
Noisy Character Recognition Using Deep
Convolutional Neural Networks

Sirlene Peixoto1, Gabriel Gonçalves2, Andrea Bianchi1, Alceu De S. Brito3,
William Robson Schwartz2 , and David Menotti4(B)

1 Federal University of Ouro Preto, Ouro Preto, MG, Brazil
2 Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
3 Pontifical Catholic University of Paraná, Curitiba, MG, Brazil

4 Federal University of Paraná, Curitiba, MG, Brazil
menotti@inf.ufpr.br

Abstract. Due to degradation and low quality in noisy images, such as
natural scene images and CAPTCHAs (Completely Automated Public
Turing test to tell Computers and Humans Apart) based on text, the
character recognition problem continues to be extremely challenging. In
this work, we study two convolutional neural network approaches (filter
learning and architecture optimization) to improve the feature represen-
tations of these images through deep learning. We perform experiments
in the widely used Street View House Numbers (SVHN) dataset and a
new dataset of CAPTCHAs created by us. The approach to learn filter
weights through back-propagation algorithm using data augmentation
technique and the strategy of adding few locally-connected layers to the
Convolutional Neural Network (CNN) has obtained promising results on
the CAPTCHA dataset (97.36% of accuracy for characters and 85.4%
for CAPTCHAs) and results very close to the state-of-the-art regarding
the SVHN dataset (97.45% of accuracy for digits).

Keywords: Deep learning · Convolutional network
Noisy character recognition · CAPTCHAs · Street house view numbers

1 Introduction

Automatically character recognition in noisy images such as natural scene images
and CAPTCHAs based on text is still a difficult task and a recurrently researched
subject. Such images usually have complex background, uneven illumination,
distorted characters, multiple sources and varying sizes, which lead to misrepre-
sentation of the data. In general, the performance of machine learning methods
is highly related to the recognition system ability to extract features to maximize
and minimize intra- and inter-class similarities, respectively.

Over the past few years numerous studies show the effectiveness of deep
learning techniques in various fields of challenging applications. Deep learn-
ing techniques aim to gradually map the representation of raw pixel into more
abstract representations. Besides success in recognizing handwritten text [11],
c© Springer International Publishing AG, part of Springer Nature 2018
M. Mendoza and S. Velast́ın (Eds.): CIARP 2017, LNCS 10657, pp. 499–507, 2018.
https://doi.org/10.1007/978-3-319-75193-1_60

http://orcid.org/0000-0003-1449-8834
http://orcid.org/0000-0003-2430-2030


500 S. Peixoto et al.

deep learning techniques have also been applied in face recognition [9], speech
recognition [13], scene recognition [12] problems, among others.

Aiming at improving the feature representation and therefore the classifi-
cation task, many studies have applied deep learning for character recognition
in noisy images [2,7,10]. In [7], the authors compare and show the supremacy
of two deep learning techniques over two hand-designed descriptors using opti-
mized classifiers in SVHN database. In [10], the authors included a multi-stage
characteristic approach and different pooling methods (Lp pooling) in the archi-
tecture of a traditional convolutional neural network, achieving an accuracy rate
of 95.1% in the SVHN database. More recently, Goodfellow et al. [2] proposed
an approach that integrates the three traditional steps of a recognition system
(location, segmentation and recognition) by using a deep convolutional neural
network, achieving an accuracy of 97.84% in the SVHN dataset.

Despite the importance of the aforementioned contributions, the recognition
of noisy characters is still an open problem. In this paper, following the same
direction than the literature, we apply deep learning to address such a challenging
problem. However, the contribution of this paper is fourfold: (i) evaluation of two
different approaches to learn/generate the filter weights during the convolution
operation of the CNN, named Learning Filters and Architecture Optimization;
(ii) evaluation of locally-connected layer and data augmentation for training
the proposed CNN; (iii) comparison of the proposed deep learning recognition
method with other approaches based on hand-designed descriptors; and (iv) a
new dataset composed of noisy character-based CAPTCHA images, which is
currently available for research purposes upon request.

According to the experiments based on the well-known SVHN dataset and
the proposed CAPTCHA image dataset, we observe that the CNN presents
higher accuracy when compared to the hand-crafted approaches evaluated. These
results also indicate that the application of the two investigated techniques
reduces the error rate in about 2% in the SVHN dataset. We achieved an error
rate in this dataset near to the one obtained in [2] using fewer convolutional
layers (three against nine). In the CAPTCHA dataset, very promising results
were achieved, i.e. 97.36% of accuracy for characters and 85.4% for CAPTCHAs.
Moreover, the approach that learns filter weights through back-propagation algo-
rithm using data augmentation technique and the strategy of adding few locally-
connected layers to the CNN has obtained promising results for the CAPTCHA
dataset.

2 Theoretical Background

A CNN is composed of layers that usually perform a series of four sequential
linear and nonlinear operations [8], such as:

1. Convolution: calculates the intensity of a given pixel according to the weighted
sum of its neighbors pixels.

2. Activation: maps the output of convolution operation aiming to limit the
“neuron” output.



Noisy Character Recognition Using Deep Convolutional Neural Networks 501

3. Spatial Pooling: reduces the resolution of the map features. It reduces the
sensitivity of the output map displacements and other forms of distortion,
selecting invariant features that improve the generalization performance.

4. Normalization: usually creates competition between maps. Aims further
strengthening the robustness of the CNN output feature vector.

Through these operations, CNN maps the input image to a higher-level rep-
resentation that can be viewed as a multi-band image. In other words, the CNN
gradually transforms the raw pixel in representations highlighting abstract con-
cepts. This multi-band representation is later applied to a classification task.

In this work, we discuss two kinds of CNNs available in the literature that
apply different approaches to learn/generate the filter weights of the convolution
operation. While one uses a supervised learning algorithm [3], the other optimizes
the architecture employing random filters with zero mean and unit norm [4,8].
Both approaches are briefly detailed in the next sections.

2.1 Learning Filters (LF)

In the LF approach, the convolution layer indeed performs two required opera-
tions: convolution and activation, and two additional operations: normalization
and pooling. The order of these last two operations is interchangeable. The
learning of the filters of the convolution layers as well as the weights of the other
layers are estimated in a supervised fashion through back-propagation with the
stochastic gradient descent rule to update the filters and their weights.

While the feature representation of this approach is performed by the convo-
lutional layers, the classifier consists of one (or more) fully connected layer with
n output values (in which n is the number of classes), and a multinomial logistic
regression layer. Multinomial logistic regression is a classification method that
generalizes logistic regression to multi-class problems by softmax function. In
particular, we use the CUDA-convnet library implemented in C++/CUDA by
Krizhevsky [3]1 to evaluate the LF approach.

2.2 Architecture Optimization (AO)

Each convolutional layer of a CNN is defined by n hyperparameters such the
number and size of the filters related to the convolution operation, among oth-
ers [8]. Considering c convolutional layers and the possible values of each of the
n × c hyperparameters (the search space), there are a large number of possible
architectures to be evaluated. An effective way to explore such search space is by
employing the AO approach as described in [5], in which some few thousands of
randomly generated architectures are evaluated and the best found convolutional
topology is returned, this process is illustrated in Fig. 1.

To make the AO practical, the filter weights used to evaluate the candidate
architectures are randomly generated from a uniform distribution U(0, 1) and
normalized to zero mean and unit variance [5]. The prediction is performed by
linear support vector machines (SVMs).
1 https://code.google.com/p/cuda-convnet/.

https://code.google.com/p/cuda-convnet/


502 S. Peixoto et al.

Fig. 1. AO: randomly generates thousands of architectures, evaluates the candidate
architectures and returns the best convolutional architecture found.

3 Experimental Results

In this section, we present the experiments undertaken to evaluated the proposed
approaches for noisy character recognition. After describing the used datasets,
we present and analyze the results obtained.

3.1 Datasets

The Street View House Numbers Dataset. This image dataset consists of
73,257 digits for training, 26,032 digits for testing, and 531,131 additional digits
for training. Here, we combine the training and additional sets for training. The
digit images are organized into 10 classes and available in two formats, as follows:
(1) original images with character level bounding boxes; and (2) images centered
around a single character (cropped digits). We use the latter format as illustrated
on the left of Fig. 22.

CAPTCHA Dataset. This dataset consists of 12,000 images of CAPTCHAs
composed of 6 characters. The characters are segmented by fixed position
in the images and they belong to 36 classes (26 upper case letters and
10 digits). It is divided in training and testing sets of 8k/48k and 2k/12k
CAPTCHAs/characters, respectively. Two samples of this database are shown
on the right in Fig. 2. This dataset is currently available for research purposes
upon request.

Fig. 2. Samples of the datasets: one from SVHN and two from CAPTCHAs

2 http://ufldl.stanford.edu/housenumbers/.

http://ufldl.stanford.edu/housenumbers/


Noisy Character Recognition Using Deep Convolutional Neural Networks 503

3.2 Experiments

We now evaluate the effectiveness of the LF and AO approaches described
in Sect. 2 for character recognition. We execute experiments applying these
approaches in the SVHN and CAPTCHA datasets. More specifically, we present
results for the use of locally-connected layers in CNN and the use of data aug-
mentation in the learning process. We also compare the effectiveness of our deep
learning-based approach with others based on hand-designed descriptors.

Architecture Optimization. Due to the memory space required for both fea-
ture representation and the extra space required by the linear SVM for learning
in the AO approach, it was necessary to restrict the size of training set for both
datasets, SVHN and CAPTCHA, to 100 samples per class, such that the best
convolutional architectures, i.e., AO-SVHN and AO-CAPTCHA, respectively,
could be obtained in dozens of processing hours. The hyperparameter values of
the AO-SVHN and AO-CAPTCHA CNNs are detailed in Table 1, in which the
value xi in tuple {x1, x2, . . . , xn} corresponds to the hyperparameter value of
convolutional layer i and the absence of any operation in the i-th convolution
layer is representing by ‘-’. Note that the input image size in both datasets is
always 32 × 32 pixels.

Our first experiment evaluates the impact in the accuracy when varying the
training set size to learn the linear SVM, once the architecture optimization has
been performed using few samples per class due to memory constraints3. These
results are presented in Table 2. It is observed that the error rate decreases in the
SVHN and CAPTCHA datasets as the number of samples per class increases.

Learning Filters. Based on standard publicly convolutional architectures avail-
able in the CUDA-convnet library and on our knowledge domain, we define and
evaluate various architectures based on LF approach. To train our CNNs, we fol-
lowed the methodology of CUDA-convnet library4. Those performing better in
the SVHN (LF-SVHN) and CAPTCHA (LF-CAPTCHA) datasets are detailed

Table 1. Hyperparameter values of the best architectures.

Operation Convolution Pooling Normalization

CNN Filters Size Size Stride Size

AO-SVHN {64, 128} {5, 3} {3, 3} {2, 1} {3,−}
LF-SVHN {64, 128, 192} {3, 3, 3} {3, 3, 3} {2, 2, 2} {9, 9, 9}
AO-CAPTCHA {192, 192} {3, 3} {3, 5} {2, 1} {−,−}
LF-CAPTCHA {32, 64} {5, 5} {3, 3} {2, 2} {9, 9}

3 Our system is a Intel i7 Core, 32 GB RAM with NVIDIA GTX Geforce Titan Black
GPU and the largest training set possible to be evaluated was around 20k samples.

4 https://code.google.com/p/cuda-convnet/wiki/Methodology.

https://code.google.com/p/cuda-convnet/wiki/Methodology


504 S. Peixoto et al.

Table 2. AO results: evaluating the training set size to learn the final linear SVM.

CN # training # testing test error

Per class Total Images Rate (%)

AO-SVHN 100 1,000 26,000 24.28

AO-SVHN 560 5,600 26,000 17.13

AO-SVHN 2,000 20,000 26,000 14.03

AO-CAPTCHA 100 3,600 12,000 17.85

AO-CAPTCHA 560 20,160 12,000 5.45

in Table 1. The obtained test error rates are 4.29% and 3.12% for the SVHN and
CAPTCHA datasets, respectively.

Locally-Connected Layer. Locally-connected layer is similar to a convolu-
tional layer but the former does not share weights as the latter does. That is, a
different set of filter weights is applied to each portion of the input map/image,
which can help to better discriminate that particular region of the character
image, since different regions of a character have different local statistics. As the
CUDA-convnet library supports this type of operation/layer, we investigated the
influence on the effectiveness by inserting one, two, and three locally-connected
layers in a CN, atop the last convolution layer. Table 3 reports the test error rate
(ER) obtained, in which L corresponds to the number of locally-connected layers
added. The smallest error rates were found for L = 2 and L = 1 in the SVHN
and CAPTCHA datasets, respectively. Hereinafter, we call these architectures
LF-LL-SVHN and LF-L-CAPTCHA.

Table 3. Test Error Rates (ER)
related to the number of locally-
connected layers added (L).

CNN L Test ER (%)

LF-SVHN 1 3.95

LF-SVHN 2 3.84

LF-SVHN 3 3.95

LF-CAPTCHA 1 2.73

LF-CAPTCHA 2 2.91

LF-CAPTCHA 3 2.98

Table 4. Data augmentation. Test Error Rate
(ER) for different values of crop borders.

CNN crop border Test ER (%)

LF-LL-SVHN 1 2.75

LF-LL-SVHN 2 2.55

LF-LL-SVHN 4 2.75

LF-L-CAPTCHA 1 2.64

LF-L-CAPTCHA 2 2.91

LF-L-CAPTCHA 4 4.01

Data Augmentation. The data augmentation technique strikes overfitting by
artificially expanding the dataset. Our data augmentation consists of generating
horizontally translated images from the original images. Let I be an image of
n × n pixels. From I, squared sub-regions (and their horizontal reflections) of



Noisy Character Recognition Using Deep Convolutional Neural Networks 505

Table 5. Comparison of the proposed CNNs with classifiers based on hand-designed
descriptors

Dataset Test error rates (%)

Oblique Random Forest Linear SVM RBF SVM Proposed CNN

SVHN 21.9 43.5 39.7 2.55

CAPTCHA 13.8 37.6 24.2 2.64

n− 2 × crop border order are generated, in which 2 × crop border specifies the
width of the cropped region in pixels. We investigated the influence of data
augmentation on the effectiveness of the LF-LLL-SVHN and LF-L-CAPTCHA
by varying the crop border parameter. According to Table 4, different values of
crop border obtain better results for the two datasets.

Comparison with Other Approaches Based on Hand-Designed
Descriptors. To compare the deep learning approaches with other approaches
based on hand-designed descriptors, we perform experiments in both datasets
using the hand-designed descriptor Histograms-of-Oriented-Gradients (HOG) [1]
with 8 bins and 4 different cell sizes: 16× 16, 8× 8, 4× 8 and 8× 4. All cell have
stride set up to 50%. To the prediction, we use three classifiers. The first is the
Oblique Random Forest (oRF) method with SVM on each node [6]. The oRF
is an approach that utilizes another classifier to split the data on each nodes
of its trees instead of perform using just one feature as custom Random Forest
does. The other two classifiers are SVM with a Linear kernel and SVM with a
RBF kernels. The results are reported in Table 5. The smallest error rates are
obtained using the oRF classifier, but its effectiveness are far away from the ones
obtained by the CNNs using learning filters.

Another important topic to be described is the processing time to perform
these classifications. In the case of the Oblique Random Forest with a SVM on
each node, which proved to be the best classifier of all three baselines, it takes
more than twenty hours to execute the learning phase in both datasets, reaching
up to fourteen hours in the case of the SVHN dataset. All SVMs utilized on each
node are Linear and the parameter C is 0.01, which was determined empirically.
The linear SVM has a learning-time of 1 h to SVHN dataset and about 30 min to
the other dataset. The SVM with RBF kernel executes the learning in three hours
in SVHN dataset, ninety minutes in the Captcha dataset. On the other hand, the
CNN LF-LL-SVHN and CNN LF-L-CAPTCHA with data augmentation takes
in average nine hours and one hour, respectively, to perform the learning, which
is a much smaller time compared to the ORF baseline.

3.3 Discussion

The results show that deep learning approaches are far superior than the ones
using hand-designed descriptors in the two datasets of characters evaluated.



506 S. Peixoto et al.

The LF approach has obtained the smallest error rates in both datasets. We
believe that the use of complete and large sets of training samples contributed
greatly to this result. For the SVHN dataset, the more complex, the LF-SVHN
did not converged during the training (underfitting) when we used training sets
of size similar to the ones used in AO (100, 560 and 2000 samples per class).
When training the LF-CAPTCHA with the first two sets of training (100 and
560 samples per class), we obtained the respective error rates of 29.50% and
4.09% and the AO-CAPTCHA obtained 17.85% and 5.45%, respectively (see
Table 2). Note that AO approach was able to use 3.5% and 42% of the entire
training sets of the SVHN and CAPTCHA databases, respectively.

4 Conclusions

In this paper we employed deep learning approaches and hand-designed descrip-
tors for character recognition problem in noisy images. In our experiments,
we use the CAPTCHA dataset, proposed by us, and the widely used SVHN
dataset. Our experiments demonstrated that the most promising results have
been obtained by LF approach. Furthermore, the use of data augmentation and
the addition of locally-connected layers to CN reduce the error rates.

For future work, we intend to independently evaluate the influence of the
classifiers on the results obtained by deep learning representations, since AO
employs linear SVM and the classifier used by the LF approach is based on the
fully connected layers and softmax regression.

Acknowledgments. The authors thank UFPR, PUCPR, UFOP, UFMG, FAPEMIG,
CAPES and CNPq (Grants #428333/2016-8 & # 307010/2014-7) for supporting this
work.

References

1. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1,
pp. 886–893 (2005)

2. Goodfellow, I.J., et al.: Multi-digit number recognition from street view imagery
using deep CNNs. In: International Conference on Learning Representation (2014)

3. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: NIPS, pp. 1097–1105 (2012)

4. Menotti, D., Chiachia, G., Falcao, A., Oliveira Neto, V.: Vehicle license plate recog-
nition with random convolutional networks. In: 2014 27th SIBGRAPI Conference
on Graphics, Patterns and Images (SIBGRAPI), pp. 298–303 (2014)

5. Menotti, D., et al.: Deep representations for iris, face, and fingerprint spoofing
detection. IEEE Trans. Inf. Forensics Secur. 10(4), 864–879 (2015)

6. Menze, B.H., Kelm, B.M., Splitthoff, D.N., Koethe, U., Hamprecht, F.A.: On
oblique random forests. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgian-
nis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6912, pp. 453–469. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23783-6 29

https://doi.org/10.1007/978-3-642-23783-6_29


Noisy Character Recognition Using Deep Convolutional Neural Networks 507

7. Netzer, Y., et al.: Reading digits in natural images with unsupervised feature learn-
ing. In: NIPS Workshop on Deep Learning and Unsupervised Feature Learning,
pp. 1–9 (2011)

8. Pinto, N., et al.: A high-throughput screening approach to discovering good forms
of biologically inspired visual representation. PLoS 5(11), e1000579 (2009)

9. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face
recognition and clustering. arXiv preprint arXiv:1503.03832 (2015)

10. Sermanet, P., Chintala, S., LeCun, Y.: Convolutional neural networks applied to
house numbers digit classification. In: ICPR, pp. 3288–3291 (2012)

11. Vajda, S., Rangoni, Y., Cecotti, H.: Semi-automatic ground truth generation using
unsupervised clustering and limited manual labeling: application to handwritten
character recognition. Pattern Recogn. Lett. 58, 23–28 (2015)

12. Yuan, Y., Mou, L., Lu, X.: Scene recognition by manifold regularized deep learning
architecture. IEEE Trans. Neural Netw. Learn. Syst. 26(10), 1–12 (2015)

13. Zhang, X., Trmal, J., Povey, D., Khudanpur, S.: Improving deep neural network
acoustic models using generalized maxout networks. In: IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pp. 215–219 (2014)

http://arxiv.org/abs/1503.03832

	Noisy Character Recognition Using Deep Convolutional Neural Networks
	1 Introduction
	2 Theoretical Background
	2.1 Learning Filters (LF)
	2.2 Architecture Optimization (AO)

	3 Experimental Results
	3.1 Datasets
	3.2 Experiments
	3.3 Discussion

	4 Conclusions
	References




