basis of sliding windows: parallel
processing based on multiple weak classifiers has higher parallelism than multiple
search windows. However, we cannot focus only on parallelism that is expected
to perform well because the frequency of memory access and branch divergence
that is caused when different branch operations are required in a warp are more
important than parallelism itself in an implementation using CUDA [15] with
an NVIDIA GPU.

If multiple weak classifiers of a strong classifier constructed by Informed-
Filtersare computed in parallel, a block that is assigned to a streaming multi-
processor in a GPU handles a sub-window extracted from an input image, and
each thread that is a smaller computational unit included in a block computes
features independently using a weak classifier as shown in Fig. 7. In this case,
branch divergence occurs frequently because a branch direction of a weak clas-
sifier depends on input data and on branch directions being generally different
from each other.

Consequently, the authors use a parallel implementation for search windows
as shown in Fig. 8, where a thread is allocated to the computation of a search
window. In this implementation, the computation amount allocated to a thread
is larger, but there is no branch divergence caused by the computation of a weak
classifier composed of a decision tree. To improve the computation speed, the
efficient scheme for feature calculation proposed in the previous section is used
in addition to the window-based parallel implementation.

Fig. 7. Block per window

3.2 Effect of the Soft Cascade Structure

A strong classifier used in this research has a soft cascade structure as shown in
Fig. 9. This structure enables fast computation without deterioration in detec-
tion accuracy: an input sub-window that does not obviously include a detection



308 T. Oki and R. Miyamoto

Fig. 8. Thread per window

target is rejected at an early stage when the accumulated score given by each
weak classifier becomes lower than a threshold that is determined prior during
the training process. Our implementation may cause branch divergence because
some sub-windows are rejected in early stages, but others should be checked
by the subsequent stages. Here the branch divergence means a rejection of an
input sub-window, and the computation of the thread becomes unnecessary, but
the efficiency of parallel execution becomes lower. However, the effect of early
rejection by the soft cascade structure is powerful for object detection by a slid-
ing window search because the number of sub-windows not including a target
object is much larger than the number of sub-windows including a target object.
Therefore, the soft cascade structure of a strong classifier is used in our imple-
mentation.

Fig. 9. Softcascade structure



Efficient GPU Implementation of Informed-Filters 309

3.3 Memory Access Improvement by the Constant Memory

The implementation described above executes feature computation using the
same weak classifier at different threads that are computed in parallel. This opera-
tion causes many simultaneous requests to data corresponding to a weak classifier
that may decrease the computation speed. To solve this problem, data that retain
weak classifiers are stored to the constant memory, which is specially designed
cache memory: the constant cache enables high-speed simultaneous accesses from
multiple threads. In addition, our implementation is carefully designed to reduce
the memory access by using broadcasting of the constant memory that enables
simultaneous data transfer between memory and threads in half of a warp: the
frequency of data transfer can be reduced to 1

16 in the best case scenario.

3.4 Efficient Data Transfer Between a CPU and a GPU

Data transfer between a host CPU and a GPU requires huge overhead. There-
fore, this kind of operation should be reduced for fast computation. A simple
implementation causes images to be copied several times from a CPU to a GPU
owing to the multiple channel images used in Informed-Filters. To avoid the
increase in data transferred between a CPU and a GPU, only a feature image as
shown in Fig. 10 that is generated from multiple channel images is transferred
per input image in our implementation.

Fig. 10. Multiple channel images

4 Evaluation

This section evaluates the detection accuracy and the processing speed of the
proposed implementation.

4.1 Experimental Conditions

In the evaluation, images as shown in Fig. 11 whose resolution were 2560× 1352
were used. In the test images, several humans are located on the field and move
appropriately. These images are created using sophisticated three dimensional
computer graphics with human models and a field model to generate arbitrary
views, where the human positions are determined by actual data obtained from



310 T. Oki and R. Miyamoto

an actual sports scene. Top view images were used because occlusions by other
targets can be easily reduced in our project.

To construct a strong classifier, 200 weak classifiers composed of a decision
tree whose depth were one was selected using 884 types of filters by Informed-
Filters.

The specifications of the computer used to measure the processing speed is
shown in Table 1.

Table 1. Computer specifications.

OS Linux(Ubuntu 16.04)

CPU Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30 GHz

Memory 128 GB, DDR4

GPU GeForce GTX 980 Ti

Fig. 11. Test data.

4.2 Detection Accuracy

Figure 12 shows the Detection Error Trade-off (DET) curves plotted using a
miss rate and a false positive per image. These results show that the parallel
implementation on a GPU can detect target humans the same as the sequential
implementation on a CPU.

4.3 Processing Speed

To evaluate the processing speed, the average time consumed for the detection
of an image was measured using 3000 test images. Table 2 shows the average
processing speed by the parallel implementation on a GPU and the CPU imple-
mentation. These results show that the processing speed was about 18.58 times
faster if parallel implementation on a GPU was applied. Then, Figs. 13 and 14
show the actual processing time for each test image. According to these results,
the processing speed is stably faster if input images are changed.



Efficient GPU Implementation of Informed-Filters 311

Fig. 12. DET curves.

Table 2. Processing speed.

GPU Only CPU

Average time 10.46 ms 186.54 ms

Fig. 13. Execution time for 3000
images by a GPU.

Fig. 14. Execution time for 3000
images by a CPU.



312 T. Oki and R. Miyamoto

5 Conclusion

This paper proposed the parallel implementation of Informed-Filterson a GPU
in order to realize real-time and accurate detection of humans in top view images
captured from a camera mounted on a UAV. In our implementation, first compu-
tational costs caused by the huge number of read operations required for feature
computation using filters composed of cells are reduced. To achieve this reduc-
tion, a minimum division for a composite rectangle is applied for filters used
in the feature computation. Using this modification, the frequency of memory
access to pixels was about 50% that of the straightforward implementation. In
the GPU implementation, the authors decide to allocated a thread to a sub-
window to reduce branch divergence during feature calculation; this approach
seemed more suitable than others when the soft cascade structure was applied
with the parallel implementation. In addition to the parallel implementation,
appropriate use of the constant memory and a reduction in data transfer between
a CPU and a GPU were applied in our implementation. Consequently, the pro-
cessing speed of human detection in 2560 × 1532 top view images considering
surveillance from UAVs was about 100 frames per second, whereas sequential
implementation on a CPU processed at only about 5.4 frames per second.

Acknowledgment. The research results have been achieved thanks to “Research and
development of Innovative Network Technologies to Create the Future”, the Commis-
sioned Research of National Institute of Information and Communications Technology
(NICT), JAPAN.

References

1. Hara, S., Yomo, H., Miyamoto, R., Kawamoto, Y., Okuhata, H., Kawabata, T.,
Nakamura, H.: Challenges in real-time vital signs monitoring for persons during
exercises. Int. J. Wirel. Inf. Netw. 24(2), 91–108 (2017)

2. Oro, D., Fernández, C., Rodŕıguez, S.J., Martorell, X., Hernando, J.: Real-time
GPU-based face detection in HD video sequences. In: Proceedings of IEEE Inter-
national Conference on Computer Vision, pp. 530–537 (2011)

3. Benenson, R., Mathias, M., Timofte, R., Van Gool, L.J.: Pedestrian detection at
100 frames per second. In: Proceedings of IEEE Conference on Computer Vision
Pattern Recognition, pp. 2903–2910 (2012)

4. Miyamoto, R., Oki, T.: Soccer player detection with only color features selected
using informed Haar-like features. In: Blanc-Talon, J., Distante, C., Philips, W.,
Popescu, D., Scheunders, P. (eds.) ACIVS 2016. LNCS, vol. 10016, pp. 238–249.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48680-2 22

5. Hiromoto, M., Sugano, H., Miyamoto, R.: Partially parallel architecture for
AdaBoost-based detection with Haar-like features. Proc. IEEE Trans. Circ. Syst.
Video Technol. 19, 41–52 (2009)

6. Hiromoto, M., Miyamoto, R.: Hardware architecture for high-accuracy real-time
pedestrian detection with CoHOG features. In: Proceedings of IEEE International
Conference on Computer Vision Workshops, pp. 894–899 (2009)

https://doi.org/10.1007/978-3-319-48680-2_22


Efficient GPU Implementation of Informed-Filters 313

7. Hiromoto, M., Miyamoto, R.: Cascade classifier using divided CoHOG features for
rapid Pedestrian detection. In: Fritz, M., Schiele, B., Piater, J.H. (eds.) ICVS 2009.
LNCS, vol. 5815, pp. 53–62. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-04667-4 6

8. Yu, J., Miyamoto, R., Onoye, T.: Fast pedestrian detection using a soft-cascade
of the CoHOG-based classier: how to speed-up SVM classiers based on multiple-
instance pruning. IEEE Trans. Image Process. 22, 4752–4761 (2013)

9. Zhang, S., Benenson, R., Schiele, B.: Filtered channel features for Pedestrian detec-
tion. In: Proceedings of IEEE Conference on Computer Vision Pattern Recognition,
pp. 1751–1760 (2015)

10. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: uni-
fied, real-time object detection. In: Proceedings of IEEE Conference on Computer
Vision Pattern Recognition, pp. 779–788 (2016)

11. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of
IEEE Conference on Computer Vision Pattern Recognition, pp. 6517–6525 (2017)

12. Dollár, P., Tu, Z., Perona, P., Belongie, S.J.: Integral channel features. In: Pro-
ceedings of British Machine Vision Conference, pp. 1–11 (2009)

13. Nam, W., Dollár, P., Joon, H.H.: Local decorrelation for improved pedestrian detec-
tion. In: Proceedings of Advances in Neural Information Processing Systems, pp.
424–432 (2014)

14. Ohtsuki, T., Sato, M., Tachibana, M., Torii, S.: Minimum partitioning of rectilinear
regions. IPSJ J. 24, 647–653 (1983)

15. NVIDIA Corporation: nVidia CUDA Programming Guide. http://docs.nvidia.
com/cuda/

https://doi.org/10.1007/978-3-642-04667-4_6
https://doi.org/10.1007/978-3-642-04667-4_6
http://docs.nvidia.com/cuda/
http://docs.nvidia.com/cuda/

	Efficient GPU Implementation of Informed-Filters for Fast Computation
	1 Introduction
	2 How to Reduce the Frequency of Data Access in the Informed-Filters
	2.1 The Frequency of Data Access During Feature Computation
	2.2 Reduction of Read Operations in Feature Calculation by Filter Division

	3 GPU Implementation of the Informed-Filters
	3.1 Parallel Implementation Strategy on a GPU
	3.2 Effect of the Soft Cascade Structure
	3.3 Memory Access Improvement by the Constant Memory
	3.4 Efficient Data Transfer Between a CPU and a GPU

	4 Evaluation
	4.1 Experimental Conditions
	4.2 Detection Accuracy
	4.3 Processing Speed

	5 Conclusion
	References




