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Abstract. Particle detectors have important applications in fields such
as high energy physics and nuclear medicine. For instance, they are used
in huge particles accelerators to study the elementary constituents of
matter. The analysis of the data produced by these detectors requires
powerful statistical and computational methods, and machine learning
has become a key tool for that. We propose a reconstruction algorithm
for a preshower detector. The reconstruction algorithm is in charge of
identifying and classifying the particles spotted by the detector. More
importantly, we propose to use a machine learning algorithm to solve the
problem of particle identification in difficult cases for which the recon-
struction algorithm fails. We show that our reconstruction algorithm
together with the machine learning rejection method are able to identify
most of the incident particles. Moreover, we found that machine learn-
ing methods greatly outperform cut based techniques that are commonly
used in high energy physics.
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1 Introduction

Event reconstruction is an important task in pattern recognition. The task is
inherently statistical and consist on inferring an event given the data that it pro-
duced. It has applications in fields such as high energy physics, nuclear medicine
and astrophysics.

In particular, in high energy physics event reconstruction is used to analyze
the particles produced in particle accelerators. These accelerators collide par-
ticles at high velocity, producing a huge amount of secondary particles. The
observation and study of the particles produced may help to understand the
structure of matter and its fundamental properties. The particles produced at
c© Springer International Publishing AG, part of Springer Nature 2018
M. Mendoza and S. Velast́ın (Eds.): CIARP 2017, LNCS 10657, pp. 491–498, 2018.
https://doi.org/10.1007/978-3-319-75193-1_59



492 J. Pavez et al.

collisions must be measured by detectors attached to the accelerators. These
detectors quantify different properties of the particles, such as energy, momen-
tum or interaction time.

To infer the particles that were produced, an event reconstruction algorithm
is used. The reconstruction algorithm must process the information produced
by the detector in order to identify the particles that originated the data. To do
that, the algorithm must be able to distinguish between signal and background,
cluster together data from each particle, separate overlapping particles, classify
data from different particles, among others. Such tasks require powerful compu-
tational and statistical methods, and machine learning has become an important
tool to solve many of these problems [1–3].

In this work we propose a complete reconstruction algorithm for a detec-
tor under construction at the Scientific and Technological Center of Valparáıso
(CCTVal). More importantly, we propose the use of machine learning, particu-
larly neural networks, to solve the problem of identifying overlapping particles.
The detector and reconstruction algorithm can be used to identify close parti-
cles produced in collisions of electron ion colliders and also have applications in
nuclear medicine.

2 Preshower Detector

The identification of neutral pions is an important problem in high energy
physics. The task is difficult because pions decay into two photons with a very
small opening angle. Consequently, the two photons arrive very close to each
other to the detector, which makes very hard to distinguish between the decay-
ing neutral pion and a high energy photon. The impossibility to identify neutral
pions might affect the whole reconstruction process, since those particles can
contribute important clues to the understanding of the underlying process.

The main limitation of commonly used detectors is the spatial resolution. To
solve that problem a preshower calorimeter detector is proposed in [4]. This kind
of detectors work by generating electromagnetic particle showers when an inci-
dent particle is detected. The showers are measured using a readout mechanism
that quantifies the energy produced by the showers. For that reason, and given
that the detector is used in front of the main detector, it is called preshower
detector. The preshower detector is composed by a matrix of scintillating crys-
tals, which are the ones that produce the electromagnetic showers. The signal
of the showers is conducted by a set of optical fibers to the readout mechanism
located on the sides of the front face of the crystal matrix. The readout system
is composed by two vectors of measuring cells, producing two vectors of energy
counts. The smaller transversal size of the crystals used in the preshower allows
a better spatial resolution, helping with the identification of particles produced
by neutral pions.
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3 Reconstruction Algorithm

The outputs of the readout are two vectors of photoelectron counts, from where
the energy can be computed. Each vector has 25 values, corresponding to each
measuring cell. The vectors can be considered X-Y projections of the energy
deposited on the crystal matrix. Using that information the reconstruction algo-
rithm must be able to reconstruct the energy and position of the incident par-
ticles. The reconstruction process is composed by a series of steps which are
resumed in Fig. 1. Each one of the steps are explained below:

Fig. 1. Diagram of the full reconstruction process.

Clustering algorithm: The process starts with a clustering algorithm that
must identify and separate each one of the incident particles. This is done by
clustering together the values on the cells and assuming that each cluster corre-
sponds to either one incident particle or two or more overlapping particles. The
study of clustering algorithms is extensive and there are plenty of options to
use in this step, including methods specially designed for clustering in calorime-
ters [5] or general pattern recognition methods [6]. We decided to use a simple,
but efficient method called topological clustering. The method starts with a sin-
gle cell, commonly the one with the maximum energy. Then, it iteratively adds
the neighbors of the cells already included. Cells are only added if they are above
an acceptance threshold which depends on the expected noise. Special care must
be put in the process of combining clusters constructed for each one of the axes,
since ambiguities may show up when two or more hits are spotted. To solve that
problem we observe that clusters with similar energies in different axes were
probably produced by the same particle. Using that assumption, we solved the
ambiguities problem by considering all possible combinations and then choosing
the ones with almost equal energy deposition.

Peak finding: In a second step, a peak finding algorithm is used to find the
maximums in each one of the clusters. More than one maximums might indicate
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the presence of overlapping particles. We used the peak finding method proposed
in [7]. The algorithm assumes that the peaks can be approximated by a normal
function and that the background is piecewise linear. Then, peaks are identified
using the second differences of the values, since the background is removed at
the second derivative of the function.

Separation algorithm: If two or more maximums are identified in a cluster, a
separation algorithm is used to set apart the overlapping particles. A separation
algorithm for calorimeters is proposed in [8]. The algorithm is based on the lateral
response function of the electromagnetic shower. That function relates the energy
deposited in each cell with the distance from that cell to the incident particle
position. Then, the function is used in an iterative algorithm that distributes
the energy of the overlapping cells. The distribution is done proportionally to
the normalized value of the lateral response function multiplied by the total
energy deposited in the cell. The algorithm proceeds by alternating between
re estimating the particle position and distributing the energy of each cell. We
estimated the lateral response function for the preshower using simulations and
we used the described algorithm to separate the overlapping clusters.

Position reconstruction: After identifying the energy corresponding to each
particle, the position of the particle must be reconstructed. Using the location
of each measuring device and the deposited energy, the reconstruction algorithm
must estimate the position of each one of the detected particles. For that, we
used the center of gravity of the cluster, but with logarithmic weights [9]. The
logarithm accounts for the exponential decay of the electromagnetic showers.

Classification algorithm: Finally, a classification algorithm is used to reject
cases in which only one maximum is observed for two incident particles. That is
because the separation algorithm can only separate overlapping showers when
two or more maximums are detected, however, two particles can be observed
with one maximum if they are too close to each other.

4 Neural Networks for Particle Separation

In cases for which only one maximum is observed, it is hard to separate the
overlapping showers. Nevertheless, it is possible to reject overlapping showers
detected as single particles. In [8] the authors propose to use a cut in the second
central moment of the shower, or dispersion, defined as

Dx =
∑

Eix
2
i∑

Ei
−

(∑
Eixi∑
Ei

)2

. (1)

It is observed, however, that the cut efficiency is dependent on the particle
incident position respect to the center of the cell and on the energy of the
particle. To solve the first issue, a parabolic cut on Dx is proposed, by defining
the values

Dcorr
x = Dx − Dmin

x , (2)
Dmin

x = (x − xR)(x − xL), (3)
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where x is the first moment of the cluster and xR, xL are the right and left edges
of the central cell of the cluster. A linear cut in Dcorr

x is equivalent to a parabolic
cut in the distribution of Dx versus x. While the method is useful to solve the
dependence on the incident position, it is noticed that the rejection efficiency is
energy dependent even when using Dcorr

x .
More advanced multivariate classification techniques can be used at this

stage. In [10,11], the authors propose to use machine learning methods in the
task of particles discrimination in calorimeters. In both papers the authors derive
a set of features from the showers and then use those features to train a multi-
variate classification method.

For the preshower it is interesting to study the use of multivariate classifica-
tion methods. Multivariate methods can: (1) Provide more complicated nonlin-
ear cuts that might improve the rejection performance when compared to simple
linear cuts. (2) Obtain a rejection efficiency that is invariant with the incident
energy. The latter can be done by using the total energy as input feature. That
allows the classifier to varies smoothly for different incident energies, avoiding
the energy dependence of the dispersion cut. Similar ideas have been presented
in [12,13]. Based on that, we propose to use a classifier trained on a set of features
extracted from the cluster values. In particular, we propose to use a multilayer
perceptron trained on 7 features extracted from the X and Y projections of the
shower: the position mean and variance, the position skewness, the normalized
height of the shower defined as Emax/

∑
Ei and the corrected dispersion. Each

one of the features is computed for the X and Y projections obtaining a total
of 14 features. Moreover, the total energy of the incident particle is included in
the feature vector.
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Fig. 2. Number of clusters identified as single particles, two overlapping or two sep-
arated particles given the distance between the particles. The experiments were per-
formed for: 10 GeV + 1 GeV (left), 10 GeV + 10 GeV (right).

5 Experiments

To study the performance of the preshower detector a computational simulation
of the detector was built using Geant4 [14]. The experiments consisted on throw-
ing photons on the front side of the preshower detector. Then, all the physics
that occur in the crystals matrix and readout system were simulated. Finally, the
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reconstruction algorithm was applied in the simulated measures of the readout
cells. Simulations were carefully calibrated in order to obtain measures that are
similar to the real experimental setup. The use of simulations is needed since is
the only way to know exactly the event that originated the measures.

We evaluated the performance of the reconstruction algorithm in simulated
pairs of photons with uniformly distributed incident positions and with energies
10 GeV + 1 GeV and 10 GeV + 10 GeV. In Fig. 2 we show the number of particles
reconstructed given the distance between both incident particles. The options
are: (1) A single cluster. (2) Overlapping clusters. (3) Two separated clusters.
Since all particles were simulated in pairs, the detector obtains a correct result if
it identifies two overlapped or separated clusters. It is noticed that those cases are
mainly observed for distances ≥28 mm (or equivalently 7 cell units of size 4 mm).
On the other hand, for distances ≤20 mm most of the particles are misidentified
as a single cluster.
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Fig. 3. (a) ROC curves for each one of the tested methods. (b) Signal efficiency for:
(a) A neural network with total energy as input feature (parametrized), (b) A neural
network without using the energy, (c) The cuts based method.

Next, we studied the rejection algorithm for particles with distances ≤20 mm,
where the reconstruction algorithm fails to identify two particles. For that, we
simulated single particles and pairs of particles. The algorithms were optimized
to identify the cases of two particles. To evaluate the performance of the multi-
variate methods we will compare various machine learning algorithms (including
support vector machines, boosted decision trees and multilayer perceptron) to the
method based on cuts on the dispersion variable that has been previously used
in [8].

For each one of the machine learning methods the features were normalized to
the range [−1, 1]. We included the total energy for each classifier. For the support
vector machine we used a Gaussian kernel with regularization C = 1.0. In the
case of boosted decision trees, we used AdaBoost with 200 trees. We also used
a maximum depth of 3 and learning rate of 0.5. For the multilayer perceptron
we used an architecture of two hidden layers of size 15 and 5. We used tanh
activations for the hidden layers and sigmoid activation for the output layer.
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To train we used stochastic gradient descent with a learning rate of 0.02, �2
regularization and 600 epochs. The cuts were automatically selected in order
to maximize the background rejection and signal efficiency, (rB , eS). For that,
the distributiony of (rB , eS) distributionestimated using monte carlo sampling.
Then, the best cut value for each one of the features was selected. It was observed
that the method works poorly with many features, because of that, we used only
the dispersion and corrected dispersion. All methods were implemented using
TMVA [15].

The ROC curves for each one of the methods are shown in Fig. 3a. It can be
seen that the best results are obtained by the multilayer perceptron.

Next, we studied the energy dependence of the classifiers. For that, we com-
pared the multilayer perceptron with the method based on cuts and with a multi-
layer perceptron that does not includes the energy as a feature. We measured the
signal efficiency for each method and for different energy ranges. Note, however,
that training was made on the full range. Results are shown in Fig. 3b. While
the efficiency of the cuts based method varies considerably with the energy, the
performance of the classifier is more stable when the energy is used as feature.

6 Conclusions

We have presented a reconstruction algorithm for a preshower detector. We
have shown that the algorithm is able to identify incident particles, separate
overlapping particles and reconstruct the position and energy of the identified
particles. Moreover, we have proposed a machine learning algorithm that can
identify the incident particles when the reconstruction algorithm fails. We have
found that the method based on a parametrized neural network outperforms the
method based on cuts that is commonly used in high energy physics. By including
the total energy of the incident particles we have reduced the dependence of the
algorithm on the energy of the detected particles.

The reconstruction algorithm is general and can be extended to other
calorimeter detectors. Moreover, the use of the reconstruction algorithm is not
limited to high energy physics since these kind of detectors have important appli-
cations in other fields such as nuclear medicine. In future work we plan to try
the algorithm on real data produced by accelerators.
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