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Abstract. The development of automatic tumor detection and segmen-
tation procedures enables the computers to preprocess huge sets of MRI
records and draw the attention of medical staff upon suspected positive
cases. This paper proposes a machine learning solution based on binary
decision trees and random forest technique, trained to provide accurate
segmentation of brain tumors from multispectral MRI volumes. The cur-
rent version of our system was trained and tested using all 220 high-grade
tumor volumes from the MICCAI BRATS 2016 database. Image records
were preprocessed to attenuate the effect of relative intensities in the
MRI data, and to extend the feature set with neighborhood information
of each voxel. The output of the random forest is also validated for each
voxel, according to labels given to neighbor voxels. The achieved accu-
racy is characterized by an overall mean Dice score of 80.1%, sensitivity
83.1%, and specificity 98.6%. The proposed method is likely to detect all
gliomas of 2 cm diameter.
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1 Introduction

Early detection is the key of success in the treatment of tumors, it is utmost
important as it can save human lives. The accurate segmentation, the separation
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of brain tumors from normal brain tissues is also essential, as it can assist
the medical expert in the planning of treatment and intervention. The manual
segmentation of tumors requires plenty of time even for a well-trained expert.
The fully automated segmentation and quantitative analysis of tumors is thus
a highly beneficial service. However, it is also a very challenging one, because
of the high variety of anatomical structures and low contrast of current imaging
techniques which make the difference between normal regions and the tumor
hardly recognizable for the human eye [1].

Magnetic resonance imaging (MRI) is the preferred imaging device in brain
tumor screening, due to its better contrast and relatively fine resolution. How-
ever, it also bears difficulties like the possible presence of intensity inhomogeneity
[2], and the relative intensity values that vary from device to device and from
patient to patient. The MICCAI Brain Tumor Segmentation Challenge, orga-
nized yearly since 2012, intensified the research in this topic and led to several
important solutions, which are usually assisted by the use of prior information,
and employ various image processing and pattern recognition methodologies.
Asman and Landman [3] applied a non-parametric intensity analysis in combina-
tion with a segmentation based on multiple atlases. Ghanavati et al. [4] provided
a solution using the AdaBoost classifier to distinguish tumor voxels from normal
ones using features based on intensity, texture, and symmetry. Hamamci et al. [5]
proposed a cellular automata driven method that produces segmentation based
on level sets. Sachdeva et al. [6] deployed a content based active contour model
relying on intensity and texture features extracted from the histogram and co-
occurrence matrix of the MRI data. Njeh et al. [7] introduced a graph cut based
solution that performs distribution matching, which is highly efficient because
of using rather global than pixel wise information. Zhang et al. [8] proposed a
support vector machine based procedure to follow the evolution of brain tumors
over time. Tustison et al. [9] combined random forests with symmetry based
features to segment brain tumors. Szilágyi et al. [10] provided a semi-supervised
framework for the fuzzy c-means clustering algorithm to produce accurately seg-
mented tumors. Kanas [11] combined a clustering based preprocessing with a
multi-parametric random walker segmentation. Havaei et al. [12] developed an
automatic brain tumor segmentation procedure based on deep neural networks
that exploits both local and global contextual features simultaneously. Pereira
et al. [13] proposed a convolutional neural network solution exploiting small
kernels and successfully applied it for brain tumor segmentation. Menze et al.
[14] combined a Gaussian mixture model with the expectation maximization
(EM) algorithm to achieve an accurate segmentation. Another Gaussian mix-
ture based accurate solution was given by Juan-Albarraćın et al. [15]. Islam et
al. [16] employed multifractional Brownian motion features to provide patient-
independent characterization of tumor tissues and applied the AdaBoost algo-
rithm for tissue segmentation. Shin et al. [17] proposed deep convolutional neural
networks and successfully combined it with transfer learning. Huang et al. [18]
provided a brain tumor segmentation framework employing local independent
projection-based classification. For further information on current brain tumor
segmentation techniques, there are available recent reviews [1,19].
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In a previous paper [20] we have presented a preliminary study on the use
of binary decision trees (BDT) in brain tumor detection and segmentation. We
selected 13 multispectral MRI volumes from the MICCAI BRATS 2013 data
set, performed the training of individual BDTs and ensembles with information
taken from a subset of the volumes, and tested using the complementary subset
of volumes. As a further development of our previous algorithm, in this paper
we propose a random forest solution trained and tested using the whole high-
grade tumor data set of MICCAI BRATS 2016 that includes 220 volumes. Our
main goal in this paper is to accurately separate the whole tumor from the
normal tissues in each volume. Separating further parts of the tumor based on
the ground truth offered by MICCAI BRATS human experts, remains out of the
scope of this study.

The rest of this paper is structured as follows: Sect. 2 gives details on the pro-
posed methodology. Section 3 exhibits and discusses the achieved results. Finally,
Sect. 4 concludes the investigation.

2 Materials and Methods

Our main goal was to establish a machine learning algorithm that accurately seg-
ments tumors in MRI volumes. This paper presents preliminary results obtained
using the random forest technique, combined with a neighborhood-based post-
processing. The algorithm is trained to separate the whole tumor from negative
tissues. A block diagram of the proposed segmentation procedure is given in
Fig. 1.

2.1 BRATS Data Sets

Brain tumor image data used in this work were obtained from the MICCAI
2016 Challenge on Multimodal Brain Tumor Segmentation [21]. The challenge
database contains fully anonymized images originating from four institutions.
The image database consists of multi-contrast MR scans of 280 glioma patient,
out of which 220 have been acquired from high-grade and 60 from low-grade
glioma patients. For each patient, multimodal (T1, T2, FLAIR, and post-
Gadolinium T1) MR images are available. All volumes were linearly co-registered
to the T1 contrast image, skull stripped, and interpolated to 1 mm isotropic res-
olution. Each record contains approximately 1.5 millions of true tissue voxels.
All voxels are provided with annotation produced by human expert. Beside the
four observed features of each voxel, there is a strong need to extend the feature
vectors with further, computed features.

2.2 Histogram Normalization

Because of the nature of MRI sensors, intensity values in MRI records are rela-
tive, so we need to map the histogram of each volume onto a uniform scale. In
this order, all intensity values underwent a linear transformation x → αx + β,
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Fig. 1. Block diagram of the proposed method.

where parameters α and β were established separately for each volume and each
feature, such a way that the 25-percentile and 75-percentile value became 600
and 800, respectively. Further on, a minimum and a maximum intensity barrier
was set up at 200 and 1200, respectively.

2.3 Computed Features

Twelve computed features were added to the feature vector describing each voxel.
For each of the four observed intensities (T1, T2, T1C, FLAIR), the minimum,
the maximum, and the average value was extracted from the valid neighbors
within the 26-neighborhood of the voxel. Neighbors were considered valid if they
had nonzero observed intensity in the given channel. The 26-neighborhood of
a voxel situated at coordinates (x0, y0, z0) consists of all voxels whose (x, y, z)
coordinated satisfy |x − x0| ≤ 1, |y − y0| ≤ 1, and |z − z0| ≤ 1.

2.4 Missing Data

Some voxels had zero valued observed features interpreted as a missing value.
Voxels with more than one such value were excluded from further processing.
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Those with a single zero value received an interpolated value from the neighbor-
hood of the voxel. These voxels were not included in the main data processing.

2.5 Binary Decision Trees

Binary decision trees (BDT) can describe any hierarchy of crisp (non-fuzzy)
two-way decisions [22]. Given an input data set of vectors X = {x 1,x 2, . . . ,xn},
where x i = [xi,1, xi,2, . . . , xi,m]T , a BDT can be employed to learn the classifica-
tion that corresponds to any set of labels Λ = {λ1, λ2, . . . , λn}. The classification
learned by the BDT can be perfect if there are no identical training vectors with
different labels, that is, x i = x j implies λi = λj , ∀i, j ∈ {1, 2, . . . , n}. The BDT
is built during the learning process. Initially the tree consists of a single node,
the root, which has to make a decision regarding all n input vectors. If not all
n vectors have the same label, which is likely to be so, then the set of data is
not homogeneous, there is a need for a separation. The decision will compare
a single chosen feature, the one with index k (1 ≤ k ≤ m), of the input vec-
tors with a certain threshold α, and the comparison will separate the vectors
into two subgroups: those with xi,k < α (i = 1 . . . n), and those with xi,k ≥ α
(i = 1 . . . n). The root will then have two child nodes, each corresponding to one
of the possible outcomes of the above decision. The left child will further classify
those n1 input vectors, which satisfied the former condition, while the right child
those n2 ones that satisfied the latter condition. Obviously, we have n1+n2 = n.
For both child nodes, the procedure is the same as it was for the root. When
at a certain point of the learning algorithm, all vectors being classified by a
node have the same label λp, then the node is declared a leaf node, which is
attributed to the class with index p. Another case when a node is declared leaf
node is when all vectors to be separated by the node are identical, so there is
no possible condition to separate the vectors. In this case, the label of the node
is decided by the majority of labels, or if there is no majority, a label should
be chosen from the present ones. In our application, this kind of rare leaves are
labeled as tumor.

The separation of a finite set of data vectors always terminates in a finite
number of steps. The maximum depth of the tree highly depends on the way
of establishing the separation condition in each node. Our application uses an
entropy based criterion to choose the separation condition. Whenever a node has
to establish its separation criterion for a subset of vectors X ⊆ X containing n
items with 1 < n ≤ n, the following algorithm is performed:

1. Find all those features which have at least 2 different values in X.
2. Find all different values for each feature and sort them in increasing order.
3. Set a threshold candidate at the middle of the distance between each consec-

utive pair of values for each feature.
4. Choose that feature and that threshold, for which the entropy-based criterion

E = n1 log
n1

n
+ n2 log

n2

n
(1)
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gives the minimum value, where n1 (n2) will be the cardinality of the subset
of vectors X1 (X2), for which the value of the tested feature is less than
(greater or equal than) the tested threshold value.

After having the BDT trained, it can be applied for the classification of test
data vectors. Any test vector is first fed to the root node, which according to
the stored condition and the feature values of the vector, decides towards which
child node to forward the vector. This strategy is followed then by the chosen
child node, and the vector will be forwarded to a further child. The classification
of a vector terminates at the moment when it is forwarded to a leaf node of the
tree. The test vector will be attributed to the class indicated by the labeling of
the reached leaf node.

2.6 The Random Forest

Binary decision trees (BDT) were trained to separate negative voxels from pos-
itive ones. In case of the BRATS high-grade tumor data set, we had a total
number of 276 million negative and 24 million positive voxels. As a first step,
randomly selected 90% of the negative voxels were eliminated and the remaining
10% kept for the training and testing process. Training data sets for various
forests were created via random selection of negative and positive voxels, using
the parameter pN that stood for the ratio of negative pixels in each set. Any such
learning data set contained voxels from volume records with either even or odd
index, so that they can be tested on the complementary part of the records. Each
training set consisted of NS = 106 samples. Another parameter of each forest
consisted in the number of trees nT , which varied between 50 and 500. Each tree
of a forest was trained with NS/nT samples that were randomly selected from
the total number of voxels NS assigned to the forest in question. Those samples
that were not selected for the training of any tree in the forest, approximately
360,000 voxels, acted as out-of-bag (OOB) data and were used for primary test-
ing, as recommended by Breiman in [23]. Testing on OOB data allowed us to
preselect those forests that were likely to produce high accuracy, and discard
those that were prone to more misclassifications. The best performing forests
achieved 95–96% accuracy in labeling the OOB data.

All forests trained with data originating from volumes with even (odd) index
were tested on all volumes indexed with odd (even) number. Forests were created
using a great variety of parameter values (pN and nT ). All 220 high-grade tumor
volumes were fed to all valid forests, according to the rule that any trained forest
was only tested on never seen data. Finally we established the parameter values
that led to best overall accuracy.

2.7 Post-processing

A posterior relabeling scheme was implemented as follows. The input data of the
post-processing step consisted in the labels provided by the random forest to all
voxels in the volume. For each voxel, the number of tumor labeled neighbors
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(νT ) and the number of all neighbors (νAll) were extracted, using a predefined
cubic neighborhood. The final label of a voxel was set to tumor if and only if
νT /νAll > θ. The overall optimal value of the threshold was established during
the test and was found as θ = 0.4.

2.8 Evaluation of Accuracy

We employed the Dice score (DS) as the main indicator of accuracy, defined as
DS = 2×TP

2×TP+FP+FN ∈ [0, 1], where TP, FP, and FN stand for the number of
true positives, false positives, and false negatives, respectively. Fine accuracy is
reflected by DS values close to 1, but in this brain tumor segmentation problem,
DS values around 0.94 are considered ideal [21], due to inter-rater differences
that are present in the ground truth. Further on, the sensitivity (or true positive
rate, TPR), and specificity (or true negative rate), defined as TPR = TP

TP+FN

and TNR = TN
TN+FP , were used as secondary accuracy indicators, where TN

represents the number of true negatives.

3 Results and Discussion

All 220 high-grade tumor volumes from the BRATS 2016 were involved in the
evaluation of the proposed methodology. Volumes with even (odd) index were
tested on random forests trained only with data from odd (even) numbered
volumes. Several random forests were trained, having the ratio of negative voxels
pN within their training data between 70% and 98%. Ratios lower than 70% led
to too many false positives in case of any test volume.

For each of the test volumes, the ideal pN ratio was identified. Which led to
the highest Dice score. The histogram of these pN values, presented in Fig. 2(a),
shows us that the great majority of the volumes are best segmented for pN ratios
above 80%. Figure 2(b) exhibits the overall Dice score obtained for various values
of the pN ratio, and indicates that the highest overall Dice scores are obtained
if 87% ≤ pN ≤ 89%. Choosing various values for the number of trees in each
forest had little impact on accuracy. Best Dice scores were obtained in case of
nT = 125.

The proposed post-processing makes detected positive and negative regions
more compact, it eliminates small isolated homogeneous regions that are either
negative or positive, and thus improves the accuracy in case of a great majority
of the test volumes via reducing the number false positives and false negatives.
Table 1 shows the most important overall accuracy measures. The overall Dice
score rises by 6%, while the median by almost 7%.

Figure 3 exhibits the main accuracy indicators for each individual volume,
before and after post-processing. The indicator values were sorted in increasing
order for better visibility. The final overall mean values for specificity and sen-
sitivity are 98.6% and 83.1%, respectively. There is approximately 10% of the
volumes that were segmented with lower accuracy, characterized by a Dice score
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Fig. 2. Finding the overall best value for the ratio of negative voxels in the training
data pN : (a) histogram of ideal pN values extracted for each of the 220 volumes tumor
volumes; (b) the overall Dice score plotted against pN . This figure reflects the case of
nT = 125 decision trees in the random forest, and the Dice scores obtained without
post-processing.

Table 1. Main overall accuracy parameters

Dice scores Average Median Above 80% Above 85% Above 90%

Without post-processing 73.9% 77.1% 99 of 220 61 of 220 24 of 220

With post-processing 80.1% 84.9% 139 of 220 109 of 220 60 of 220

Volumes
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Fig. 3. Dice score, sensitivity, and specificity values obtained for all 220 high-grade
tumor volumes in case of nT = 125 and pN = 88%, sorted in increasing order. The
result of the random forest is exhibited on the left side, while the graph on the right
side shows the final result after post-processing. The specificity is well above 97% in
case of most volumes, which is very important if we do not want to generate several
false alerts. Sensitivity values are comparable with the Dice scores reported in Table 1:
the overall mean and median sensitivity is approximately 83% and 86%, respectively,
after post-processing.
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overall Dice score.

below 60%, while almost two thirds of the volumes received a Dice score above
the overall mean.

Figure 4 presents the separate effect of each component of the post-
processing, namely validating the positive and negative voxels after classifica-
tion. Both curves plot the achieved overall mean Dice score against threshold θ.
In case of positive voxels, the mean Dice score rises together with θ and has a
maximum somewhere around θ = 0.4, and rapidly drops for higher values of the
threshold. In case of negative voxels, the mean Dice score rapidly rises together
with θ and has a maximum somewhere around θ = 0.35, and slightly drops for
higher values of the threshold. Both curves have wide ranges of the threshold θ
that lead to improved overall Dice score. Our choice was to validate both positive
and negative pixels using the threshold value θ = 0.4.

Figure 5 presents the effect of the proposed post-processing. Figure 5(a) plots
the individual Dice scores for each volume after post-processing vs. before post-
processing, indicating that post-processing had a significant beneficial effect in
a great majority of the cases, and only 6% of the volumes were slightly pushed
toward worse accuracy. Figures 5(b) and (c) plot the individual Dice scores
obtained for each volume vs. the size of the tumor, without post-processing
and with post-processing, respectively. The identified linear trends show that
the strongest effect of post-processing occurs in case of small tumors.

Figure 6 exhibits the segmentation result of 16 consecutive slices from a high-
grade tumor volume. Most tumor pixels were accurately identified in this case,
as we can only see a few false negatives beside the true positives indicated by
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Fig. 5. The effect of post-processing in case of nT = 125 and pN = 88%: (a) Dice
scores after post-processing plotted against Dice scores without post-processing; (b)
Dice scores without post-processing plotted against actual tumor size; (c) Dice scores
after post-processing plotted against actual tumor size. The straight lines in (b) and
(c) indicate the linear trend of Dice scores, extracted with linear regression.

Fig. 6. Sixteen consecutive slices from an identified tumor. Black pixels represent true
positives, red and blue ones stand for false positives and false negatives, respectively.
The Dice score for this volume was 0.936. (Color figure online)

black pixels. This is one of the cases that were segmented with high accuracy. A
worse, but still acceptable case is shown in Fig. 7.

The total runtime of the testing process, performed on a single volume ranges
between 30 and 45 s, when executed on a single core of a PC with i7 processor
running at 3.4 GHz frequency. Most operations can be easily implemented to run
in parallel on all cores, making the processing even more efficient.

The overall mean Dice score above 80% allows us to detect the presence of
the tumor in a great majority of cases. However, the accuracy indicators can be
further improved the following ways:

1. Involving further morphological features into the feature vector, to collect
much more information from the neighborhood of each pixel.



Automatic Brain Tumor Segmentation in Multispectral MRI Volumes 147

Fig. 7. Sixteen consecutive slices from an identified tumor. Black pixels represent true
positives, red and blue ones stand for false positives and false negatives, respectively.
The Dice score for this volume was 0.75 (Color figure online)

2. Including more sophisticated features, for example those obtained via wavelet
transform, or employing fractal features.

3. Employing an effective feature selection scheme.
4. Implementing a more complex post-processing that investigates the contigu-

ous ensembles of detected tumor voxels and discard small ones.

An objective comparison with existing methods enumerated in Sect. 1 is not
an easily accomplishable task, as not all of them used the BRATS data set for
evaluation, and even those which did, they did not evaluate all the 220 available
volumes.

4 Conclusions

This paper we presented an automatic tumor detection and segmentation algo-
rithm employing random forests of binary decision trees, in its preliminary stage
of implementation. The proposed methodology already reliably detects tumors of
2 cm diameter. It is likely to obtain finer segmentation accuracy in the future via
implementing some of the above mentioned further ideas. We will also concen-
trate on differentiating among the parts of the whole tumor (edema, tumor core,
necrosis, active tumor), according to the grand truth provided by the BRATS
data set.
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Mart́ı-Bonmat́ı, L., Garćıa Gómez, J.M.: Automated glioblastoma segmentation
based on a multiparametric structured unsupervised classification. PLoS ONE
10(5), e0125143 (2015)

16. Islam, A., Reza, S.M.S., Iftekharuddin, K.M.: Multifractal texture estimation for
detection and segmentation of brain tumors. IEEE Trans. Biomed. Eng. 60, 3204–
3215 (2013)

17. Shin, H.C., Roth, H.R., Gao, M.C., Lu, L., Xu, Z.Y., Nogues, I., Yao, J.H., Mol-
lura, D., Summers, R.M.: Deep convolutional neural networks for computer-aided
detection: CNN architectures, dataset characteristics and transfer learning. IEEE
Trans. Med. Imag. 35(5), 1285–1298 (2016)

18. Huang, M.Y., Yang, W., Wu, Y., Jiang, J., Chen, W.F., Feng, Q.J.: Brain tumor
segmentation based on local independent projection-based classification. IEEE
Trans. Biomed. Eng. 61(10), 2633–2645 (2014)

https://doi.org/10.1007/978-3-319-26561-2_21


Automatic Brain Tumor Segmentation in Multispectral MRI Volumes 149

19. Iglesias, J.E., Sabuncu, M.R.: Multi-atlas segmentation of biomedical images: a
survey. Med. Imag. Anal. 24(1), 205–219 (2015)
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