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Abstract. Recently, there has been a relevant progress and interest
for brain–computer interface (BCI) technology as a potential channel
of communication and control for the motor disabled, including post-
stroke and spinal cord injury patients. Different mental tasks, including
motor imagery, generate changes in the electro-physiological signals of
the brain, which could be registered in a non-invasive way using elec-
troencephalography (EEG). The success of the mental motor imagery
classification depends on the choice of features used to characterize the
raw EEG signals, and of the adequate classifier. As a novel alternative
to recognize motor imagery tasks for EEG-based BCI, this work pro-
poses the use of self-organized maps (SOM) for the classification stage.
To do so, it was carried out an experiment aiming to predict three-class
motor tasks (rest versus left motor imagery versus right motor imagery)
utilizing spectral power-based features of recorded EEG signals. Three
different pattern recognition algorithms were applied, supervised SOM,
SOM+k-means and k-means, to classify the data offline. Best results were
obtained with the SOM trained in a supervised way, where the mean of
the performance was 77% with a maximum of 85% for all classes. Results
indicate potential application for the development of BCIs systems.
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1 Introduction

A Brain-Computer Interface (BCI) is an emergent technology that provides
a non-muscular communication channel for people with motor disabilities [1],
therefore, this technology provides a novel way to recover functionality of limbs
impaired by diseases and injuries of the central nervous system. The key in a BCI
is the recording and processing of the brain activity [2]. On the first hand, the
non-invasive electroencephalogram (EEG) technique is the most used method to
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record the brain activity. On the second hand, machine learning algorithms are
employed to classify patterns or changes contained in the recorded EEG signals
which are associated to a mental task performed by the BCI user.

The recognition of the mental task is very difficult because the EEG signals
are highly noisy, moreover they are non-stationary and present strong variability
across participants and time. In order to overcome these situations, BCI technol-
ogy uses linear discriminant analysis (LDA), artificial neural networks (ANN)
and support vector machines (SVM) which are classical supervised learning mod-
els commonly used in these systems [3]. This has resulted in several applications
that have demonstrated the functionality and usability of BCI technology. How-
ever, the performance in the recognition of mental tasks from EEG signals (or
classification accuracy) is prone to errors, thus novel strategies in the classifica-
tion need be developed, evaluated and incorporated in BCI technologies.

As a novel alternative to recognize mental tasks for EEG-based BCI, this
work proposes the use of self-organized maps (SOM) [4] to recognize motor
imagery tasks from EEG signals recorded in a real BCI experiment. SOM is
a (supervised or not supervised) learning method that transforms high dimen-
sional data to a lower representation in a way that similar inputs are associated
to a region that is easily separated from the regions of other similar inputs [4].
This classification model has been extensively used with biomedical and topo-
graphical data, however, its application in the recognition of mental tasks for
BCI technologies is still very limited [5]. This work consists of an experimen-
tal study devised to obtain EEG signals from a participant performing motor
imagery tasks. The goal is to implement and evaluate the classification perfor-
mance of supervised SOM, SOM+k-means and k-means in the recognition of
mental motor tasks from EEG signals recorded in a cue-based BCI experiment.
Recorded signals were used to evaluate the three-class classification of rest ver-
sus leftmotor imagery versus rightmotor imagery. The results showed that the
proposed supervised SOM provided the higher classification accuracies (mean of
77% and maximum of 85%) which were above the chance level.

The rest of this work is organized as follows: Sect. 2 describes the experiments
performed to obtain EEG signals, the theoretical basis and the implementation
of the SOM algorithm and the evaluation process; Sect. 3 presents and discusses
the results; Sect. 4 presents the conclusions.

2 Methods and Materials

This section describes (i) the experiments carried out to obtain EEG signals
from a volunteer who performed motor imagery of the upper limbs, (ii) the data
analysis and the feature extraction process, (iii) the classification model based
on SOM that was used to recognize motor imagery tasks from EEG signals, and
(iv) the evaluation procedure and the metric used to asses performance.
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2.1 EEG Data Description

Participants. The experiment was conducted with a male student from our fac-
ulty. He had no known neurological or motor disorder, moreover he had no prior
experience with EEG or BCI experiments. The participant was duly informed
about the aim of the study and freely signed a consent form.

Recording system. EEG signals were recorded using the Emotiv EPOC Sys-
tem. This is a low-cost and wireless technology useful for EEG recording and
BCI experiments. This system records the brain electrical activity from 14 scalp
locations at AF3, F7, F3, FC5, T7, P7, O1, AF4, F8, F4, FC6, T8, P8 and O2.
These electrodes are distributed according to the international 10/20 system.
The EEG signals were recorded at a sampling frequency of 128 Hz with two ref-
erence electrodes (CMS, which is located on the left side; DRL which is located
on the right side). A band-pass filtering from 0.5 to 60 Hz was applied during the
recording. Prior to the initiation of the experiment, a saline solution was applied
to each electrode to maintain the impedance below 5 kΩ. This was cheeked with
the software application provided by the Emotiv manufacturer.

Description of the experiment. The experiment consisted of a synchronous
motor imagery task performed with the left hand or the right hand. The partic-
ipant had to perform many repetitions or trials composed of three consecutive
periods: rest, motor imagery and relax. Each of these three periods has a duration
of 3 s, therefore the duration of a trial is 9 s. Figure 1 illustrates the temporal
sequence of a trial. In rest period, the participant had to maintain a natural
body position without performing or imaging any body movement. In the motor
imagery period, the participant had to imagine opening and closing either the
left or the right hand at a natural and comfortable pace. The participant was
requested to avoid blinking or performing any movement during the rest and the
motor imagery periods. Finally, in the relax period, the participant could move
and blink.

The experiment was executed in blocks of 20 trials, therefore, a block lasted
3 min. In total, 10 blocks were recorded, that is, 200 trials were recorded which
required 30 min. Note that this resulted in 200 periods of rest, 100 periods of
left motor imagery and 100 periods of rightmotor imagery. For the execution
of the experiment, the participant was seated if front a computer screen that
displayed visual stimuli indicating to perform either, the rest, the motor imagery
or the relax period. The presentation of these visual stimuli, the recording of
the EEG signals from the Emotiv system and the recording of synchronization
signals that marked the rest, motor imagery and relax periods were controlled
by a Raspberry Pi microcomputer with an application developed in Python.

Preprocessing. After the experimental session, a four-order Butterworth-type
bandpass from 2 to 40 Hz and a common average reference (CAR) filters were
applied to the recorded EEG signals. Then, the filtered EEG signals were
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Fig. 1. Temporal sequence of a trial. The trial has a duration of 9 s and consists of
three periods of 3 s each: rest (maintain a natural body position without performing
any movement), motor imagery (imaging opening and closing either the left or right
hand) and relax (blink and/or move any body part).

trimmed in 200 trials of 9 s containing the rest, motor imagery and relax periods,
corresponding to the time intervals [0, 3) s, [3, 6) s and [6, 9) s, respectively.

2.2 Feature Extraction and Selection

It has been established that the execution, imagination, observation or attempt
to perform movements produces changes in the spectral power of the EEG in the
motor-related α ∼ [7, 13] Hz and β ∼ [14, 35] Hz frequency bands of electrodes
located in the motor cortex [6]. Therefore, the spectral power of the recorded
EEG signals were used as features. The Welch’s averaged modified periodogram
method was used to compute the spectral power. The spectral power was com-
puted in the frequency range [6, 40] Hz at a resolution of 1 Hz using Hanning-
windowed windows of length 1 s with overlap of 0.5 s. Therefore, the number of
spectral power values for each electrode is 35. These spectral power values were
computed separately from EEG in the rest period [0, 3) s (and they were labeled
as 0) and from EEG in the motor imagery period [3, 6) s (and they were labeled
as 1 or 2 if the imagined hand was left or right, respectively). As a result, the
feature vector is x ∈ R

n×1 with a class label y ∈ {0, 1, 2} where n = 490 (number
of electrodes × number of spectral power values).

To reduce the dimension of the feature vector, the square of the Pearson’s
correlation (r-squared) was employed to select the channels that present the
higher discriminative power between rest and motor imagery [7]. The r-squared
was computed independently for each electrode between each vector of spectral
power values with the vector of class labels. Then, the four channels that pre-
sented the highest r-squared values were selected while the remaining electrodes
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were discharged and not used in the rest of the study. As a result, the feature
vector is x ∈ R

n×1 with a class label y ∈ {0, 1, 2} where n = 140 (four electrodes
× thirty-five spectral power values).

2.3 Self-organizing Maps (SOM)

Supervised, semi-supervised and unsupervised learning models of artificial neural
networks (ANN) can be developed by Self Organizing Maps (SOM). Inspired by
the visual, aural and sensory areas of the brain, were introduced by Kohonen
and Somervuo [4].

These ANN models are widely used to analyze nonlinear relations between
variables in high volume of data. SOM architecture allows to represent this
information in a reduced space, generally of two dimensions known as a map.
This new space has descriptive characteristics in the same way as in the original
space, showing properties and relations that cannot be seen before, due to the
high number of dimensions [8].

For training, SOM architecture must be fixed, where the number of neurons,
size of the map, type of lattice and neighborhood function information were pro-
vided. Most of these parameters obey to experimental rules with some initial
information. Size of the map was computed based on the inertias relation using
a Multiple Correspondence Analysis (MCA), where the ratio of the two first
inertias is the same to the ratio of wide and high dimensions [9]. Then, number
of neurons was adjusted according with preliminary results measured by activa-
tions of the neurons. Type of lattice was preserved as hexagonal topology due to
yield the same distance between neurons, and a Gaussian neighborhood function
was chosen for its good performance. SOM training is developed mainly in an
unsupervised manner in a process followed by three steps: one of them competi-
tive, then a cooperative one, and finally, an adaptive. Competition stage consists
on an input vector with information extracted from each subject is presented to
the map, and compared with information from synaptic weights of each neuron.
Euclidian distance is used for this comparison and the neuron with weights closer
to the input is defined as the best matched unit (BMU).

Cooperation step is given around the BMU, where neurons around this unit
or neuron are chosen to be updated, modifying its weights through the neigh-
borhood function. Finally, adaptive stage changes the BMU weights and its
neighbors using the expression:

wi(t + 1) = wi + η(t)hij(t)(x(t) − wi(t)) (1)

where x(t) is the input vector, wi(t) are the weights of the map, η(t) is a learn-
ing rate coefficient, and hij(t) is the neighborhood function based on Gaussian
distribution, given by:

hij(t + 1) = exp(−d2ij/2σ2(t)) (2)

where dij(t) is the Euclidian distance between the j input and the BMU, and
σ(t) is the basis of the function in the t iteration. This parameter changes during
the training, beginning with a basis of four units and ending with just one unit.
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Supervised Training. As the task developed by the SOM is about classifi-
cation, a modification in the training was implemented. In the input vector an
extra variable was included with information of the class of to which that input
belongs to. This new variable makes that the training of the SOM has a guide in a
supervised mode. Information of the additional variable was adjusted according
to the three classes presented in the data.

Semi-supervised Training. In this case, three groups were proposed: classes
one to three. This was adjusted after training, where the k-means algorithm
was applied to create three groups based on weights between neurons. The k-
means clustering algorithm worked developing these groups based on distances
between the neurons, joining the closest neurons [10]. According to the number
of activations in each group based on training data presented to the map, labels
were marked for each group of neurons.

2.4 Performance Evaluation

The proposed SOM-based classification was evaluated in the three-class clas-
sification of rest versus left motor imagery versus rightmotor imagery. The
cross-validation technique with ten folds was used to measure the results of the
classification [11]. In each case, nine folds were combined to create the training
set, and then the generalization was measured in the validation fold that was out.
Performance accuracy was measured as the percentage of correct classifications
which was computed separately for each class and for all classes. Performance of
the two established SOM-based classification approaches, supervised SOM and
SOM+k-means, were compared with a clustering developed just by the k-means
algorithm, allowing to determine differences between the use of SOM before and
without the use of this algorithm.

3 Results

Figure 2 shows the classification results for the three proposed approaches. Red
horizontal line points out a performance of 60% (note that the chance level of
the classification accuracy is 33.33% as the number of classes is 3). Results for
the k-means algorithm (Fig. 2c) show that classification is not a stronghold of
the method. Indeed, results just reach a performance of 51% in mean, with a
maximum of 62%. When a SOM was used in combination with the k-means
algorithm (Fig. 2b) is possible to see that rate of classification was improved,
showing that the mapping of the network can be used in a previous task before
the classification is developed. Results with this approach reach a performance
of 61% in mean with a maximum of 77%. Best results were obtained with the
SOM trained in a supervised way (Fig. 2a), where the mean of the performance
was 77% with a maximum of 85% for all classes.

In general, results are comparable with previous studies based on the used
features from the same dataset. Classification methods obtained 80% based on
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Fig. 2. Classification accuracy results obtained for each class and the total for all
of them obtained with (a) Supervised SOM, (b) SOM+k-means, (c) k-means. (Color
figure online)

lattice neural networks (LNN) [12] and 72% as maximum with the used of Sup-
port Vector Machines (SVM) with a radial basis function kernel [13]. Note how-
ever that is the present work we are evaluating the SOM method in a three-class
classification, which is a more difficult tasks than the two-class classification of
the previous studies. It is possible to see for the three approaches, that imagi-
nation of the right hand movement is one of the most difficult classes to match,
where dispersion of the results and the low performance is notable (Fig. 2).

4 Conclusions

This work presented a novel classification model based on self-organized maps
(SOM) to discriminate between mental motor imagery tasks from EEG sig-
nals for brain-computer interfaces (BCI). Traditionally, the SOM method is
employed to carry out clustering analysis. In the present work, the SOM model
was modified to perform supervised classification. The performance of this pro-
posed supervised SOM classifier along with SOM+k-means and k-means alone
were evaluated in a three-class classification scenario consisting of recognizing
motor imagery tasks (rest, left hand and right hand) from spectral power-based
features extracted from EEG signals. The classification results showed that the
proposed supervised SOM yielded the higher accuracies which were above the
chance level. On the basis of the presented results, supervised SOM is a promis-
ing classification model that can be used in real BCI settings to recognize motor
imagery tasks.
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