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Abstract. In graph matching, Graph Edit Distance (GED) is a well-
known distance measure for graphs and it is a NP-Hard minimization
problem. Many heuristics are defined in the literature to give approxi-
mated solutions in a reasonable time. Some other work have used math-
ematical programming tools to come up with Mixed Integer Linear
Program (MILP) models. In this work, a heuristic from Operational
Research domain, is proposed and adapted to handle GED problem.
It is called Local Branching and operates over a MILP model, where it
defines neighborhoods in the solution space by adding the local branch-
ing constraint. A black-box MILP solver is then used to intensify the
search in a neighborhood. This makes the solution search very fast, and
allow exploring different sub-regions. Also, it includes a diversification
mechanism to escape local solutions and in this work this mechanism is
modified and improved. Finally, it is evaluated against other heuristics
in order to show its efficiency and precision.
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1 Introduction

A powerful and well-known tool to represent patterns and objects is offered by
the graph-based representation. Graphs are able to depict the components of a
pattern by the mean of vertices, and the relational properties between them using
edges. Moreover, through the attributes (labels) that are assigned to vertices and
edges, a graph can carry more information and characteristics about the pat-
tern. Finding the (dis)similarities between two graphs requires the computation
and the evaluation of the best matching between them. Since exact isomorphism
rarely occurs in pattern analysis applications, the matching process must be
error-tolerant, i.e., it must tolerates differences in the topology and/or its label-
ing. Finally, graphs can be used in tasks such as classification and clustering, by
studying and comparing them. Error-tolerant graph matching problem is known
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to be difficult, mainly due to its computational complexity, especially for large
graphs. Graphs have become popular in the context of Structure-Activity Rela-
tionships (SAR), since they provide a natural representation of the atom-bond
structure of molecules. Each vertex of the graph then represents an atom, while
an edge represents a molecular bond [9]. SAR is an important application field
for graph matching.

Graph Edit Distance (GED) problem is an error-tolerant graph matching
problem. It provides a dissimilarity measure between two graphs, by comput-
ing the cost of editing one graph to transform it into another. The set of edit
operations are substitution, insertion and deletion, and can be applied on both
vertices and edges. Solving the GED problem consists of finding the set of edit
operations that minimizes the total cost. GED, by concept, is known to be flex-
ible because it has been shown that changing the edit cost properties can result
in solving other matching problems like maximum common subgraph, graph and
subgraph isomorphism [3]. Also, GED problem has many applications such as
Image Analysis, Handwritten Document Analysis, Malware Detection, Bio- and
Chemoinformatics and many others [12]. GED is a NP-Hard problem [13], so
the optimal solution cannot be obtained in polynomial time. Nevertheless, many
heuristics have been proposed to compute good solutions in reasonable amount
of time. The works in [10,11] presented fast algorithms that mainly solve the
linear sum assignment problem for vertices, and then deduce the edges assign-
ment. The vertices cost matrix includes information about the edges, through
estimating the edges assignment cost implied by assigning two vertices. However,
one drawback in this approach is that it takes into account only local structures,
rather than the global one. Other algorithms based on beam search are presented
in [4,8]. The first builds the search tree for all vertices assignment, then only the
beam-size nodes are processed. While the second solves the vertices assignment
problem, and then using beam search, it tries to improve the initial assignment
by switching vertices, and re-computing the total cost. On the other hand, GED
problem is addressed by the means of mathematical programming tools. Two
types of mathematical formulations can be found in the literature: linear models
as in [6,7] and quadratic as in [2].

This work proposes the use of Local Branching (LocBra) heuristic, which is
well-known in Operational Research domain. It is presented originally in [5] as a
general metaheuristic for MILP models. It makes use of a MILP solver in order
to explore the solution space, through a defined branching scheme. As well, it
involves techniques, such as intensification and diversification during the explo-
ration. To benefit from the efficiency of these techniques, a LocBra version is
designed and adapted to handle the GED problem. Also, the original diversifi-
cation is modified to consider information about the problem that will improve
the exploration and return better solutions. Since LocBra depends on a MILP
model, MILP JH is chosen in the implementation of LocBra. Because to the best
of our knowledge, it is one of the most efficient for GED problem [7]. Hence-
forth, the heuristic is referred to as LocBra GED. Subsequently, it is evaluated
and compared with existing competitive heuristic algorithms. The remainder is
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organized as follows: Sect. 2 presents the definition of GED problem, followed
with a review of MILP JH model. Then, Sect. 3 details the proposed heuristic.
And Sect. 4 shows the results of the computational experiments. Finally, Sect. 5
highlights some concluding remarks.

2 GED Definition and MILPJH Model

An attributed graph is a 4-tuple G = (V,E, μ, ξ) where, V is the set of vertices,
E is the set of edges, such that E ⊆ V × V , μ : V → LV (resp. ξ : E → LE) is
the function that assigns attributes to a vertex (resp. an edge), and LV (resp.
LE) is the label space for vertices (resp. edges).

Next, given two graphs G = (V,E, μ, ξ) and G′ = (V ′, E′, μ′, ξ′), GED is the
task of transforming one graph source into another graph target. To accomplish
this, GED introduces the vertices and edges edit operations: (u → v) is the
substitution of two nodes, (u → ε) is the deletion of a node, and (ε → v) is the
insertion of a node, with u ∈ V, v ∈ V ′ and ε refers to the empty node. The same
logic goes for the edges. The set of operations that reflects a valid transformation
of G into G′ is called a complete edit path, defined as λ(G,G′) = {e1, . . . , ek}
where ei is an elementary vertex (or edge) edit operation and k is the number
of operations. GED is then

dmin(G,G′) = min
λ∈Γ (G,G′)

∑

ei∈λ

c(ei) (1)

where Γ (G,G′) is the set of all complete edit paths, dmin represents the minimal
cost obtained by a complete edit path λ(G,G′), and c is the cost function that
assigns the costs to elementary edit operations.

MILP JH is a model proposed in [6], that solves the GED problem. The main
idea consists in determining the permutation matrix minimizing the L1 norm of
the difference between adjacency matrix of the input graph and the permuted
adjacency matrix of the target one. The details about the construction of the
model can be found in [6]. The model is as follows:

min
P,S,T∈{0,1}N×N

N∑

i=1

N∑

j=1

c (μ(ui), μ′(vj)) P ij +
(

1
2

× const × (S + T )ij

)
(2)

such that
(AP − PA′ + S − T )ij = 0 ∀i, j ∈ {1, N} (3)

N∑

i=1

P ik =
N∑

j=1

P kj = 1 ∀k ∈ {1, N} (4)

where A and A′ are the adjacency matrices of graphs G and G′ respectively,
c : (μ(ui), μ′(vj)) → R

+ is the cost function that measures the distance between
two vertices attributes. As for P, S and T , they are the permutation matrices
of size N × N , and of boolean type, with N = |V | + |V ′|. P represents the
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Fig. 1. Local branching flow. (a) Depicts the left and right branching. (b) Shows the
neighborhoods in the solution space

vertices matching e.g. P ij = 1 means a vertex i ∈ V ∪ {ε} is matched with
vertex j ∈ V ′ ∪{ε}. While S and T are for edges matching. Hence, the objective
function (Eq. 2) minimizes both, the cost of vertices and edges matching. As
for constraint 3, it is to make sure that when matching two couples of vertices,
the edges between each couple have to be mapped. Constraint 4 guarantees
the integrity of P . This model has a limitation that it does not consider the
attributes on edges, so edge substitution costs 0 while deletion and insertion
have a const ∈ R

+ cost.

3 Local Branching Heuristic for GED

The general MILP formulation is of the form:

min
x

cT x (5)

Ax ≥ b (6)

xj ∈ {0, 1},∀j ∈ B �= 0 (7)

xj ∈ N,∀j ∈ I (8)

xj ∈ R,∀j ∈ C (9)

where the variable index set is split into three sets (B, I, C), respectively stands
for binary, integer and continuous. MILP JH can be written in the same form,
where the sets I = C = {φ} since all the variables are binary.

As presented in [5], LocBra heuristic is a local search approach that makes use
of MILP solver to explore the neighborhoods of solutions through a branching
scheme. In addition, it involves mechanisms such as intensification and diversi-
fication. Starting from an initial solution x0, it defines the k-opt neighborhood
N(x0, k), with k a given integer. In other words, the neighborhood set contains
the solutions that are within a distance no more than k from x0 (in the sense of
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Hamming distance). This implies adding the following local branching constraint
to the base MILP JH model:

Δ(x, x0) =
∑

j∈S0

(1 − xj) +
∑

j∈B\S0

xj ≤ k (10)

such that, B is the index set of binary variables defined in the model, and
S0 = {j ∈ B : x0

j = 1}. This new model is then solved leading to the search of
the best solution in N(x0, k). This phase corresponds to intensifying the search
in a neighborhood e.g. node 2 in Fig. 1a. If a new solution x1 is found, the
constraint (Eq. 10) is replaced by Δ(x, x0) ≥ k + 1 (node 3 in Fig. 1a). This
constraint makes sure that visited solutions (e.g. x0) will not be selected twice.
Next, a new constraint Eq. 10 is added but now with x1 to explore its neighbor-
hood. The process is repeated until a stopping criterion is met e.g. a total time
limit is reached. Moreover, it cannot be generalized that an improved solution
could be found, due to reasons such as node time limit is reached or the problem
may become infeasible. For instance, assuming that at node 6 (Fig. 1a) the solu-
tion of model MILP JH plus equation Δ(x, x2) ≤ k does not lead to a feasible
solution in the given time limit. It might be interesting to apply a complemen-
tary intensification phase, by adding constraint Δ(x, x2) ≤ k/2 and solving the
new model. If again, no feasible solution is found (e.g. node 7 of Fig. 1a), then a
diversification phase is applied by adding the constraint Δ(x, x2) ≥ k dv (with
k dv a positive integer), to jump to another point in the solution space (e.g.
node 8). The diversification constraint simply forces the algorithm to change the
region in the search space by choosing any solution that has k dv differences from
the current solution (the authors in [5] uses another diversification constraint).
Figure 1b shows the evolution of the solution search and the neighborhoods.

The key point of this heuristic is the selection of the variables while branch-
ing. To adapt the method to GED, Δ(x, xi) is replaced by Δ′(x, xi) where x
contains only the set of binary variables that represent the vertices assignment
(edges assignment are excluded). The reason behind this relies on the fact that
edges assignment are driven by the vertices assignment, i.e. deleting one vertex
implies deleting all edges that are connected to it, this is based on the definition
of the GED problem. Another improvement is proposed for the diversification
mechanism, where also not all binary variables are included but a smaller set
of important variables is used instead. The diversification constraint is then
Δ′′(x, xi) =

∑
j∈Si

imp
(1 − xj) +

∑
j∈Bimp\Si

imp
xj ≥ k dv with Bimp is the index

set of binary important variables and Si
imp = {j ∈ Bimp : xi

j = 1}. The selection
of these variables is based on the assumption that one variable is considered
important if changing its value from 1 → 0 (or the opposite) highly impacts
the objective function’s value. This, in turn, helps skipping local solutions and
change the matching. Accordingly, Bimp is defined by computing a special cost
matrix [Cij ] for each possible assignment of a vertex i ∈ V ∪ {ε}, to a vertex
j ∈ V ′ ∪ {ε}. Each value Cij = cij + θij , where cij is the vertex operation cost
induced by assigning vertex i to vertex j, and θij is the cost of assigning the set of
edges Ei = {(i, v) ∈ E} to Ej = {(j, v′) ∈ E′}. This assignment problem, of size
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max(|Ei|, |Ej |) × max(|Ei|, |Ej |), is solved by the Hungarian algorithm which
requires (O(max(|Ei|, |Ej |)3)) time. Next, the standard deviation is computed
at each row of the matrix [Cij ], resulting in a vector [σi]. The values in [σi]
are split into two clusters min and max. Finally, for every σi belonging to max
cluster, the indexes of all binary variables that represent a vertex assignment for
i are added to Bimp. Consequently, the local structure of a vertex is considered
to assess its influence on the objective function value. Preliminary experiments,
not reported here, have shown that such diversification helps improving the local
branching heuristic better than the original diversification defined in [5].

4 Computational Experiment

Database: There are many graph databases that represent chemical molecules
e.g. MUTA, PAH, MAO [1] in the literature. In the current experiment, MUTA
database is chosen because it contains different subsets of small and large graphs
and known to be difficult. There are 7 subsets, each of which has 10 graphs of
same size (10 to 70 vertices) and a subset of also 10 graphs with mixed graph
sizes. Each pair of graphs is considered as an instance. Therefore, a total of 800
instances (100 per subset) are considered in this experiment.

Comparative heuristics and experiment settings: To solve the MILP JH ,
the solver CPLEX 12.6.0 is used in mixed-integer programming mode.
LocBra GED algorithm is implemented in C language. The tests were exe-
cuted on a machine with the following configuration: Windows 7 (64-bit), Intel
Xeon E5 4 cores and 8 GB RAM. LocBra GED is applied on all instances with
the following parameter values: k = 20, k dv = 30, total time limit = 900s,
node time limit = 180s. Since LocBra GED uses CPLEX with time limit, it is
interesting to study the performance of the solver itself with the same time limit
in order to see whether the proposed heuristic actually improves the solution of
the problem, the method is called CPLEX-900s. Other competitive heuristics
are included in the experiment such as BeamSearch and SBPBeam. Both are
based on beam-search method, so their performance varies based on the choice
of the beam size, therefore two versions of each are considered: BeamSearch 5,
BeamSearch 15000, SBPBeam 5 and SBPBeam 400. All parameter values are set
based on preliminary experiments that are not shown here. For instance, beam
sizes 15000 and 400 increases the execution time of BeamSearch and SBPBeam
to be around 900s. For each heuristic, the following values are computed for each
subset of graphs: tavg is the average CPU time in seconds for all instances. Then,
dmin, davg, dmax are the deviation percentages between the solutions obtained by
one heuristic, and the optimal solutions. Given an instance I and a heuristic H,
deviation percentage is equal to solutionH

I −optimalI
optimalI

× 100, with optimalI is the
optimal solution for I. Lastly, ηI represents the number of solutions obtained by
a heuristic that are equal to the optimal ones.

Results and analysis: Table 1 shows the results of the experiment. Looking
at ηI , LocBra GED and CPLEX 900s heuristics seem to have the highest val-
ues among the others. Moreover, LocBra GED has higher values than CPLEX
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Table 1. LocBra GED vs. literature heuristics on MUTA instances.

S 10 20 30 40 50 60 70 Mixed

optI 100 100 100 99 92 71 35 91

LocBra GED tavg 0.17 1.12 212.36 359.45 552.21 693.54 474.97 276.79

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

davg 0.00 0.00 0.00 0.06 0.00 0.33 0.76 0.22

dmax 0.00 0.00 0.00 3.90 0.00 3.57 8.57 3.43

ηI 100 100 100 97 92 63 28 84

CPLEX 900s tavg 0.13 1.02 141.07 241.21 412.36 651.43 458.20 246.90

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

davg 0.00 0.00 0.00 0.00 0.29 0.57 1.80 0.29

dmax 0.00 0.00 0.00 0.00 6.42 6.86 8.61 6.86

ηI 100 100 100 99 84 58 22 87

BeamSearch 5 tavg 0.00 0.00 0.01 0.03 0.07 0.11 0.16 0.08

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

davg 15.17 36.60 47.21 58.73 73.73 66.47 57.76 27.02

dmax 110.00 124.59 147.37 186.67 200.00 146.37 210.71 120.00

ηI 35 10 10 10 10 10 10 11

BeamSearch 15000 tavg 8.57 80.65 167.48 278.70 436.20 610.82 777.43 782.78

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -

davg 1.35 26.66 47.45 52.53 65.77 66.34 78.36 -

dmax 30.00 142.31 165.52 180.00 150.00 157.63 226.79 -

ηI 88 12 10 10 10 10 10 -

SBPBeam 5 tavg 0.01 0.10 0.45 1.37 3.18 5.54 10.91 2.90

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

davg 20.43 44.90 76.45 82.74 101.63 101.39 107.02 30.31

dmax 90.00 127.87 206.90 204.71 314.29 198.50 280.36 133.71

ηI 15 10 10 10 10 10 10 10

SBPBeam 400 tavg 0.84 10.02 47.65 139.78 321.21 587.96 1144 279.17

dmin 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

davg 20.43 44.90 76.45 82.74 101.63 101.39 107.02 30.00

dmax 90.00 127.87 206.90 204.71 314.29 198.50 280.36 133.71

ηI 15 10 10 10 10 10 10 10

900s for all subsets except Mixed with 87 against 84 solutions equal to the opti-
mal. Now considering the davg, again LocBra GED and CPLEX 900s has the
smallest deviations w.r.t. the optimal solutions (always less than 2%). For easy
instances (subsets 10 to 40), both heuristics have scored 0%, except for subset 40
where LocBra GED has 0.06% average deviation, but still very close to CPLEX
900s. For hard instances (subsets 50 to 70), LocBra GED has the lowest devia-
tions (always less than 1%). The same conclusion can be seen when checking the
deviations for Mixed subset. The davg values for beam-search based methods are
very high comparing to the first two heuristics, where on hard instances they
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reach over 100% (e.g. SBPBeam for subset 70 has 107%). Regarding the exe-
cution time of the heuristics, BeamSearch 5 is the fastest with tavg always less
than 0.2s, but in terms of solution quality it is very far from the optimal with
davg up to 73%. And even after increasing the beam size for both BeamSearch
and SBPBeam both are not able to provide better solutions and the average
deviations remain very high. BeamSearch 15000 was not applicable on subset
Mixed because it did not return feasible solutions for all the instances, so the
deviations and ηI are not computed. In summary, LocBra GED is the most
accurate and has provided near optimal solutions.

5 Conclusion

In this work, a local branching heuristic is proposed for the GED problem.
As a conclusion, LocBra GED significantly improves the literature heuristics
and provides near optimal solutions. This is basically due, to the analysis and
the branching scheme combined with the efficiency of CPLEX when solving
MILP JH model. A second important factor is the diversification procedure that
is problem dependent and really helps escaping local optima solutions. Next,
more heuristic algorithms will be tested against LocBra GED, and more tech-
niques will be investigated in order to boost the solution of the method and also
to allow dealing with graphs that have attributes on their edges.
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