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Abstract. The automatic assessment of emotional states has impor-
tant applications in human-computer interfaces and marketing. Several
approaches use a dimensional characterization of emotional states along
with features extracted from physiological signals to classify emotions
elicited from complex audiovisual stimuli; however, the classification
accuracy remains low. Here, we develop an emotion assessment approach
using a variability-based ranking scheme to reveal relevant coherence fea-
tures from electroencephalography (EEG) signals. Our method achieves
higher classification accuracies than comparable state-of-the-art meth-
ods and almost matches the performance of multimodal strategies that
require information from several physiological signals.
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1 Introduction

The automatic recognition of emotional states is an active area of research due
to its wide range of possible applications, including human-computer interfaces
(HCI), targeted publicity, automatic video tagging, among others [2,8]. Usually,
emotional states are studied using either a discrete or a dimensional representa-
tion. The discrete representation associates them to a series of specific emotions,
e.g. joy, anger, fear, sadness, etc. On the other hand, the dimensional approach
uses a set of latent dimensions that describe each emotional state regarding the
physiological responses that emotions induce. The dimensional representation
has the advantage of allowing a broad range of emotions to be described as
a combination of the basic dimensions. Commonly, the arousal/valence dimen-
sional spaces are considered, where each emotion is represented in terms of the
active or passive response to a stimulus (arousal dimension), and the positive or
negative response to the same stimulus (valence dimension) [5].

Once the emotional state representation has been established, the type of
data from which those states can be assessed must be selected. Both audiovisual
(facial expressions and speech patterns) and physiological data have been used
for this purpose [2]. The latter have the advantage of not being regulated by
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the subject. In particular, the information provided by electroencephalography
(EEG) signals has well-established connections to cognitive processes and emo-
tional states [3,4]. Nonetheless, the use of EEG signals for emotion recognition
is far from being straightforward, since complex spatiotemporal relationships
between EEG channels have to be characterized to capture patient and stimuli
specific variations associated with each emotional state. In [10] power spectral
density features extracted from EEG are used for emotional state classification
in the arousal/valence dimensional space. Others have proposed more complex
feature extraction schemes based on wavelet decomposition [2], brain connectiv-
ity measures and graph theory [4,6], or a characterization by spatially compact
regions of interest [8]. In [11] a multimodal approach using EEG and other six
physiological signals, along with an ensemble deep learning classifier, was used
to recognize binary arousal or valence states. However, the accuracies achieved
by these approaches when complex stimuli, such as music videos, are used to
elicit the emotional response remain relatively low, and there is still uncertainty
about which features of the EEG signal are the most relevant.

Here, we introduce a patient dependent approach for emotional state classifi-
cation in the arousal/valence dimensional space, using a functional brain connec-
tivity based characterization of EEG signals. The functional brain connectivity
measure, termed coherence, is used to extract frequency and spatiotemporal
dependent features from EEG. In turn, these features are ranked according to a
variability-based relevance analysis, and input to a K-nearest neighbor classifier.
Obtained results show that our method outperforms the state-of-the-art tech-
niques concerning the classification accuracy in a public database while using a
simple classifier and features extracted only from EEG signals. Also, it almost
matches the performance of multimodal strategies that require information from
several physiological signals. The remainder of the paper is organized as follows:
Sect. 2 introduces the theoretical foundations, Sect. 3 describes the experiments
and obtained results, and Sect. 4 presents the conclusions.

2 Variability-Based Ranking of the Coherence Features

Let Ψ = {Xn ∈ R
C×M}Nn = 1 be an EEG set holding N trials of an emotion elici-

tation experiment with C channels and M samples. Besides, let Y ∈ {−1, 1}N be
a label set for a particular experiment; where the n-th element yn corresponds to
the emotion dimension class obtained for trial Xn. Our goal is to infer the class
label yn from a set of features extracted from Xn. Thus, we use a functional brain
connectivity analysis, termed magnitude square coherence or coherence, to code
spatiotemporal and frequency dependencies among EEG channels as follows: let
xc,xc′ ∈ R

M be a pair of simultaneously recorded EEG signals belonging to Xn,
their coherence γcc′(f) ∈ [0, 1] at frequency f is given by:

γcc′(f) =
|Scc′(f)|2

Scc(f)Sc′c′(f)
, (1)

where Scc′(f) ∈ C is the cross-spectrum between xc and xc′ , and Scc(f),
Sc′c′(f) ∈ C are the auto-spectral densities of xc and xc′ , respectively. Namely,
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the cross-spectrum is the Fourier transform of the cross-correlation function
between the two signals. Analogous relationships hold for the auto-spectral
densities. γcc′(f) is a linear measure of the relationship stability between xc

and xc′ with respect to power asymmetry and phase behavior [9]. Thus, a
matrix Γn ∈ R

P×C(C−1
2 ) holding the coherence values for a range of frequen-

cies f ∈ R
P between all pairwise, non-repeating EEG channel combinations

characterizes the trial Xn regarding linear functional relationships in the fre-
quency and spatial domains. The latter because of the spatial location of the
EEG electrode associated with each channel. Temporal information can also
be included in the coherence based characterization by splinting each chan-
nel xc into Q segments through a windowing procedure, using a window of
length L < M , so that for each channel there is a set {zj

c ∈ R
L}Qj = 1. The

coherence analysis is then performed over each element of a set of matrices
{Zj

n ∈ R
C×L}Qj = 1, holding row vectors zj

c . The result is a set of coherence

matrices ζn = {Γj
n ∈ R

P×C(C−1
2 )}Qj = 1 which could be used directly to infer yn.

However, the high dimensionality of ζn poses a discrimination hurdle, and the
need to rank the features contained in ζn arises, so that only the most relevant
ones are used in further classification stages.

In this sense, a variability dependent relevance analysis, based on Principal
Component Analysis (PCA), is performed as follows: vector concatenation is
applied to ζn to yield a vector λn ∈ R

D, with D = P × C(C−1
2 ) × Q. Then,

the N coherence vectors λn, corresponding to each trial, are stacked to form a
matrix Λ ∈ R

N×D with the coherence information of the entire EEG dataset Ψ.
Afterwards, a relevance index vector ρ ∈ R

D is computed as follows:

ρ = E (|ρdαd| : ∀d ∈ D′ ≤ D) , (2)

where ρd ∈ R
+ and αd ∈ R

D are the eigenvalues and eigenvectors of the covari-
ance matrix Λ�Λ/D, and D′ depends on the percentage of variance retained
from the input data [1]. Under the assumption that emotions are better assessed
in the frequency domain [4,10], the relevance vector ρ is averaged over the fre-
quency using knowledge about the structure of λn. The average vector ρ̄ ∈ R

P

can then be used to rank λn according to the most discriminant features, that
is, the frequencies that present the highest variability in the coherence values.
Therefore, only the p < P features λp

n ∈ R
H , with H = p × C

(
C−1
2

) × Q, cor-
responding to the most relevant frequencies as indicated by the p largest values
of ρ̄, are selected to discriminate emotional states.

3 Experiments and Results

To test the proposed method for emotional state classification, we used the
pre-processed version of the Database for Emotion Analysis Using Physiologi-
cal Signals (DEAP) [5]. This database consists of EEG records taken from 32
subjects while performing 40 trials of an emotion elicitation experiment. In each
experiment the subjects were exposed to a music video, then they rated their
response to the each video in two scales, from 1 to 9, in the valence and arousal
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emotional dimensions. The valence scale ranged from unpleasant to pleasant,
while the arousal scale ranged from inactive or calm to active or excited. The
EEG data were acquired using a 32 channel BioSemi ActiveTwo system. The
preprocessed dataset underwent artifact removal, a frequency down-sampling to
128 Hz, and a bandpass filtering from 4–45 Hz. Besides, the data was averaged
to the common reference and segmented into 60 s trials. Since our goal is to use
EEG data of a particular subject to infer his or her emotional response to a
stimulus, we recast the emotion state assessment task as two binary classifica-
tion problems. The rating scales for both variance and arousal were divided into
low (from 1 to 5) and high (from 5 to 9) levels, and given class labels −1 and
1, respectively. To characterize the EEG data corresponding to each trial, the
coherence was computed as explained in section Sect. 2, using 12 s long Hamming
window with a 50% overlap to segment the signals and add temporal variation
to the coherence data [2]. Only the coherence values for frequencies between 5 Hz
and 45 Hz were considered, because of abnormally high variance present beyond
the cutoff frequencies of the bandpass filter applied to the data. Then, to rank
the coherence features in the frequency domain, the variability-based analysis
described in section Sect. 2 was performed, setting the percentage of retained
variance to 98%. Next, the features ranked according to the average relevance
vector ρ̄ ∈ R

P , P = 161, were used as inputs, in a progressive and accumulative
fashion, to a classification algorithm. The classification procedure was carried
out using a Gaussian similarity-based K-nearest neighbor classifier. The number
of nearest neighbors of the classifier was selected for each subject from the range
K = {1, 3, 5, 7, 9, 11} as the one producing the highest classification accuracy.
We employed a nested cross-validation scheme of 10 repetitions, where 70% of
trials were used as the training set and the remaining 30% as the test set.

Fig. 1. Graphical representation of the coherence between EEG channels for a DEAP
subject. The plots show the coherence for the trials rated as eliciting (a) minimum
valence, and (b) maximum valence in the original rating scale ranging from 1 to 9.
(Coherence plots obtained with the Matlab toolbox HERMES [7]).

Figure 1 shows a graphical representation of the coherence between EEG
channels for the trials rated as eliciting minimum valence (Fig. 1(a)), and maxi-
mum valence (Fig. 1(b)) in one of the subjects of the database. The nodes of the
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plots represent the spatial distribution of the 32 EEG channels associated with
the positions of the corresponding electrodes on the scalp (the uppermost nodes
correspond to the electrodes located closer to the anterior part of the head). The
lines joining the nodes represent coherence values, at a given frequency, between
the joined nodes or channel pairs larger than a threshold level. Our method aims
to exploit the difference in brain functional connectivity generated by different
emotional states, as measured by the coherence, to identify those states from
EEG data.
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Fig. 2. Top row: average classification accuracy for two different subjects as a function
of the number of relevant coherence features p for (a) valence and (b) arousal. Bottom
row: average relevance vectors ρ̄ used to rank the coherence features, the vectors in (c)
were used to rank the features in (a), and analogously for (d) and (b).

To take advantage of the wealth of information provided by the coherence,
while avoiding the problems posed by the high dimensionality of these data, we
introduced a variability based relevance analysis of the coherence features. This
analysis allows ranking the features so that they can be input to the classifier in
a progressive and accumulative way. Figure 2(a) and (b) show the effects on the
classification accuracy, for the valence and arousal emotional dimensions, of using
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Fig. 3. Maximum classification accuracy distributions for (a) valence, and (b) arousal,
holding the number of coherence features in (c) and (d), respectively. (e) shows the
maximum valence and arousal classification accuracy distributions for all subjects.

an increasing number p of features as inputs to the classifier. The first feature
used corresponds to the most relevant one in the frequency domain according to
the relevance vector ρ̄. Figure 2(c) and (d) show the average values of ρ̄ used to
rank the features employed to obtain Fig. 2(a) and (b), respectively. The behavior
of ρ̄ for each subject is remarkably stable, with small variations for the different
folds of the cross-validation scheme. This behavior points to the feasibility of
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using a variability index obtained from a training set to rank the coherence
features of a new input from the same subject. Larger variations in ρ̄ are evident
in an inter-subjects comparison. Such comparison also shows that, in average,
the most relevant features correspond to the theta (θ: 4–8 Hz) and alpha (α: 8–
13 Hz) frequency bands. These frequency bands, and especially the alpha band,
have been widely used as indicators of emotional states [4]. The peak midway
between the cutoff frequencies of the bandpass filter applied to the data is more
likely be the result of variation introduced in the coherence by the filter itself,
rather than being a reflection of relevant neurophysiological activity. Another
significant result that can be observed in Fig. 2 is that the method achieves
its best performance, with respect to the classification accuracy, for a p value
that can be lower than the total number of coherence features P (Fig. 2(a) and
(b)). Besides, the value of p that produces the maximum classification accuracy
varies among subjects and between the emotion dimensions. These results are
presented more clearly in Fig. 3.

Figure 3(a) and (b) show the maximum classification accuracies for each sub-
ject for the level of valence and arousal, respectively. Figure 3(c) and (d) show the
number of coherence features p at which the system reached the maximum accu-
racies for each subject. Figure 3(c) and (d) highlight the fact that the number of
input features required to attain the best performance of the system varies both
among subjects and within subjects when either valence or arousal are assessed.
When the adequate p is selected, the system achieves median classification accu-
racies for every subject in the database between 60% and 91% for the valence
level, and between 55% and 96% for the arousal level. The overall performance
of the system under the same condition stated above is shown in Fig. 3(e). The
maximum classification accuracy distributions for all subjects show a median
accuracy of 75% for both the valence and arousal levels. Those results put the
performance of the proposed method at the top of similar approaches in the
state-of-the-art that tackle the emotion assessment problem and test their meth-
ods in the DEAP database, and only slightly below the multimodal approach
proposed in [11] that uses not only EEG but also other six physiological signals.
A comparison with such methods is presented in Table 1.

Table 1. Classification accuracy [%] for all subjects in DEAP.

Approach Arousal Valence

Koelstra et al. [5] 62.00 57.60

Soleymani et al. [10] 62.10 50.50

Gupta et al. [4] 65.00 60.00

Padilla-Buritica et al. [8] 52.80 58.60

Daimi et al. [2] 66.90 65.30

Yin et al. (multimodal strategy) [11] 77.19 76.17

Our method 75.00 75.00
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4 Conclusions

In this study, we developed a patient-specific method to assess from EEG signals
the emotional state, in the arousal/valence dimensional space, elicited by audio-
visual stimuli. Our method first characterizes the EEG signals using coherence, a
functional brain connectivity measure. Next, the frequency and spatiotemporal
temporal information contained in the coherence features is ranked according to
a variability analysis based on PCA, under the assumption that those features
with the highest degree of variability will be the most discriminant, then the
classification is carried out using a K-nearest neighbor classifier. Our approach
outperforms most of the state-of-the-art methods that use EEG for emotional
state assessment regarding the classification accuracy and obtains results close
to those of a multimodal approach that uses data from several physiological
signals. As future work, our method can likely be further improved by the uti-
lization of a more robust classifier, e.g., support vector machine, and by the
inclusion of directionality in the brain connectivity analysis., e.g., partial directed
coherence.
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tema de apoyo al diagnóstico no invasivo de pacientes con epilepsia fármaco-resistente
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