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Abstract. The modeling of real-world problems as graphs along with
the problem of non-linear distributions comes up with the idea of apply-
ing kernel functions in feature spaces. Roughly speaking, the idea is to
seek for well-behaved samples in higher dimensional spaces, where the
assumption of linearly separable samples is stronger. In this matter, this
paper proposes a kernel-based Optimum-Path Forest (OPF) classifier by
incorporating kernel functions in both training and classification steps.
The proposed technique was evaluated over a benchmark comprised of
11 datasets, whose results outperformed the well-known Support Vector
Machines and the standard OPF classifier for some situations.
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1 Introduction

The nature of real-world problems has driven their modeling to structured
objects where samples are usually represented by nodes and their relationship
are represented by connections (edges), similarly to a graph [1,2]. Among these
problems, one can mention studies in bioinformatics, social networks, and data
mining in documents, just to name a few, in which it is necessary to identify
structures or elements that share similar properties.

Another very common characteristic present in real-world problems is the
non-linear distribution, which requires complex models to identify the different
existing patterns in the dataset [3]. In this matter, kernels have been proposed
as a tool to overcome this issue by providing a way to map the data into a space
of higher dimension, where the input data may be linearly separable.

Support Vector Machines (SVM) is perhaps the most well-known technique
that makes use of kernels for data embedding into higher dimensional feature
spaces [4]. There are also the kernel-PCA (Principal Component Analysis) [5],
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and the kernel-Fisher discriminant analysis [6], just to mention a few. Although
the mapping can take a feature space to a very high dimension that increases the
computing cost, both training and classification steps can be performed by means
of a dot product, the so-called kernel trick. Such procedure consists in computing
the dot product without the need of mapping the samples to a higher dimensional
space. The combination of the these two worlds, i.e., representations based on
graphs and non-linear distributions, has motivated studies in the application
of kernels in structured data [1,7]. In this research area, it is typical to find
two different approaches, i.e., applications that make use of kernels to identify
similarity among graphs, while others focus on the similarity among the graph
nodes.

One of the first works on kernels among graphs was proposed by Gärtner
et al. [8] and Borgwardt et al. [9] using the random walk, and marginalized
kernels by Tsuda et al. [10], Kashima et al. [11,12] and Mahé et al. [13]. The
basic idea of random-walk graph kernels is to perform a random walk in a pair
of graphs and sum up the number of matching walks [2] on both graphs. The
marginalized kernel is defined as the inner product of the count vectors averaged
over all possible label paths [11]. Regarding kernels in graphs, interesting works
were proposed by Kondor and Lafferty [1] and Smola and Kondor [14]. In [1],
the authors proposed the diffusion kernels, which is a special class of exponential
kernels based on the heat equation.

Graph-based machine learning techniques can be noticed as well. The
Optimum-Path Forest (OPF) framework [15–18] is a graph-based classification
algorithm where samples are represented as graph nodes and each node can
be also weighted by a probability density function that takes into account its
k-nearest neighbors, and the edges are weighted by a distance function. The
partitioning using the OPF algorithm is performed by a competition process,
in which prototypes try to conquer the remaining samples by offering them
paths with optimum cost. The result is a set of trees (forest) rooted at a set of
prototypes, where each tree may represent a single class or cluster. The OPF
algorithm has been applied in a large variety of applications, such as network
security [19], Parkinson’s disease identification [20], clustering [21,22], and bio-
metrics [23,24], just to name a few, and it has showed competitive results against
some state-of-art and well-known machine learning algorithms.

The current OPF algorithm implementation works naturally with non-linear
situations, but it does not map samples from one space to another. In this paper,
we take one step further by modifying the OPF algorithm to work with kernels
on graphs in order to improve its training and classification results, since such
approach has not been applied so far. The performance of the proposed approach
is assessed under three different kernels, and it is compared against the original
OPF algorithm and the well-known SVM in 11 different datasets. The remainder
of this paper is organized as follows. Sections 2 and 3 present the theoretical
background concerning OPF and its kernel-based variant, respectively. Section 4
discusses the methodology and experiments, and Sect. 5 states the conclusions.
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2 Optimum-Path Forest

In this section, we explain the OPF working mechanism considering the first
proposed version [16,17]. Roughly speaking, the OPF classifier models the prob-
lem of pattern recognition as a graph partition in a given feature space. The
nodes are represented by the feature vectors and the edges connect all pairs of
them, defining a full connectedness graph. The partition of the graph is per-
formed through a competition process among some key samples (prototypes),
which offer optima paths to the remaining nodes of the graph. Each prototype
sample defines its own optimum-path tree (OPT), and the collection of all OPTs
defines an optimum-path forest, which gives the name to the classifier.

Let Z = Z1 ∪ Z2 be a dataset labeled with a function λ, in which Z1 and Z2

stand for the training and test sets, respectively, such that Z1 is used to train
a given classifier and Z2 is used to assess its accuracy. Let S ⊆ Z1 be a set
of prototype samples. Essentially, the OPF classifier creates a discrete optimal
partition of the feature space such that any sample s ∈ Z2 can be classified
according to this partition.

The OPF algorithm may be used with any smooth path-cost function which
can group samples with similar properties [25]. Papa et al. [16,17] employed the
path-cost function fmax, which is computed as follows:

fmax(〈s〉) =
{

0 if s ∈ S,
+∞ otherwise

fmax(π · 〈s, t〉) = max{fmax(π), d(s, t)}, (1)

in which d(s, t) denotes the distance between samples s and t, and a path π
is defined as a sequence of adjacent samples. As such, we have that fmax(π)
computes the maximum distance among adjacent samples in π, when π is not a
trivial path.

The OPF algorithm assigns one optimum path P ∗(s) from S to every sample
s ∈ Z1, forming an optimum path forest P (a function with no cycles that
assigns to each s ∈ Z1\S its predecessor P (s) in P ∗(s) or a marker nil when
s ∈ S. Let R(s) ∈ S be the root of P ∗(s) that can be reached from P (s). The
OPF algorithm computes for each s ∈ Z1, the cost C(s) of P ∗(s), the label
L(s) = λ(R(s)), and the predecessor P (s).

2.1 Training

In the training phase, the OPF algorithm aims to find the set S∗, that is the opti-
mum set of prototypes, by minimizing the classification errors for every s ∈ Z1

through the exploitation of the theoretical relation between minimum-spanning
tree (MST) and optimum-path tree (OPT) for fmax [26]. The training essentially
consists in finding S∗ from Z1 and an OPF classifier rooted at S∗.

By computing a MST, we obtain a connected acyclic graph whose nodes are
all samples of Z1 and the arcs are undirected and weighted by the distances
d between adjacent samples. The spanning tree is optimum in the sense that
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the sum of its arc weights is minimum as compared to any other spanning tree
in the complete graph. In the MST, every pair of samples is connected by a
single path which is optimum according to fmax. That is, the minimum-spanning
tree contains one optimum-path tree for any selected root node. The optimum
prototypes are the closest elements of the MST with different labels in Z1 (i.e.,
elements that fall in the frontier of the classes). After finding the prototypes, the
competition process takes place to build the optimum-path forest.

2.2 Classification

For any sample t ∈ Z2, we consider all arcs connecting t with samples s ∈ Z1,
as though t were part of the training graph. Considering all possible paths from
S∗ to t, we find the optimum path P ∗(t) from S∗ and label t with the class
λ(R(t)) of its most strongly connected prototype R(t) ∈ S∗. This path can be
identified incrementally by evaluating the optimum cost C(t) as

C(t) = min{max{C(s), d(s, t)}}, ∀s ∈ Z1. (2)

Let the node s∗ ∈ Z1 be the one that satisfies Eq. 2 (i.e., the predecessor
P (t) in the optimum path P ∗(t)). Given that L(s∗) = λ(R(t)), the classification
simply assigns L(s∗) as the class of t. An error occurs when L(s∗) 	= λ(t).

3 Proposed Approach

The proposed kernel-based OPF, hereinafter called kOPF, works similarly to
SVM algorithm, in which samples are mapped into a feature space of higher
dimension. In the SVM context, such mapping is performed as an attempt to
make the data linearly separable. The OPF, on the other hand, naturally works
with non-linear data. Therefore, the main idea of this work is to evaluate OPF’s
behavior under such assumption of samples’ separability in higher dimensional
spaces.

Let Φ(·, ·) be a kernel function that generates a new dataset X = Φ(Z). Given
a sample p ∈ Z, such that p ∈ 
n, its new representation p̂ ∈ X is defined as
follows.

p̂ = (Φ1, Φ2, . . . , Φ|Z1|), (3)

where Φi = (p, si), si ∈ Z1. Notice that p̂ ∈ 
|Z1|, which means the new sample
p contains as many dimensions as the number of training samples.

In short, Φ(p, si) makes use of a distance function (i.e., Euclidean, Maha-
lanobis, among others) to compute a term that replaces the norm in kernel
functions, such as Radial Basis Function (RBF) and Sigmoid, for instance. The
aforementioned term corresponds to the distance between a sample to be mapped
p and a training sample s. Basically, the mapping performed by kOPF is carried
out by computing a feature vector, where each component has the distance value
from the sample to be mapped (either training or testing sample) to a different
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training sample applied to a kernel function. It is important to highlight that
large training sets may cause a significant increase on the size of the new feature
vector, since the size is dependent on the number of training samples |Z1|.

4 Methodology and Experiments

The kOPF classifier has both its performance and accuracy assessed by means of
11 public benchmarking datasets1 that provide different classification scenarios.
The implementation of our proposed approach is developed over the LibOPF [27],
being standard OPF and SVM used as baselines for the experiments. With
respect to SVM, we used the well-known LibSVM2. Table 1 presents detailed
information from the datasets.

Table 1. Information about the datasets used in the experiments.

Dataset No. samples No. features No. classes

boat (bt) 100 2 3

cone-torus (ct) 400 2 3

data1 (d1) 1,423 2 2

data2 (d2) 283 2 2

data3 (d3) 340 2 5

data4 (d4) 698 2 3

data5 (d5) 1,850 2 2

mpeg7-BAS (m-B) 1,400 180 70

mpeg7-Fourier (m-F) 1,400 126 70

petals (ps) 100 2 4

saturn (sn) 200 2 2

Since the kernel function can influence the final accuracy, we evaluated its
impact by applying three different kernel functions for kOPF as follows:

– Identity: Φ(p, s) = ‖p, s‖
– RBF: Φ(p, s) = e−(γ‖p,s‖2)

– Sigmoid: Φ(p, s) = tanh(γ‖p, s‖ + C)

where ‖p, s‖ denotes the Euclidean distance. Notice the Identity kernel is param-
eterless. The SVM was also evaluated using three different kernel functions:
linear, RBF and Sigmoid. The situations in which parameters C and γ are
required, it is performed their optimization using the intervals C = [−32, 32]
and γ = [0, 32] with steps equals to 2 for both of them.
1 https://github.com/jppbsi/LibOPF.
2 https://www.csie.ntu.edu.tw/∼cjlin/libsvm.

https://github.com/jppbsi/LibOPF
https://www.csie.ntu.edu.tw/~cjlin/libsvm
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The classification experiments were conducted by means of a hold-out pro-
cess using 15 runs, in which both training and testing sets were randomly gen-
erated in each run and always having a number of samples equals to 50% of the
dataset size. The experiments also evaluated the impact in the accuracy rate
when features are normalized. Tables 2 and 3 present the mean accuracy results
considering non-normalized and normalized datasets, respectively. The accuracy
rates were computed using the accuracy measure proposed by Papa et al. [16],
which considers unbalanced data. The best results according to the Wilcoxon
signed-rank test with significance 0.05 are shown in bold.

Table 2. Mean classification rates for non-normalized features.

Dataset OPF kOPF SVM

Identity RBF Sigmoid Linear RBF Sigmoid

bt 98.5 ± 0.0 96.8 ± 3.0 100.0 ± 0.0 99.1 ± 1.2 76.9 ± 1.8 100.0 ± 0.0 76.9 ± 1.8

ct 86.2 ± 0.0 84.3 ± 2.6 84.5 ± 2.7 84.2 ± 2.4 74.9 ± 0.2 86.5 ± 1.1 74.4 ± 0.4

d1 99.5 ± 0.0 99.4 ± 0.2 67.2 ± 8.6 68.5 ± 14.5 94.8 ± 0.8 99.4 ± 0.3 94.0 ± 0.8

d2 99.3 ± 0.0 98.1 ± 1.1 57.0 ± 2.6 62.0 ± 6.1 97.1 ± 0.5 98.2 ± 0.2 81.3 ± 3.6

d3 99.6 ± 0.0 99.7 ± 0.4 64.0 ± 3.6 71.1 ± 5.4 98.4 ± 0.8 99.7 ± 0.4 97.9 ± 0.7

d4 100.0 ± 0.0 100.0 ± 0.0 60.8 ± 2.6 67.8 ± 6.4 100.0 ± 0.0 100.0 ± 0.0 50.9 ± 1.3

d5 100.0 ± 0.0 100.0 ± 0.0 62.5 ± 3.2 67.5 ± 9.3 50.0 ± 0.0 100.0 ± 0.0 50.0 ± 0.0

m-B 89.4 ± 0.0 89.0 ± 0.30 50.1 ± 0.1 50.1 ± 0.1 87.9 ± 0.2 90.5 ± 0.2 50.0 ± 0.0

m-F 73.0 ± 0.0 73.0 ± 0.5 64.4 ± 0.6 66.2 ± 0.5 69.0 ± 0.8 73.0 ± 0.5 68.1 ± 0.5

ps 98.7 ± 0.0 100.0 ± 0.0 99.2 ± 0.6 98.9 ± 1.0 99.6 ± 0.6 100.0 ± 0.0 100.0 ± 0.0

sn 93.0 ± 0.0 90.2 ± 2.0 80.8 ± 2.6 81.8 ± 4.0 42.7 ± 3.7 91.3 ± 1.9 49.0 ± 3.3

Table 3. Mean classification rates for normalized features.

Dataset OPF kOPF SVM

Identity RBF Sigmoid Linear RBF Sigmoid

bt 97.1 ± 0.0 99.7 ± 0.6 99.4 ± 1.2 100.0 ± 0.0 76.9 ± 1.8 99.5 ± 0.7 76.5 ± 1.2

ct 89.3 ± 0.0 86.7 ± 1.7 88.0 ± 1.2 89.9 ± 0.5 75.9 ± 1.6 89.4 ± 0.5 76.1 ± 1.6

d1 99.3 ± 0.0 99.0 ± 0.3 99.0 ± 0.3 99.0 ± 0.3 94.7 ± 0.4 99.3 ± 0.2 94.7 ± 0.4

d2 97.3 ± 0.0 96.9 ± 1.5 97.1 ± 1.2 97.0 ± 1.3 98.8 ± 0.9 98.6 ± 0.6 98.6 ± 0.6

d3 100.0 ± 0.0 98.4 ± 1.4 100.0 ± 0.0 98.7 ± 0.8 99.5 ± 0.4 99.3 ± 0.7 99.5 ± 0.4

d4 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0

d5 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 50.0 ± 0.0 100.0 ± 0.0 50.7 ± 0.9

m-B 88.8 ± 0.0 90.8 ± 0.3 53.2 ± 0.5 56.3 ± 0.4 87.7 ± 0.9 89.9 ± 0.6 87.6 ± 0.9

m-F 62.9 ± 0.0 62.5 ± 0.4 59.2 ± 0.7 61.1 ± 0.8 64.7 ± 0.7 65.4 ± 0.5 64.3 ± 0.9

ps 98.7 ± 0.0 100.0 ± 0.0 99.5 ± 0.6 99.5 ± 1.0 100.0 ± 0.0 99.6 ± 0.6 100.0 ± 0.0

sn 91.0 ± 0.0 91.8 ± 0.2 79.2 ± 4.8 84.6 ± 0.8 52.3 ± 1.7 90.7 ± 4.5 50.7 ± 3.4

In the non-normalized feature scenario, SVM-RBF achieved the best results
(or similar) in 9 out of 11 datasets, followed by the kOPF (kOPF-Identity and
kOPF-RBF) with 7 out of 11 (being kOPF-Identity the best in 6 out of 11).
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The standard OPF obtained the best results in 5 out of 11 datasets. Consid-
ering normalized features, the kOPF (kOPF-Identity, kOPF-RBF and kOPF-
Sigmoid) obtained the best results (or similar) in 8 out of 11 datasets (being
kOPF-Identity the best in 5 out of 11), followed by SVM (SVM-Linear, SVM-
RBF and SVM-Sigmoid) with 7 out of 11 (being SVM-RBF the best in 6 out of
11). The OPF obtained the best results in only 4 out of 11 datasets.

In both (non-normalized and normalized) scenarios, the proposed kOPF out-
performed the traditional OPF in most datasets, and for normalized features
kOPF outperformed the SVM in some datasets as well. The results are quite
interesting, since kOPF was able to improve OPF and outperforming SVM in
some datasets. Considering some other datasets, although kOPF did not out-
perform both OPF and SVM, their results were considerably close.

The experiments also comprised the analysis of computational load required
by each technique in each dataset. The results showed OPF and kOPF require
a considerably small computational load in the training phases when compared
against SVM. The high training time consumption turn the SVM prohibitive in
real-time learning systems, specially if the training set is very dynamic over time.
In this situation, both OPF and kOPF seems to be the most suitable approach.
Due to lack of space, it was not possible to insert the computational load results
of each technique, but OPF-based approaches have been around 200 times faster
than SVM for training in the larger datasets.

5 Conclusions

This paper introduced a kernel-based OPF, which is a modification made over
the standard OPF classifier that allows the usage of different kernel functions for
both learning and classification. In our proposed approach, the mapping makes
use of distance metric whose results are applied to kernel functions, such as RBF
and Sigmoid. The main goal of such modification is to improve the accuracy rate.

The evaluation using 11 benchmark datasets and three different kernels
showed the proposed approach achieved very interesting results, in which the
application of kernel functions improved the accuracy rate of the traditional
OPF, and even outperformed the well-known SVM when features were normal-
ized. In summary, kOPF achieved satisfactory results and is an interesting option
for classification, specially when training sets are very dynamic due to its low
computational load for training purposes.
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