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Abstract. This paper presents the application of the randomized neu-
ral network based signature, an innovative and powerful texture analysis
algorithm, to a relevant problem of metallography, which consists of clas-
sifying zones of titanium alloys Ti-6Al-4V into two categories: “alpha
and beta” and “alpha+ beta”. The obtained results are very promis-
ing, with accuracy of 98.84% by using LDA, and accuracy of 98.64%,
precision of 99.11% for “alpha and beta”, and precision of 98.09% for
“alpha + beta” by using SVM. This performance suggests that this tex-
ture analysis method is a valuable tool that can be applied to many other
problems of metallography.
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1 Introduction

Texture analysis has playing a preponderant role in computer vision since the
birth of this research field. Although a texture image does not have a unique
definition, it is an attribute easily perceived by humans. In general words, tex-
tures are images composed of sub-patterns, which can be pixels, regions or visual
attributes (shape, color etc.) [1]. Obviously, such concept does not address a vast
range of natural textures, such as images of smoke, mammography, bark, water
etc., which present a persistent stochastic pattern [2].

Throughout the years, increasingly accurate methods have been proposed for
extracting signatures from texture images. As a consequence, these methods have
also been applied successfully in several domains, providing expert systems for
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many human activities. In the medicine field, for instance, we can cite: the paper
[3] performed a combination of texture measures for meningioma classification,
the papers [4,5] applied several LBP variants to classify a database of images
from the cervix (pap-smear dataset [6]); in the biology field: the paper [7] applied
Gabor wavelets to analyze texture images of leaf surfaces; and in industry area:
the paper [8] proposed to apply a texture extraction method based on LBP
and GLCM to classify tea leaves in order to improve real-time controls of tea
production lines.

This paper aims to apply a recent and powerful texture analysis method
to the analysis of images of titanium alloys, which is a very relevant problem
of metallography. For this purpose, this work is organized as follows: Sect.2
briefly describes what is metallography and the study of titanium alloys; Sect. 3
describes the randomized neural network based signature used for classifying the
titanium alloy images; Sect. 4 shows all the details of the performed experiments;
Sect. 5 presents the obtained results and a discussion on them; and, finally, Sect. 6
establishes some remarks about this work.

2 Metalography and Titanium Alloy

Metallography can be defined as the study of the physical properties of metals
based on the inspection of their constituents. This inspection can be performed
by naked eye, or, more accurately, by using optical or electron microscopes, which
allow us to examine the metal microstructures [9]. In the context of this work, we
focus on the microstructures of an important category of metal called “titanium
alloy Ti-6Al1-4V” which has been used, for instance, in aerospace industry and
medical prostheses. This type of alloy presents two phases, called “alpha” and
“beta”, which are hexagonal and cubic structures, respectively, and determine
the physical properties of the metal.

When titanium alloys Ti-6Al-4V are subjected to Friction Stir Welding
(FSW) [10], which is a solid-state joining technique, the resulting product
presents microstructure zones that can be grouped into two classes. The first

Fig. 1. Samples of titanium alloy Ti-6A1-4V: (a) - class Alpha and Beta; (b) - class
Alpha+ Beta (images provided by the authors of the paper [9]).
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class, called here “alpha and beta”, is composed of noise-like microstruc-
tures, which presents grains of alpha and beta. The second class, called here
“alpha + beta”, is composed of crystal-like microstructures presented in the
deformed weld zones [9]. Because these two categories of microstructures have
different physical properties, classifying them correctly is an important problem
in metallography. Figure 1 shows one example for each class.

3 Texture Analysis Using Randomized Neural Network

3.1 Random Neural Network

A randomized neural network [11-14] is a type of neural network with only two
layers (hidden and output) and a very fast learning algorithm when compared to
the traditional backpropagation approach. Basically, the weights of the hidden
neurons are randomly determined according to a uniform or a Gaussian distribu-
tion, and the weights of the output neurons are calculated using a least-squares
solution. Next, a variant of this neural network, which was used in [15], is briefly
explained.

Let X = [z1,Z2,...,xzn] (each x; has a constant ;0 = —1 to connect it
to the biases of the neurons) be a matrix containing N feature vectors used
for training and D = [dy,d2,...,dxN] be a matrix with their respective label

vectors. First, it is necessary to assign random values (uniform or Gaussian)
to the weights of the hidden layer. These weights can be arranged in a matrix
W, where each line represents the weights of a determined hidden neuron ¢ €
{1,2,...,Q} (the weights wyo of the first column are the biases of each hidden
neuron and @ is the number of hidden neurons).

wip W11 ... Wip
W20 W21 ... W2p

w=\| - . (1)
WwQo W1 --- WQp

The next step is to calculate Z = ¢(WX) (¢ is the activation function, which
can be, for instance, the tangential or hyperbolic function) in order to obtain
the output of the hidden neurons for each feature vector ;. This new matrix
Z = |z1,%2,...,2N], where each z; corresponds to each x;, can be used for
obtaining the weights of the output neurons. For this purpose, a constant —1 is
again added to each vector z; to connect it to the biases of the output neurons.
Next, the weights of the output neurons are arranged in a matrix M, where each
line is the weights of a specific output neuron. Finally, the weights of the output
layer (arranged in a matrix M) can be computed by the following equation

M =DZ"(zz")™!, (2)
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3.2 Randomized Neural Network Based Signature

To use the weights of the output neurons as an image signature, the first step
is to divide the image into windows K x K (K is odd) and consider the central
pixel as a label vector d; and the neighboring pixels as the feature vector x;. For
this purpose, the paper [15] adopted K = {3,5,7}, which determined a circular
neighborhood composed of pixels with distance less than or equal to v/2, /8 and
V13, respectively.

In order to make the method robust to rotation, a specific fixed mask is
multiplied by every rotation of the neighboring pixels, thus resulting in sev-
eral linear combinations (for instance, eight linear combinations for neighbor-
hood \/i) Thus, the linear combination with the minimum value determines the
order of the pixels in the feature vector x;. The paper [15] proposes the masks
[21.07 22.07 23.0’ . 28.0] , [21.07 21.6’ 9222 , 27.6}’ and [21.07 21.47 918 ’27.0] for
the windows 3 x 3,5 x 5 and 7 x 7, respectively.

The next step of the algorithm is to assign values to the matrix W. In every
training phase of a randomized neural network, different random values are
assigned to the weights of the hidden layer, so that the outputs of the neu-
ral network are not necessary the same for the same input vectors. In an image
such effect is undesirable because a texture analysis method must provide the
same signature for the same input image. Thus, the paper [15] used the clas-
sical linear congruent generator (LCG) [16,17] with fixed values of “seed” and
“adjustment parameters” to generate pseudorandom uniform numbers for the
matrix W. Lastly, all the weights of the matrix W and each line of the matrix
X are normalized to zero mean and unit variance.

Taking into account all the presented procedures, the feature vector is
obtained by the equation f = DZT(ZZ7)~1. Based on this feature vector, it is
possible to construct two image signatures. The first is

@(Q)KhKQ,...,Kn = [lea.szw .- afKn] ) (3)

where K is the window size used to divide the image.
The second signature can be expressed as the concatenation of the previous
signature for different numbers of hidden neurons, that is,

leany--me = [@(QI)K17---7K717@(QZ)K17---;K71’ R @(Q77L)K17---;Kn] : (4)

More details on this algorithm can be found in the paper [15].

4 Experiments

Our database was kindly provided by the authors of the paper [9] and consists
of 30 images 1079 x 816 pixel size equally divided into two classes (“alpha and
beta” and “alpha + beta”). To construct a new database for our experiments,
we followed the same procedure of the paper [9], that is, we divided each image
into a grid of 13 x 10 windows 80 x 80 pixel size and discarded the residual
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Fig. 2. Samples 80 x 80 pixel size of titanium alloy Ti-6Al-4V: first line - class Alpha
and Beta; second line - class Alpha+ Beta (images provided by the authors of the

paper [9]).

pixels of the borders. Also, we converted the images into grayscale. Thus, each
class contains 1950 images 80 x 80 pixel size. Figure 2 shows some samples of
both classes.

In the experiments, we used the algorithm proposed by Sa Junior and Backes
[15] with the same parameter values (K = {3,5,7}, W determined by LCG and
Q = {19,39} for the second type of signature, that is, W19 39). We also com-
pared the method with other very important grayscale texture analysis methods,
which are:

— Gabor wavelets: we used the same parameter values adopted in the paper
[18], that is, 6 rotations, 4 scales, and minimum and maximum frequencies
of 0.05 and 0.4, respectively. The paper [18] proposes a mathematical rule to
obtain o, and o, of the Gabor filters according to the parameters above. The
feature vector is constructed using the mean and standard deviation of the
magnitude of the transform coeflicients, thus resulting in a signature with 48
attributes.

— Co-occurrence matrices: this is a classical algorithm that computes the
“co-occurrence” of pairs of pixels at determined orientation and distance [19].
For the experiments, we used the most common distances (d =1 and d = 2)
and orientations (0°, —45°,90° and 135°) and non-symmetric matrices. The
descriptors extracted were energy and entropy, totaling 16 attributes.

— Tourist walk [20,21]: this method considers each image pixel as a city.
A tourist starting at determined city must visit the neighboring cities accord-
ing to a deterministic rule of going to the nearest or farthest city not visited
in the last p time steps. Because of this, the tourist’s path has two elements:
a transient time ¢ (new cities are visited) and a cycle of period p (the tourist
is trapped in a cycle and, therefore, visits the same cities). The next step is
to construct a joint distribution map of transient times p and periods p for a
determined memory . To obtain the feature vector, we adopted the strategy
of concatenation of histograms presented in the paper [20] using m = 4 and
memories ;= {0,1,2,...,5} for the rule of going to the nearest and farthest
city. The resulting signature has 48 attributes.
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— Wavelet descriptors [22,23]: we used the multilevel 2D wavelet and per-
formed three dyadic decompositions using Daubechies 4. Next, we computed
energy and entropy from each vertical, horizontal and diagonal details, total-
ing a feature vector of 18 attributes.

For the classification, we used a linear discriminant analysis (LDA) with a
leave-one-out cross validation strategy [24]. We also performed a comparison
“similar” to that of the paper [9] by using a radial basis SVM as classifier and
the precision as performance measure. For this purpose, we used the LIBSVM
[25], which is a public library for SVM. We adopted as SVM parameters the
default values of C and « of this library (the paper [9] adopted C' = 1 and
~v = 1, which give the best results). The validation strategy adopted was the
holdout (50% of the samples for training and the remainder for testing) with 100
repetitions, according to the paper [9].

Unfortunately, it was not possible to recover the same database used in the
experiment of the paper [9] (the authors used 20 images - 10 images per class
- from an original database with more than 150 images 1079 x 816 pixel size
to construct a database of 2600 images 80 x 80 pixel size). However, we believe
that our imperfect comparison can still confirm the high performance of the
randomized neural network method.

5 Results and Discussion

Table 1 shows the comparison of the randomized neural network based signature
against all the compared texture analysis methods proposed in this paper. The
results clearly confirm the high performance of the randomized neural network
method, since it surpassed the second best method (Gabor wavelets) in 2.28%
of samples correctly classified, that is, 89 more images. When we consider the
remainder methods, the difference of accuracy becomes absolutely evident. For
instance, the tourist walk method, which presents a state-of-the-art approach,
obtained only 86.00% of accuracy, that is, 12.84% (501 images) less than the
randomized neural network based signature.

The only apparent drawback of the randomized neural network based signa-
ture is its high number of features (180) when compared to the other methods.

Table 1. Comparison results of different methods applied to the titanium alloy Ti-
6A1-4V database - LDA classifier with leave-one-out cross validation.

Methods No of descriptors | Accuracy (%)
Randomized neural network signature | 180 98.84
Gabor wavelets 48 96.56
Wavelet descriptors 18 88.90
Tourist walk 48 86.00
Co-occurrence matrices 16 86.26
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It happens because the same parameter values of the paper [15] were adopted in
order to avoid tuning the parameters of the randomized neural network, which
would result in an unfair comparison with the other approaches. However, if we
use the signature W19, which contains only 60 features, the obtained accuracy is
98.00%, that is, a result almost equal to that obtained by the signature ¥ig 39
and equally overcoming all the compared methods.

When we performed the experiment “similar” to that of the paper [9], the
results were: accuracy of 98.64%, precision of 99.11% for “alpha and beta”, and
precision of 98.09% for “alpha + beta”. Our results of precision were superior to
the best values presented in the paper [9], which obtained approximately 84.00%
of precision for “alpha and beta” and almost 95.00% for “alpha -+ beta”. This
performance demonstrates that the randomized neural network based signature
is very suitable for classifying samples of titanium alloy Ti-6A1-4V, and, there-
fore, can be a useful tool for metallography.

6 Conclusion

This paper presented an application of a very discriminative state-of-the-art
texture analysis method to an important problem of metallography. The results
obtained are very promising, surpassing several compared methods as well as the
results of a recent work that addresses the same problem. Thus, the obtained
performance suggests that the randomized neural network based signature can
be a valuable tool for other relevant problems of metallography.
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