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Abstract. Thinning is a frequently applied technique for producing
skeletons from digital binary pictures in a topology-preserving way. Bert-
rand proposed a two-step thinning scheme that is based on P -simple
points. In this paper, we give two sufficient conditions for topology-
preserving reductions working on the three possible 2D regular grids. The
new conditions combined with parallel thinning strategies and geomet-
rical constraints yield a single-step thinning scheme that deletes solely
P -simple points.
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1 Introduction

Various applications of image processing and pattern recognition are based on
skeletons [11]. Thinning is an iterative layer-by-layer reduction: the border points
of an object that satisfy certain topological and geometric constraints are deleted
until only the skeleton of that object is left [4,8].

A binary picture on a grid is a mapping that assigns a color of black or
white to each grid element called point [8]. A regular partitioning of the 2D
Euclidean space is formed by a tessellation of regular polygons (i.e., polygons
having equal angles, and sides are all off the same length). There are exactly
three polygons that can form such regular tessellations: the equilateral triangle,
the square, and the regular hexagon [10]. Although 2D digital pictures sampled
on the square grid are generally assumed, triangular and hexagonal grids also
attract remarkable interest [8,10].

A reduction transforms a binary picture only by changing some black points
to white ones which is referred to as deletion [8]. Reductions play a key role in
some topological algorithms, e.g., thinning [4,7,8].

Topology preservation is a major concern of reductions [7,8]. In [7], Kong
proposed some sufficient conditions for topology-preserving 2D reductions on the
square grid, then the authors of this paper adapted his results to the hexagonal
and triangular grids [5].
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Bertrand introduced the notion of a P -simple point [1], and he proved that
simultaneous deletion of P -simple points is topology-preserving. His concept can
be used not only as a verification method but also as a methodology to design
parallel thinning algorithms.

In this paper we prove that a reduction deletes only P -simple points if and
only if it satisfies our previously published sufficient conditions for topology
preservation [5] for the three possible regular 2D grids. Two new sufficient con-
ditions for topology-preserving reductions are derived from our former condi-
tions. Those new conditions provide a single-step (topology-preserving) thinning
scheme with deletion of P -simple points.

2 Basic Notions and Results

In this paper, we use the fundamental concepts of digital topology as reviewed by
Kong and Rosenfeld [8]. Despite the fact that there are other approaches based
on cellular/cubical complexes [9], we consider here the ‘conventional paradigm’
of digital topology.

Let us denote by T , S, and H the triangular, the square, and the hexagonal
grids, respectively, and throughout this paper, if we will use the notation V, we
will mean that V belongs to {T ,S,H}. The elements of the considered grids
(i.e., regular polygons) are called points. Two points are 1-adjacent if they share
an edge and they are 2-adjacent if they share an edge or a vertex, see Fig. 1. Let
us denote by NV

j (p) the set of points being j-adjacent to a point p in the grid
V, and let N∗V

j (p) = NV
j (p) \ {p} (j = 1, 2).

Fig. 1. The considered adjacency relations on the three possible regular 2D grids.
Points that are 1-adjacent to the central point p are marked “•”, while points being
2-adjacent but not 1-adjacent to p are depicted by “◦”.

A sequence of distinct points 〈p0, p1, . . . , pm〉 is called a j-path from p0 to
pm in a non-empty set of points X ⊆ V if each point of the sequence is in X
and pi is j-adjacent to pi−1 for each i = 1, 2, . . . ,m. Two points are said to be
j-connected in a set X if there is a j-path in X between them. A set of points X
is j-connected in the set of points Y ⊇ X if any two points in X are j-connected
in Y . A j-component of a set of points X is a maximal (with respect to inclusion)
j-connected subset of X.

Let (k, k̄) be an ordered pair of adjacency relations. Throughout this paper,
it is assumed that (k, k̄) belongs to {(1, 2), (2, 1)}. A (k, k̄) binary digital picture



A Single-Step 2D Thinning Scheme with Deletion of P -Simple Points 477

is a quadruple (V, k, k̄, B) [8], where set V contains all points of the considered
grid, B ⊆ V denotes the set of black points, and each point in V \ B is said to
be a white point . A black component or object is a k-component of B, while a
white component is a k̄-component of V \ B.

A black point p is said to be a border point if p is k̄-adjacent to at least one
white point (i.e., N∗V

k̄
(p) \ B �= ∅). A border-point p is called an isolated point

if all points in N∗V
k (p) are white (i.e., {p} is a singleton object).

A reduction in a 2D picture is topology-preserving if each object in the input
picture contains exactly one object in the output picture, and each white com-
ponent in the output picture contains exactly one white component in the input
picture [8].

A black point is said to be simple for a set of black points if its deletion
is a topology-preserving reduction [7,8]. In [5], the authors gave both formal
and easily visualized characterizations of simple points in all the considered five
types of pictures on the regular 2D grids (i.e., two for T , two for S, and one
for H). Note that the simpleness of p is a local property (i.e., it can be decided
by examining N∗V

2 (p)), and only non-isolated border points may be simple [5].
In [5], the authors formulated the following unified sufficient conditions for

topology-preserving reductions:

Theorem 1. [5] For any picture (V, k, k̄, B), a reduction is topology-preserving
if all of the following conditions hold.

1. Only simple points for B are deleted.
2. For any two k̄-adjacent black points, p, q ∈ B that are deleted, p is simple for

B\{q}.
3. If (k, k̄) = (2, 1), no object is deleted completely, such that is composed by

two or more mutually 2-adjacent points, and is not formed by two 1-adjacent
points.

In order to construct topology-preserving reductions and provide a verifica-
tion method, Bertrand proposed the notion of a P -simple point :

Definition 1. [1] Let Q ⊂ B be a set of black points in a picture. A point q ∈ Q
is called a P -simple point for Q if q is simple for B\R for any R ⊆ Q\{q}.

Bertrand gave a local characterization of P -simple points in (26, 6)-pictures
on the 3D cubic grid [1], and Bertrand and Couprie reported a similar charac-
terization in (2, 1)-pictures on the square grid S [3]. Later, the authors of this
paper presented both formal and easily visualized characterizations of P -simple
points in all the considered five types of 2D pictures [6].

Bertrand’s approach provides the following sufficient condition for topology
preservation:

Theorem 2. [1] A reduction that deletes a subset composed solely of P -simple
points is topology-preserving.
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3 Linking P -Simple Points and Our Sufficient Conditions

In this section, we show that the two kinds of conditions stated by Theorems 1
and 2 are equivalent.

Since the simpleness of a point is a local property, we can state the following
proposition:

Proposition 1. Let Q ⊂ B be a set of points in a picture (V, k, k̄, B). A point
q ∈ Q is P -simple for Q if for any R ⊆ N∗V

2 (q) ∩ Q, q is simple for B\R.

Theorem 3. A reduction satisfies all conditions of Theorem1 if and only if it
deletes only P -simple points.

Proof. In order to prove the ‘if ’ part, let us assume that a reduction deletes
the set of P -simple points Q ⊂ B (for Q).

– Let q ∈ Q be a point that is deleted by the reduction. Since ∅ ⊂ Q, by
Definition 1, q is simple for B\∅ = B. Hence Condition 1 of Theorem 1 holds.

– Let q1, q2 ∈ Q be two k̄-adjacent points that are deleted by the reduction in
question. As {q2} ⊆ Q\{q1}, by Definition 1, q1 is simple for B\{q2}, which
means that Condition 2 of Theorem1 is also fulfilled.

– Let us assume that Condition 3 of Theorem 1 is violated. Hence there is an
object Q (according to Condition 3 of Theorem1) that is completely deleted
by the reduction. Consider a point q ∈ Q. Since the investigated reduction
deletes only P -simple points, q is simple for B\(Q \ {q}) by Definition 1.
Since q is an isolated (non-simple black) point for B\(Q \ {q}), we arrived at
a contradiction.

Then we establish the ‘only if ’ part for (1, 2)-pictures on S. Let us assume
that a reduction satisfies all conditions of Theorem 1 and it deletes the set of
points Q ⊂ B from a picture (S, 1, 2, B).

In [5], the authors gave easily visualized characterizations of simple points in
all the considered five types of pictures by sets of matching templates. The four
base matching templates assigned to (1, 2)-pictures on S are depicted in Fig. 2.

Let p ∈ Q. Since Condition 1 of Theorem1 holds, p is simple for B. Without
loss of generality, we may investigate only the four templates shown in Fig. 2.

By Proposition 1, the following cases are to be investigated:

(a) Assume that p is matched by the template in Fig. 2a. In this case, only black
point q is to be investigated. Since p is a non-simple (isolated black) point
for B\{q}, by Condition 2 of Theorem1, q �∈ Q.

(b) Assume that p is matched by the template in Fig. 2b. It can be readily seen
that p is not simple for B\{s}. Hence, by Condition 2 of Theorem1, s �∈ Q.
Let us investigate the remaining two black points q and r.
• Assume that q ∈ Q and r �∈ Q. Since p is matched by the template in

Fig. 2a in B\{q}, p remains simple after the deletion of q.
• Assume that r ∈ Q and q �∈ Q. Since p is matched by the template in

Fig. 2a in B\{r}, p remains simple after the deletion of r.
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Fig. 2. The four base matching templates for characterizing a simple point p in (1, 2)-
pictures on S. Notations: each black template position matches a black point; each
white element matches a white point; each position depicted in gray matches either
a white point or a black point. All the rotated and reflected versions of these four
templates also match simple points.

• Assume that q ∈ Q and r ∈ Q. Since q is not simple for B\{r}, and r
is not simple for B\{q}, by Condition 2 of Theorem1, we arrived at a
contradiction.

(c) Assume that p is matched by the template in Fig. 2c. It can be readily seen
that p is not simple for B\{r}, B\{s}, and B\{u}. Hence, by Condition 2
of Theorem 1, the three points r, s, and u are not in Q. Let us investigate
the remaining two black points q and t.
• Assume that q ∈ Q and t �∈ Q. Since p is matched by the template in

Fig. 2b in B\{q}, p remains simple after the deletion of q.
• Assume that t ∈ Q and q �∈ Q. Since p is matched by the template in

Fig. 2b in B\{t}, p remains simple after the deletion of t.
• Assume that q ∈ Q and t ∈ Q. Since p is matched by the template in

Fig. 2a in B\{q, t}, p remains simple after the deletion of {q, t}.
(d) Assume that p is matched by the template in Fig. 2d. It can be readily seen

that p is not simple for B\{q}, B\{r}, B\{s}, B\{u}, and B\{w}. Hence,
by Condition 2 of Theorem1, the five points q, r, s, u, and w are not in Q.
Let us investigate the remaining two black points t and v.
• Assume that t ∈ Q and v �∈ Q. Since p is matched by the template in

Fig. 2c in B\{t}, p remains simple after the deletion of t.
• Assume that v ∈ Q and t �∈ Q. Since p is matched by the template in

Fig. 2c in B\{v}, p remains simple after the deletion of v.
• Assume that t ∈ Q and v ∈ Q. Since p is matched by the template in

Fig. 2b in B\{t, v}, p remains simple after the deletion of {t, v}.

Since p remains simple after the deletion of each subset of Q, p is a P -simple
point for Q. Hence only P -simple points are deleted.

The proofs of the ‘only if ’ part for the remaining four kinds of pictures can
be carried out analogously with the help of matching templates given in [5]. ��

4 New Sufficient Conditions

Theorem 1 (i.e., our unified sufficient conditions for topology-preserving reduc-
tions) provides a method of verifying that a thinning algorithm always preserves
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topology. The following new conditions allow us to directly construct deletion
rules for topological algorithms.

Theorem 4. For any picture (V, k, k̄, B), a reduction R satisfies all conditions
of Theorem1 if the following conditions hold for each point p ∈ B deleted by R:

1. p is simple for B.
2. For any q ∈ N∗V

k̄
(p) ∩ B that is simple for B, p is simple for B\{q}.

3. If (k, k̄) = (2, 1), p does not belong to an object that is composed by two or
more mutually 2-adjacent points, and is not formed by two 1-adjacent points.

Proof. It can be readily seen that if R satisfies Condition i of this theorem,
Condition i of Theorem 1 is also satisfied for each i ∈ {1, 2, 3}. ��

Let us consider the addressing schemes depicted in Fig. 3, which refer every
point in the three possible regular 2D grids by a pair of coordinates. The lex-
icographical order relation ‘≺’ between two distinct points p = (px, py) and
q = (qx, qy) is defined as follows: p ≺ q ⇔ (py < qy) ∨ ((py = qy) ∧ (px < qx)).
Let Q be a finite subset of V. Then, point p ∈ Q is said to be the smallest
element of Q if for any q ∈ Q\{p}, p ≺ q.

Fig. 3. Feasible addressing schemes for the three possible regular 2D grids.

Theorem 5. For any picture (V, k, k̄, B), a reduction R satisfies all conditions
of Theorem1 if the following conditions hold for each point p ∈ B deleted by R:

1. p is simple for B.
2. For any q ∈ N∗V

k̄
(p)∩B that is simple for B and p ≺ q, p is simple for B\{q}.

3. If (k, k̄) = (2, 1), p is not the smallest element of an object that is composed by
two or more mutually 2-adjacent points, and is not formed by two 1-adjacent
points.

Proof. It can be readily seen that if R satisfies Condition i of this theorem,
Condition i of Theorem 1 is also satisfied for each i ∈ {1, 2, 3}. ��
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The new sufficient conditions (i.e., Theorems 4 and 5) directly specify the fol-
lowing five pairs of reductions (RT ,1,2

sym ,RT ,1,2
asym ), (RT ,2,1

sym ,RT ,2,1
asym ), (RS,1,2

sym ,RS,1,2
asym),

(RS,2,1
sym ,RS,2,1

asym), and (RH,1,2
sym ,RH,1,2

asym ) = (RH,2,1
sym ,RH,2,1

asym ), where RV,k,k̄
sym deletes

all points from a (k, k̄) picture on V that satisfy all conditions of Theorem4, and
RV,k,k̄

asym deletes all points from a (k, k̄) picture on V that satisfy all conditions of
Theorem 5.

The following proposition is an easy consequence of Theorems 3, 4, and 5:

Proposition 2. Reductions RV,k,k̄
sym and RV,k,k̄

asym delete only P -simple points.

Figure 4 is to illustrate the different behaviors of RS,2,1
sym and RS,2,1

asym. It is
important to emphasize the disparity between Conditions 2 and 3 of Theorems
4 and 5. Theorem 4 ensures symmetric conditions, since both k̄-adjacent black
points p and q are preserved if p is not simple after the deletion of q (in that case,
q is not simple after the deletion of p, as well), and all ‘small’ objects composed
by three or more mutually k-adjacent points remain unchanged. The conditions
of Theorem 5 are asymmetric, since only the smallest elements of pairs of points
and objects considered in Conditions 2 and 3 are preserved.

Fig. 4. Comparison of reductions RS,2,1
sym (left) and RS,2,1

asym (right) for a (2, 1) picture on
the square grid S. Non-simple points are marked ‘n’, and deleted (simple and P -simple)
points are marked white stars. (Unmarked black points are simple but non-deleted
points.)

5 A Single-Step 2D Thinning Scheme

In [2], Bertrand proposed a two-step (topology-preserving) thinning scheme that
is based on P -simple points. One phase/reduction of the iterative thinning pro-
cess is performed as follows:

1. A set of points Q ⊂ B is (somehow) chosen and labeled.
2. All P -simple points in Q are deleted (simultaneously).

Note that Step 2 deals with tricolor pictures (say: the value ‘0’ corresponds
to white points, the value ‘1’ is assigned to the elements in B\Q, and value
‘2’ corresponds to points in Q). Hence that two-step scheme is both space- and
time-consuming.
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Proposition 2 provides a single-step (topology-preserving) thinning scheme
with deletion of P -simple points. The deletion rule of a reduction of the iterative
thinning process can be directly constructed by combining the reduction RV,k,k̄

sym

(or RV,k,k̄
asym ) with different thinning strategies (i.e., fully parallel , subiteration-

based , and subfield-based [4]) and various geometric constraints (say endpoints
[4]). The generated deletion rule is a common Boolean function that is to be
evaluated for the neighborhood of the investigated points in binary (two-level)
pictures. That Boolean function can be stored in a pre-calculated look-up-table,
hence, the proposed single-step scheme can be implemented efficiently.
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