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Abstract. Iris segmentation under visible spectrum (VIS) is a topic
that has been gaining attention in many researches in the last years,
due to an increasing interest in iris recognition at-a-distance and in
non-cooperative environments such as: blur, off-axis, occlusions, spec-
ular reflections among others. In this paper, we propose a new approach
to detect the iris region on eye images acquired under VIS. We intro-
duce the semantic information of different classes of an eye image (such
as sclera, pupil, iris, eyebrows among others) in order to segment the
iris region. Experimental results on UBIRIS v2 database show that the
semantic segmentation improves the iris segmentation by reducing the
intra-class variability, especially for the non-iris classes.

1 Introduction

Iris segmentation refers to the task of automatically locating the annular region
delimited between the pupillary and limbic boundaries of the iris in a given
image [1]. Results in the NICE I dataset [2] show that iris segmentation under
visible spectrum (VIS) is still a very challenging problem. According to [3], non-
cooperative iris recognition refers to automatically recognize at-a-distance and
dealing with several factors that deteriorate the quality of an iris image [4], such
as occlusions, blur, off-axis, specular reflections, poor illumination among others.

Many algorithms have been proposed for separating the iris region from the
non-iris regions on images affected by the aforementioned factors. One of the
main approaches consists on boundary-based methods [5–7] which generally use
techniques for detecting obstructions by specular reflections as first step, and
then, they use methods based on the detection of two circular boundaries or
non-circular trajectories with the aim of localizing both iris boundaries. After,
techniques for detecting upper and lower eyelids and eyelashes are applied. The
main drawback of these algorithms is that the detection of non-iris regions such
as eyelids, eyelashes and specular reflections, does not preserve entirely the spa-
tial relationship with respect to the iris region. Moreover, these approaches only
take into account as non-iris regions, the eyelids, eyelashes and specular reflec-
tions disregarding other important non-iris regions such as eyebrows, pupil, skin,
hair and other factors related to problems of non-cooperative environments such
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as glasses and lenses. Other approaches are based on a combination of region and
boundary-based methods, which initially find an approximate eye area that is
discriminatory and adjacent to the iris region followed by a process of detection
of circular boundaries with the aim of separating the iris region of the non-iris
regions. Examples of these approaches are the methods based on the localization
of the sclera region, followed by a fast circular hough transform [7], which locates
the iris region by identifying the sclera as the most easily distinguishable part
of the eye under varying illumination [8]. The main drawback of these methods
is that they only take into account the discriminatory and adjacency notion of
a single region (sclera) of the set of non-iris regions present in an eye image.

In general, the methods for iris segmentation mentioned above use only low
level features for locating the iris region. They do not take into account the
semantic information of all classes that conform an eye image. For this reason,
we believe that, using more semantic classes (namely sclera, iris, pupil, eyelids,
skin, hair, glasses, eyebrows and specular reflection) and not only iris and non-iris
classes, we may improve the iris segmentation by reducing the intra-class variabil-
ity and increasing the inter-class variability, especially for the non-iris class. On
the other hand, by semantically segmenting color eye images (employing manual
annotations in the learning process) it is possible to extend the applicability of
iris segmentation algorithms to other soft-biometric features, such as the sclera
and periocular regions, that can be useful to improve recognition performance
on color eye images [1]. To the best of our knowledge, iris segmentation have
not been addressed in terms of semantic segmentation in the literature. Sum-
marizing, our contributions are: (1) creating a set of manual annotations for eye
images containing 9 semantic classes, (2) exploring the performance of seman-
tic segmentation for eye image classes and (3) extending the use of semantic
segmentation for the specific case of iris segmentation.

The remainder of this paper is organized as follows. In Sect. 2, we present a
description of the proposed method. The experimental evaluation, showing our
results and a comparison with other state-of-the-art methods is presented in
Sect. 3. Conclusions and future work are presented in Sect. 4.

2 Proposed Method

We propose to employ a semantic segmentation approach in order to perform iris
segmentation. For this task we chose a semantic segmentation algorithm named
HMRF-PyrSeg [9] that was originally designed for general images. To the best
of our knowledge, there are no semantic segmentation approaches specifically
designed for iris segmentation.

In Fig. 1, a description of this semantic segmentation process can be seen.

2.1 Semantic Segmentation Algorithm

The first step of the algorithm is to segment the image using the Felzenszwalb’s
segmentation algorithm [10] (Fig. 1b). This segmented image is represented as a
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Fig. 1. General steps of the segmentation/classification process. (a) Original image,
(b) initial segmentation (c) initial classification of the regions obtained by the base
classifier, (d) final classification/optimization result and (e) overall example of hierar-
chical segmentation, classification and optimization by means of a hierarchical MRF
approach (Best viewed in color).

Region Adjacency Graph (RAG), where each vertex represents a region and each
edge represents the adjacency between regions. We obtain several segmentations
by varying the algorithm parameters in order to avoid under-segmentation and
over-segmentation problems. For all the regions in each segmentation, low-level
features are extracted and a base classifier (it could be any classifier with prob-
abilistic output) is trained taking into account the semantic classes presented in
the dataset. All the image regions are classified using this base classifier (Fig. 1c).
This will provide a base line classification/segmentation result for the entities
present in the image.

We build a hierarchy on top of each initial segmentation, with the aim to
improve it using the semantic information coming from the classification process.
Given an initial segmentation, and an initial classification of its regions, we build
a new segmentation level by contracting the edges of the graph, and joining
the regions connected by these edges. In order to decide which edges should
be contracted, we employ a criterion based on semantic information (i.e., the
classes assigned to each vertex/region and their probability values), and low-level
information given by the Canny edge detector to preserve important edges in the
image. For more information regarding this criterion, please refer to [9]. After
the new segmentation level is created, we perform the classification process on
the level, and we can create a new level on top of this one using this information.
This process can be repeated until no further contractions can be performed.

Once we have this segmentation hierarchy and a first classification of all its
levels, a refinement is performed by means of a hierarchical Markov Random
Field (MRF) approach (See Fig. 1e). Within the segmentation hierarchy, a MRF
is built per level. Each MRF will receive information from the MRFs computed
in adjacent levels in the hierarchy. In this way, it is possible to link spatial
information within each level of segmentation and the hierarchical information
between levels. Intuitively, one MRF per segmentation ensures a smoothing in
terms of region labeling (classification), by taking into account the spatial rela-
tions among the regions. By using a hierarchical MRF, we are trying to add
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Fig. 2. Examples of manual annotation of eye images (Best viewed in color).

a hierarchical smoothing, which means, for instance, that two regions wrongly
classified in one level can be corrected if their father (those two regions merged
as one) in the upper level was correctly classified. In this way, we can combine
local an global information at different levels of segmentation. At the end of
this optimization process, the regions should be annotated with more coherent
classes, according to their spatial relations and context (See Fig. 1d).

After a final classification is obtained, we add to the algorithm a post-
processing step for the iris regions, which consists in a morphological close
followed by a connected components analysis. The objective of this step is to
remove the isolated pixels or regions that are not connected to larger objects.

2.2 Manual Annotation of Eye Images

In order to obtain a ground truth for training classifiers using the semantic
classes presented in eye images, we manually annotated 53 images from the
UBIRIS.v2 [11] training set. These annotations were done at pixel level, i.e.
each pixel is annotated with its corresponding class id. Since this annotation
process is a hard and time-consuming process, we conducted a data augmentation
step, where we performed a horizontal flip on the 53 original images and their
corresponding manual ground truths, thus increasing the training set to 106
eye images. Examples of these manual annotations can be seen in Fig. 2. The
images were annotated with 9 semantic classes: sclera, iris, pupil, eyelids and
eyelashes, skin, hair, glasses, eyebrows and specular reflections. We selected these
labels with the aim of obtaining the biggest semantic information describing the
different regions of an eye image.

3 Experimental Results

In this section we show the experimental results of our approach. The main objec-
tive is to show that the semantic information from eye images have advantages
over the iris and non-iris classification, as well as the classification of others parts
of an eye image, such as: sclera, skin, eyelids/eyelashes (E&E), pupil, eyebrows,
specular reflections (SpRef), glasses and hair.

The proposed method was tested on the UBIRIS.v2 dataset employed in the
NICE I competition [2]. It contains eye images acquired under unconstrained
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conditions with subjects at-a-distance and on-the move. They present serious
problems of occlusions, specular reflections, off-axis and blur.

We obtained, for each image, 10 initial segmentations (changing parameters
from over-segmentation to under-segmentation). On top of each segmentation,
we applied the hierarchical classification/optimization algorithm, obtaining 5
new segmentation levels in a hierarchy. We used Random Forest as base classi-
fier and the low-level features employed to describe each segmented region are
Geometric Context [12] and the texton-like features described in [13].

The first experiment was conducted to validate the semantic segmentation
of all classes in terms of pixelwise annotation accuracy. For this experiment we
employed 53 images (106 including the horizontal flip) with manual annotations
(See Sect. 2.2). Those 53 images are a subset of the 500 UBIRIS.v2 images that
were used for training in the NICE I [2] competition. We performed a hold out
cross-validation, by splitting the set randomly in 70% for training and 30% for
testing over 5 rounds. The results can be seen in Table 1. For the base classifica-
tion, we show the results for level 3 and for optimization we show the results for
level 1 in the hierarchy, since this configuration exhibited the best performance.

Table 1. Pixelwise annotation accuracy (%) for each semantic class

Algorithm Pupil Iris Sclera E&E Eyebrows SpRef Skin Glasses Hair Mean (Std)

Classification 56.80 82.68 73.92 80.09 72.28 14.55 79.38 22.92 22.19 75.00 (±2.73)

Optimization 46.97 83.81 71.43 85.72 75.54 12.92 77.16 28.02 6.65 75.36 (±2.97)

Post-processing – 85.81 – 87.33 77.39 – – – – –

In Table 1 can be seen that, for some classes (iris, eyelashes & eyelids, eye-
brows and glasses), the MRF optimization outperformed the base classifier, but
for the other classes there was no improvement (rows 1 and 2). The reason for this
might be that, for classes with small area (i.e. pupil, sclera, specular reflections,
hair) the pairwise smoothing term of the MRF might induce them to change
the initial label to that of the surrounding class region. Also, the specular reflec-
tions, glasses and hair classes obtained the lowest results because in the training
set there are very few images annotated with theses classes. Nevertheless, it is
important to notice that for the best level of the base classifier the iris class
obtained the best performance with respect to the rest of the classes. The third
row shows the result of post-processing the iris, eyebrows and E&E classes since
these classes are the more compact ones and with better defined shapes, and
they usually appear as a single connected component.

The process of optimization was able to correct some errors of the initial
semantic segmentation made by the base classifier. Some of these corrected errors
are shown in the Fig. 3. Notice, for instance, iris (dark blue), eyelids/eyelashes
(green), specular reflections (yellow) and eyebrows (brown) regions.

The second experiment was designed for evaluating the performance of iris
and non-iris classification of the proposed iris semantic segmentation method.
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Fig. 3. Example of classification/optimization results on NICE I. (b) Level 5 of initial
segmentation and base classifier result, (c–e) 3 sample levels of the optimization hier-
archy built on top of Level 5, (f) mask obtained for iris/non-iris classification and (g)
mask after post-processing (Best viewed in color).

We employed for training the 106 manually annotated images, and for testing
we used the test set of 500 images from the NICE I competition (disjoint from
the training set). We used the evaluation protocol of the NICE I competition
and the average segmentation error (E1) [2] as evaluation measure. In Table 2
we show these results for 10 initial segmentation levels with the base classifier
(row 1) and their corresponding optimization (row 2).

Table 2. Comparison using E1 (%) for different levels in classification and optimization
on NICE I.

Algorithm 1 2 3 4 5 6 7 8 9 10

Base classifier 2.63 2.57 2.56 2.52 2.51 2.56 2.52 2.61 2.61 2.59

Optimization 2.39 2.39 2.39 2.39 2.38 2.49 2.52 2.55 2.68 2.69

Table 3 shows the comparison of our proposed approach with other state-of-
the-art methods. It is important to notice that the number of training images
used in our method is considerable smaller than other state-of-the-art methods.
In Table 3 we can see that the E1 of our method using only the base classifier
was 2.51. When we used the hierarchical MRF optimization we decreased the
error to 2.38, by choosing a fixed level of the optimized segmentation hierarchy.
When we chose the best level of segmentation for each image, then the error was
even smaller: 1.59, which outperforms most of the other methods. This last case
implies selecting manually the best level of segmentation given the E1 against
the ground truth, which cannot be used in practice, but is a good indicative of
the potential of our method. Automatically selecting these best levels is a good
line for future improvements of our method.

Although our method was not able to outperform the one of [14], we improved
some of the errors reported by that work. This can be seen in Fig. 4. In this
figure we considered to show E1 as well as the false positive and false negative
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Table 3. Comparison of E1 error in the NICE I dataset.

Method NICE I error E1 (%)

Our method (Base classifier) 2.51

Our method (Optimization) 2.38

Our method (Best selection) 1.59

Liu et al. [14] 0.90

Tan and Kumar [15] 1.72

Proenca [8] 1.87

Tan and Kumar [16] 1.90

Chai et al. [17] 2.80

Chen et al. [7] 2.97

Abdullah et al. [6] 2.95

Fig. 4. Examples of classification errors. First row shows images obtained from [14]
and second row shows our images. Red points denote false accept points (i.e. points
labeled as non-iris by the ground truth but iris by our method). Green points denote
false reject points (i.e. points labeled as iris by the ground truth but non-iris by our
method) (Best viewed in color).

of those segmentations reported in [14]. We analyze these differences because
this algorithm, based on multi-scale fully convolutional network (MFCNs), is
the best result of iris segmentation under VIS on NICE I dataset. It can be
noticed, particularly for columns 1 and 4, where there is no iris in the image,
that our method was able to correctly detect that situation, while the other
method detected some missclassified iris areas. Also for the case of dark skin,
our method improved the recognition of these areas (see column 3).

4 Conclusions

In this paper we proposed a new iris segmentation algorithm for eye images
acquired under VIS, which introduces the semantic information of the different
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classes of an eye image. A set of manual annotations for eye images contain-
ing 9 semantic classes was created. Experimental results showed that using the
semantic information of the different classes of an eye image is a promising path
for iris segmentation. It is important to note that only with 53 annotated images
the proposal achieved state-of-the-art iris segmentation accuracy. Also, by using
our semantic segmentation proposal, it is possible to address other segmenta-
tion tasks like sclera and periocular segmentation, which are of interest of many
researches. As future work we plan to automatically select the best segmentation
level for each image, as well as to work on a fusion scheme that allows merging
regions of different segmentation levels.
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