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Abstract. Stochastic distances combined with Minimum Distance me-
thod for region-based classification of Polarimetric Synthetic Aperture
Radar (PolSAR) image was successfully verified in Silva et al. (2013).
Methods like K-Nearest Neighbors may also adopt stochastic distances
and then used in a similar purpose. The present study investigates the use
of kernel methods for PolSAR region-based classification. For this pur-
pose, the Jeffries-Matusita stochastic distance between Complex Multi-
variate Wishart distributions is integrated in a kernel function and then
used in Support Vector Machine and Graph-Based kernel methods. A
case study regarding PolSAR remote sensing image classification is car-
ried to assess the above mentioned methods. The results show superiority
of kernel methods in comparison to the other analyzed methods.
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1 Introduction

Polarimetric Synthetic Aperture Radar (PolSAR) are sensors able to record the
amplitude, phase and orientation of electromagnetic waves backscattered from
targets in earth surface. PolSAR image classification has been intensively inves-
tigated. Earlier studies about PolSAR image classification were developed with
basis on the supervised Maximum Likelihood Classifier framework considering
as probability density function the Complex Multivariate Wishart distribution
[6] and on unsupervised classification process based on the eigenvalue analysis
of coherency matrix [3].

The study and development of new methods for PolSAR data classification
still being investigated. Region-based classification is useful for radar data, which
c© Springer International Publishing AG, part of Springer Nature 2018
M. Mendoza and S. Velast́ın (Eds.): CIARP 2017, LNCS 10657, pp. 433–440, 2018.
https://doi.org/10.1007/978-3-319-75193-1_52

http://orcid.org/0000-0002-4808-2362
http://orcid.org/0000-0002-1073-9939
http://orcid.org/0000-0002-7069-0479


434 R. G. Negri et al.

are normally analyzed using pixel-based methods. The use of stochastic distances
between Complex Multivariate Wishart distributions on the Minimum Distance
Classifier for region-based classification was verified in [9] and better results were
achieved in comparison to pioneer method proposed in [6]. Through the integra-
tion of stochastic distances between Multivariate Gaussian distributions in kernel
functions, the Support Vector Machine (SVM) and Graph-Based (GB) methods
were used for region-based classification of Synthetic Aperture Radar (SAR) in
[7]. The K-Nearest Neighbors (KNN) method with stochastic distances was also
reported in [7]. However, investigations involving other stochastic distances and
kernel machines for PolSAR data still not made.

Face to the exposed, this study analyzes the use of stochastic distances on
SVM and Graph-Based kernel methods, through kernel functions, for region-
based classification of PolSAR image. Comparisons with the Minimum Distance
Classifier framework investigated in [9] and KNN integrate with stochastic dis-
tances between Complex Multivariate Wishart distributions are presented. Such
comparisons are conducted on a PolSAR image acquired from an actual PolSAR
sensor with different classification scenarios.

2 Stochastic Distances for PolSAR Data

Supposing that targets on PolSAR images has homogeneous texture, the Com-
plex Multivariate Wishart distribution can be used to model such targets:

f(Z;n,Σ) =
n3n|Z|n−3e−nTr(Σ−1Z)

|Σ|nΓ3(n)
, (1)

where Z is a n-looks covariance matrix computed from the average of n backscat-
ter measurements in a neighborhood. Usually, the backscatter measurements
are complex scattering vector zT = (Shh Shv Svv) with components as complex
number representing the amplitude and phase in a transmitting-receiving linear
polarization combination. Regarding the parameters, n is the equivalent number
of looks and Σ represent the target mean covariance matrix computed through
a set of independent samples. In addition, Γ3(n) = π3

∏2
i=0 Γ (n − i), with Γ (·)

representing the gamma function.
In statistical analysis of PolSAR data stochastic distances appears as a pow-

erful tool. These distances quantify the contrast between sets of information with
basis on the dissimilarity between its probability distributions.

Let X and Y random variables following Complex Multivariate Wishart dis-
tributions with parameters ΣX and ΣY , respectively, both with equivalent num-
ber of looks equal to n. The Bathacharrya distance between X and Y is [5]:
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; [0,∞]. (2)

Re-mapping the Bathacharrya measurements from [0,∞] to [0, 2], Jeffries-
Matusita arises as alternative distance:

DJM(X,Y ) = 2
(
1 − e−DB(X,Y )

)
; [0, 2]. (3)
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3 Region-Based Classification and Kernel Methods

The region-based classification process consists of associating a class ωj ⊂ Ω, j =
1, . . . , c, to all pixels that compose a region Ri. The regions Ri, i = 1, . . . , r, are
subsets of pixels that partition the support S ⊂ N

2 of a given image I. For
supervised region-based classification, the decision rule is built using informa-
tion from D = {(Ri, ωj) ∈ S × Ω : i = 1, . . . ,m; j = 1, . . . , c}, a set of labelled
training regions. The notation (Ri, ωj) indicates that Ri is assigned to ωj .

A simple way to perform region-based classification is adopt the Minimum
Distance Classifier framework using stochastic distances as a measure to com-
pare the similarity between classes and unlabeled regions [9]. We refer to this
method as Minimum Stochastic Distance Classifier (MSDC). Formally, let Ri

be an unlabeled region and let D(fRi
, fωj

) be a stochastic distance between the
distributions of the pixels in Ri and the class ωj , represented by fωj

and mod-
eled through the pixels of labeled regions assigned to ωj in D, an assignment
(Ri, ωj) is made when the following rule is satisfied:

(Ri, ωj) ⇔ j = arg min
j=1,...,c

D(fRi
, fωj

). (4)

K-Nearest Neighbors (KNN) is another method successfully adopted for
region-based classification using stochastic distances [7]. For this purpose, D(·, ·)
in (4) is substituted by Dknn(·, ·) defined as:

Dknn(fRi
, fωj

) = e−hj(fRi
), (5)

where hj(fRi
) = #

{(R̄, ωj

) ∈ Vk(Ri)
}
, such that Vk(Ri) is the set of k training

regions close to Ri given a distance D(·, ·). Formally,

Vk(Ri) =
{(R̄p, ωq

) ∈ D : 0 < D(fRi
, fR̄1

)

≤ D(fRi
, fR̄2

) ≤ · · · ≤ D(fRi
, fR̄k

); p = 1, . . . , k; q ∈ {1, . . . , c}} (6)

where R̄p represents a new indexing of the k nearest regions of D based on the
proximity to Ri.

Besides MSDC and KNN, among several methods that may be adopted to
perform region-based classification, kernel-based methods are an option. SVM
[10] and GB [2] are examples of kernel-based methods. Such methods allows
the use of kernel functions, K : X 2 → R, which are usually adopted to improve
classification performance on non-linearly separable data in the original attribute
space X as to generalize the application in problems where the input data are
non-vectorial. In special, for region-based approach where the input data are
regions, the use of an adequately kernel function is a convenient alternative.

A given K : X 2 → R is a kernel function if it is symmetric and conforms
to Mercer conditions. A straight way to define a valid kernel is considering a
general model, like the radial basis model [8]:

K(x,y) = g (d (x,y)) , (7)

where g : R → R is a strictly positive real function and d : X 2 → R is a metric.
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From Eq. (7) it is possible to develop kernel functions for PolSAR region-
based image classification. A reasonable choice for g(·) is the negative exponential
function. With respect to d(·, ·), which measures the similarity between the input
data, adopt a metric based on stochastic distances is convenient. Straightly con-
sidering d(·, ·) as Bathacharrya (Eq. (2)) or Jeffries-Matusita (Eq. (3)) stochastic
distances will not produces valid kernel functions since such distances does not
attains the triangle inequality. However, admitting τ ∈ R+ such that d(x,y) ≤ τ
for all x,y ∈ X , the following expression provides a metric d(·, ·) from a dis-
tance d(·, ·):

d(x,y) =
{

0 if x = y
d(x,y) + τ if x �= y . (8)

Once the values of DJM are limited to [0, 2], a metric DJM is defined substi-
tuting d(·, ·) by DJM(·, ·) and adopting τ = 2 in Eq. (8). As result, the following
kernel function is defined:

KJM(X,Y ) = e−γDJM(X,Y ), (9)

where γ ∈ R+ is a regularization parameter.

4 Experiments and Results

In order to assess the performance of SVM and GB methods adopting the kernel
function defined in Eq. (9) on region-based classification of PolSAR data, a case
study regarding a multi-class remote sensing image classification under three
distinct scenario was carried. The MSDC and KNN methods using the Jeffries-
Matusita distance, as presented in Eqs. (4) and (5), were included in the analysis
for comparison.

The PolSAR data adopted in this study corresponds to an image acquired
on March 13th, 2009, by the ALOS-PALSAR sensor in a region near the Tapa-
jos National Forest, State of Pará, Brazil. This image has approximately 20m
resolution after a 3 × 3 multi-look process. The following land use and land
cover (LULC) types were considered: Primary Forest (PF), Regeneration (RE),
Pasture (PS), Bare Soil (BS) and three types of Agriculture (A1, A2 and A3).
Figure 1(a) present a color composition of the ALOS-PALSAR image. The spa-
tial distribution of LULC samples is depicted in Fig. 1(b), where training and
test samples correspond to solid and void polygons, respectively. Table 1 presents
a summary about the LULC samples. The region-growing method, available in
the Geographic Information System SPRING [1], was used in order to segment
the image and define the regions. The segmentation parameters were chosen
by visual inspection. Figure 1(c) represents the contours of the regions on the
segmented study image.

As above mentioned, three distinct classification scenarios were considered.
The first scenario is composed by all LULC classes identified in the study area.
From the union of the agriculture classes (i.e., A1, A2 and A3) it is defined
the new class called Agricultural Areas (AA), and then a second scenario it is
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(a) Study image (b) LULC samples (c) Segmentation

Fig. 1. PolSAR image, LULC samples and segmentation used in the study. (Color
figure online)

Table 1. Summary of the LULC samples.

LULC classes Training Testing

Polygons Pixels Polygons Pixels

Agriculture 1 (A1) 4 3669 8 7455

Agriculture 2 (A2) 4 2902 8 6731

Agriculture 3 (A3) 3 2332 8 7049

Primary Forest (PF) 3 5430 10 29306

Pasture (PS) 5 3334 10 12866

Regeneration (RE) 5 2570 10 7307

Bare Soil (BS) 5 5384 11 13352

created with the five classes AA, PF, PS, RE and BS. The last scenario has the
Agricultural Areas, High Biomass (HB) and Low Biomass (LB) classes. While
HB is obtained merging PF and RE classes, LB comes from the union between PS
and BS. Such scenarios represent plausible situations, once classes with similar
semantic are merged from scenario 1 to define the classes of scenarios 2 and
3. Additionally, worth observe that each scenario has a specific complexity in
terms of number of classes and inter/intra-class contrasts. Consequently, its use
for comparison purposes allows more robust analysis of the investigated methods.
It is valid mention that training and testing samples of AA, HB and LB classes
arise by simple merging the sample polygons of the individual classes.

The selections of adequate number of neighbors (k – KNN), penalty (C –
SVM), neighbors influence (α – GB) and kernel regularization (γ – Eq. (9))
parameters were based on a grid search process with tenfold cross-validation.
The space search for each parameter was: k ∈ {3, 5, 7, 9}, C ∈ {1, 10, 100, 1000,
10000}, α ∈ {0.1, 0.2, . . . , 1.0} and γ ∈ {0.25, 0.5, . . . , 3.0}. The one-against-all
multi-class strategy was adopted by SVM.

Concerning the PolSAR image and LULC classes in different scenarios, a
total of 12 classification results were obtained. The accuracy of results were
calculated by means of kappa agreement coefficient, regarding the LULC testing
samples, and hypothesis test with 5% significance level were performed in order
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to compare the kappa values [4]. The analyzed methods were also compared in
terms of computational time. The experiments were performed using a computer
with an Intel Core i7 processor and 16 GB of RAM running the Ubuntu Linux
version 14.4 operating system. The implementations were conducted using the
IDL (Interactive Data Language) programming language. The performance of
analyzed methods are shown in Fig. 2.
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Fig. 2. Accuracy (kappa) and computational time (seconds) of analyzed methods. Error
bars representing ±1 kappa standard deviation.

As initial discussion, we can observe that low kappa values were assigned to
MSDC. Furthermore, the accuracy of MSDC decreases as the number of classes
also decreases along the scenarios. This behavior is assigned to the scenario
complexity, which increase when some LULC classes are merged giving place to
new classes with higher variability.

Regarding the first scenario, the most accurate results was achieved by KNN
method. Although GB presented a lower kappa coefficient in comparison to KNN,
its accuracy values are statistically equivalent.

The accuracy levels presented by SVM and GB were higher in scenario 2
compared to other scenarios, where SVM was more accurate. It is worth note
that KNN was superior to MSDC.

We also can observe that the variability of the classes in scenario 3 plays less
effect on SVM and GB than MSDC and KNN. Furthermore, SVM and GB are
statistically equivalent in this scenario.

Face to its simple algorithmic implementation, MSDC is the less expensive
method in terms of computational time. SVM presents the higher computa-
tional time, which tends to increase as the amount of classes increase in reason
of its multi-class classification architecture. An intermediate cost between MSDC
and SVM is presented by GB method. As consequence of multiple comparisons
needed to build the decision rule to classify each unlabeled region, KNN pre-
sented computational time over 5100 s.

Figure 3 depicts the classification results for each method and scenario. It
can be note that, independently of method, RE and PS classes were not well
discriminated in scenarios 1 and 2. In the first scenario, while MSDC and KNN
were not able to discriminate BS areas, SVM and GB fails to identify A2 areas.
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GB tends to classify A1 as BS and SVM frequently classifies PS as RE areas.
Focusing the second scenario, MSDC was imprecise classifying AA areas as SVM
the BS class and KNN pasture areas. The last scenario reveals MSDC and KNN
as unable to distinguish LB and AA classes.

(a) MSDC – S1 (b) KNN – S1 (c) SVM – S1 (d) GB – S1

(e) MSDC – S2 (f) KNN – S2 (g) SVM – S2 (h) GB – S2

(i) MSDC – S3 (j) KNN – S3 (k) SVM – S3 (l) GB – S3

Fig. 3. Classification results obtained by the analyzed methods in each scenario. Sce-
narios 1, 2 and 3 are identified by S1, S2 and S3, respectively.

5 Conclusions

This study verified the performance SVM and GB on region-based classifica-
tion of PolSAR image in comparison to MSDC and KNN. The Jeffries-Matusita
stochastic distances between Complex Multivariate Wishart distributions was
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integrated in a kernel function and then adopted by SVM and GB. A case study
about LULC classification using ALOS-PALSAR image was addressed.

Both SVM and GB achieved higher accuracy levels, especially on scenar-
ios with higher intra-class variability. Regarding the first scenario, where the
contrast between classes is higher, KNN provided more accurate results. Lower
accuracy values are assigned to MSDC in comparison to the analyzed methods.

The better tradeoff between classification accuracy and computational cost
is offered by GB. Consequently, the GB method becomes a potential alternative
for region-based classification of PolSAR data. Although KNN allowed accurate
results the computational time its main drawback.
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this research.
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