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Abstract. Diffusion magnetic resonance imaging (dMRI) is an
advanced technique derived from magnetic resonance imaging (MRI)
that allows the study of internal structures in biological tissue. Due
to acquisition protocols and hardware limitations of the equipment
employed to obtain the data, the spatial resolution of the images is often
low. This inherent lack in dMRI is a considerable difficulty because clini-
cal applications are affected. The scientific community has proposed sev-
eral methodologies for enhancing the spatial resolution of dMRI data,
based on interpolation of diffusion tensors fields. However, most of the
methods have considerable drawbacks when they interpolate strong tran-
sitions, such as crossing fibers. Also, relevant clinical information from
tensor fields is modified when interpolation is performed. In this work, we
propose a probabilistic methodology for interpolation of diffusion tensors
fields using multi-output Gaussian processes with non-stationary kernel
function. First, each tensor is decomposed in shape and orientation fea-
tures. Then, the model interpolates the features jointly. Results show that
proposed approach outperforms state-of-the-art methods regarding reso-
lution enhancement accuracy on synthetic and real data, when we evalu-
ate interpolation quality with Frobenius and Riemann metrics. Also, the
proposed method demonstrates an adequate characterization of both sta-
tionary and non-stationary fields, contrary to previous approaches where
performance is seriously reduced when complex fields are interpolated.

1 Introduction

Since the appearance of Magnetic Resonance Imaging (MRI) several years ago,
many clinical applications have been developed. As well as a variety of method-
ologies for improving diagnosis of various neurological diseases, e.g., Parkinson,
Epilepsy, [1]. Recently, the diffusion MRI (dMRI) has emerged as a non-invasive
method that allows exploring, visualizing, and evaluating qualitatively and quan-
titatively biological structures, such as white matter tracts, cortical gray sub-
stance, cardiac fibers, among others [2]. dMRI describes the diffusion of water
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particles through a 2nd order tensor D ∈ R
3×3, which fully represents the particle

mobility along each spatial direction, yielding anisotropic diffusions [3]. There-
fore, the diffusion tensor of each voxel in a given dMRI is represented by a 3× 3
symmetric and positive definite matrix, being necessary at least six independent
measurements along different directions.

However, dMRI has a considerable difficult with the spatial resolution of
acquired images. This problem is due to clinical acquisition protocols, and tech-
nological limitations of MRI scanners [4]. Spatial resolution of dMRI is commonly
in a range of 1 to 2 mm3 for each voxel. Nonetheless, in medical imaging it is
often desired to obtain information from smaller structures, leading to a lack of
precision in some clinical applications [5]. Different methodologies for interpola-
tion of diffusion tensor fields have been proposed for enhancing dMRI resolution.
Diffusion tensors have to satisfy some restrictions. For example, the determinant
of matrices must change monotonously to avoid the swelling effect [5], and they
must be positive definite (PD). The first attempt for improving resolution of
dMRI is based on direct interpolation, where each component of the tensor is
interpolated independently in a Euclidean space [6]. However, this technique
generates swelling effect [6]. To preserve some constraints of diffusion tensors
(i.e., PD tensors), parametric approaches have been developed using Cholesky
factorization [7]. Nevertheless, the fractional anisotropy (FA) is modified. Other
proposed approaches [8] simultaneously seek to eliminate the swelling effect and
preserve the symmetry and PD property of diffusion tensors by interpolation
in Riemannian spaces. However, their computational cost is high. To overcome
computational cost issue and PD constraint, the Log-Euclidean interpolation [6]
applies a logarithmic transformation to the matrices before operating on them,
but its performance is reduced in heterogeneous fields. An alternative study
called Feature-based interpolation (FbI), proposed by [5], developed an approach
for interpolation of diffusion tensors by decomposing the tensors into eigenval-
ues (direction) and Euler angles (orientation). Then, each feature is interpolated
linearly. The previously mentioned methods [5–8], have difficulties to describe
non-stationary fields: strong transitions and abrupt changes among tensors such
as crossing fibers.

In this work, we present a methodology for interpolation of diffusion tensor
fields based on multi-output Gaussian processes with a non-stationary kernel
function (NmoGp). First, we decompose each tensor of the field in three eigen-
values and three Euler angles, following the method proposed in [5]. Thus, each
tensor is represented by six features indexed in an independent variable that rep-
resents spatial coordinates (x, y, z). The main goal is to describe non-stationary
diffusion tensor fields allowing an accurate interpolation of complex and noisy
dMRI data. To do this, we use an expressive kernel to construct the covariance
matrix of the multi-output Gaussian process. The expressive kernel is a convex
combination of several kernels or the same kernel with different hyperparam-
eters. The methodology introduced is an extension of [9] that we call moGp.
In this case, we are interested in a more robust description of complex fields
(i.e. crossing fibers) using a non-stationary kernel function. We compare our
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approach (NmoGp) against the stationary moGp [9] and the FbI proposed by
[5], evaluating Frobenius and Riemann distances.

2 Materials and Methods

2.1 dMRI and Tensor Fields

The dMRI is a measurement of diffusion of water particles inside biological
tissues. This diffusion is fully described using a 2nd order tensor D ∈ R

3×3, which
defines shape, orientation and direction [3]. The diffusion tensor is expressed as
a 3 × 3 symmetric positive definite matrix whose elements Dij = Dji with
i, j ∈ {x, y, z}. It is necessary six independent gradient diffusion measures (Sk ∈
R

+, k = {1, . . . , 6}) and a baseline image without gradient field (S0 ∈ R
+) for

estimating the coefficients of a tensor (Dij) from Stejskal-Tanner equation [3]:
Sk(x) = S0(x)e−bĝk

�D(x)ĝk , where, Sk is kth dMRI, ĝk ∈ R
3 is a factor that

controls strength and timing of gradients.

2.2 Feature-Based Interpolation Framework

A scheme for tensorial interpolation that keeps restrictions of a diffusion tensor
was proposed by [5]. It consists of decomposing a diffusion tensor in six features:
three eigenvalues (direction) and three Euler Angles (orientation). Each tensor
of the field is decomposed as D = EΛE�, where Λ = diag(λ1, λ2, λ3) ∈ R

+ is
a diagonal matrix of eigenvalues and E is a matrix whose columns holds the
eigenvector of the tensor D as follows:

E =

⎡
⎣

v11 v12 v13
v21 v22 v23
v31 v32 v33

⎤
⎦ . (1)

For preserving the PD property, we apply a logarithmic transformation to
eigenvalues as suggested in [5]. A tensor can be represented as a feature vec-
tor y ∈ R

6 indexed in positions coordinates, x = [x, y, z]�, yielding: y(x) =
[lnλ1(x), ln λ2(x), ln λ3(x), α(x), β(x), γ(x)]�, where Euler angles are given by:
α = artan2 (v12, v11) , β = artan2(−v13,

√
v2
11 + v2

12), γ = artan2 (v23, v33) and
artan2 (a, b) is the four-quadrant arctangent of the real arguments a and b.

2.3 Multi-output Gaussian Processes and Non-stationary Kernel

The model for multi-output is defined as a collection of random variables. Such
that any finite of them follows a joint Gaussian distribution. The random vari-
ables are associated with a set of different processes {fd}M=6

d=1 , evaluated at dif-
ferent values of x [10]. Therefore, it is assumed the vector-value function f as a
Gaussian process. Mathematically is f ∼ GP(m(X),K(X,X)) where m(X) is a
M-dimensional vector whose components are the mean functions {md(x)}M=6

d=1 of
each output, and K(X,X) is a NM ×NM positive defined matrix, with entries,
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(K(xi, xj))d,d′ , for i, j = 1, . . . , N and d, d′ = 1, . . . ,M , (being N and M the
number of training samples and outputs). The predictive distribution for a new
input vector x∗ is a Gaussian distribution [11] and it is given by (2):

p(f(x∗)|S,f, x∗, φ) = N (f∗(x∗),K∗(x∗, x∗)) (2)

with, f∗(x∗) = K�
x∗ (K(X,X) + Σ)−1 ȳ, and K∗(x∗, x∗) = K(x∗, x∗) − K�

x∗
(K(X,X) + Σ)−1 Kx∗ , where Kx∗ ∈ RM×NM has entries (K(x∗, xj))d,d′ i =
1, . . . , N and d, d

′
= 1, . . . ,M , Σ is a diagonal matrix whose elements are noise

of the observation, ȳ is an NM vector obtained concatenating the output vec-
tors, S is the training data, and φ represents the set of hyperparameters of the
covariance function and the variances of noise for each output

{
σ2
d

}M=6

d=1
. There

are several possible choices of covariance for multi-output problem, in this work
we consider the linear model of coregionalization (LMC) [10]. Usually, the ker-
nel employed in moGp is one of the common stationary functions available in
the literature (RBF, Mattern, rational quadratic, among others). On the other
hand, we define a non-stationary kernel as an expressive mixture according to
the model proposed by [12]:

k(x, x′) =
r∑

i=1

σ(wi(x))ki(x, x′)σ(wi(x′)), (3)

where wi(x) : RP → R
1 is the weighting function, with P the dimensional input.

The expressiveness of this function determines how many changes can occur in
the data. wi(x) =

∑v
j=1 aj cos(ωjx + bj). σ(z) : R

1 → [0, 1], is the warping
function, that is computed as a convex combination over the weighting function
σ(wi(x)) = exp(wi(x))/

∑r
i=1 exp(wi(x)),

∑r
i=1 σ(wi(x)) = 1 inducing a par-

tial discretization over latent functions. This function produces non-stationarity,
since it depends of the input variable x, and ki(x, x′) can be any stationary ker-
nel. It is expected that latent functions have different kernel structures or a same
form with different hyperparameters.

2.4 Experimental Setup and Datasets

First, we test the proposed model in a simulation of crossing fibers. This dataset
is obtained from FanDTasia Toolbox [13]. Also, we evaluated real dMRI data of
the head from a healthy subject. We employ 25 gradient directions with a value
b equal to 1000S/mm2. Both datasets are splitted in a 50% for training and
50% for validation. Original datasets are the gold standard fields. We compare
our model with methodologies proposed by [5] and [9]. Finally, to quantitatively
evaluate the models, we use two distance metrics defined over matrices: the
Frobenius norm (Frob) and Riemann distance (Riem) [6], given by (4) and (5).
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Frob(D1,D2) =
√

trace
[
(D1 − D2)

� (D1 − D2)
]
, (4)

Riem(D1,D2) =
√

trace
[
log(D−1/2

1 D2D
−1/2
1 )� log(D−1/2

1 D2D
−1/2
1 )

]
, (5)

where D1 and D2 are the interpolated and the gold standard tensor, respectively.
The error metrics are computed in all the test data, and we report the mean,
standard deviation and confidence interval for each model.

3 Experimental Results and Discussion

3.1 Crossing Fibers

Crossing fibers data is one of most difficult field to interpolate, because transition
among tensors is very abrupt. We test the NmoGp over a 2D crossing fibers field
of 22×22. We use five latent functions (r = 5) and we employ a rational quadratic
kernel. The Fig. 1(a) shows the crossing fibers field, Fig. 1(b) is the downsampled
tensor field (used for training), and Fig. 1(c) illustrates the validation tensors.
Also, we show Riemann error maps in Figs. 1(d), (e) and (f). If we observe in
detail, error values are very low over smooth regions of the tensor field for all
methods (blue zones in error maps of Fig. 1). However, when we evaluate strong
transition regions, interpolation is not straightforward, and the error is higher
in this areas. Specifically, over this critic region of the field, our model achieves
more precision than comparison methods. We can explain this because the non-
stationary kernel can capture the dynamic of the tensor field. While it is true
that there are some errors when we interpolate new tensors in the crossing fibers
region, we can say that NmoGp outperforms to moGp and the FbI method,
when interpolation is challenging due to strong changes in neighboring tensors.

Table 1. Frob and Riem distances for crossing fibers of NmoGp, moGp, and FbI
methods

Model Riem Confidence interval Frob (10e-4) Confidence interval

NmoGp 0.191 ± 0.277 [0.156, 0.227] 17.342 ± 25.191 [1.410, 2.058]

moGp 0.213 ± 0.283 [0.176, 0.249] 19.589 ± 26.136 [1.622, 2.294]

FbI 0.266 ± 0.362 [0.220, 0.313] 24.228 ± 33.375 [1.993, 2.851]

Also, according to results in Table 1, the FbI model obtained the higher error
(Frobenius and Riemann). FbI model has a considerable lack because it does
not consider correlation among the six features extracted from tensor decompo-
sition. This approach only interpolates linearly and separately each feature. On
the other hand, moGp and NmoGp interpolate the six features simultaneously.
The idea is to share a correlation among features. For this reason, there is an
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additional information allowing a better estimation of new data. The main dif-
ference between moGp and NmoGP is the type of kernel for constructing the
covariance matrix inside the model. Thereby, moGp works with a single kernel
(stationary) while our NmoGp is based on a non-stationary kernel. We see in
Table 1, that global error of the NmoGp approach is lower than the moGp and
FbI method.

(a) (b) (c)

(d) (e) (f)

Fig. 1. Interpolation over crossing fiber fields, (a) gold standard, (b) training field, (c)
test field. (d), (e) and (f) Riemann norm error maps, for the NmoGp, moGp and FbI
model, respectively.

3.2 Real DT Field

We test the methods over a 2D diffusion tensor field obtained from real dMRI.
The data corresponds to an axial slice with 40 × 40 tensors of the head. Fig-
ures 2(a), (b) and (c) correspond to the gold standard, training and test data
respectively. Figures 2(d), (e) and (f) show the Riemann error maps. Again,
Table 2 show the error distance for all tested methods and the confidence inter-
val. A real dMRI tensor field is noisy and very heterogeneous. Therefore, simple
interpolation methods fail to achieve a good accuracy. Also, probabilistic meth-
ods such as moGp and NmoGp have the robustness property. Again, NmoGp
improves to the comparison methods according to outcomes of Table 2. This
result is very relevant, because it confirms that proposed method can interpo-
late tensorial data with good accuracy, no matter the type of dataset. Finally, we
can establish that insertion of a non-stationary kernel in multi-output Gaussian
process increases its performance significantly.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Interpolation over a 2D real crossing fiber field, (a) gold standard, (b) training
field, (c) test field. (d), (e) and (f) Riem norm error maps for the NmoGp, moGp and
FbI model, respectively.

Table 2. Frob and Riem distances for real data of NmoGp, moGp, and FbI method

Model Riem Confidence interval Frob Confidence interval

NmoGp 11.222 ± 1.041 [1.051, 1.193] 0.725 ± 0.553 [0.686, 0.764]

moGp 11.458 ± 0.958 [1.078, 1.213] 0.745 ± 0.497 [0.709, 0.780]

FbI 11.569 ± 1.044 [1.085, 1.227] 0.756 ± 0.504 [0.720, 0.791]

4 Conclusions and Future Work

In this work, we presented a probabilistic methodology for interpolation of dif-
fusion tensor fields. The model decomposes the tensors in six features describing
the main properties of a diffusion tensor (direction and orientation). We index the
extracted features in spatial coordinates to interpolate them using a moGp with
a non-stationary kernel function. The structure of the kernel function employed
in this method combines several kernels with different properties. The purpose
is to characterize complex fields such as crossing fibers. In this context, the non-
stationary kernel allows differentiating between strong and uniform transitions.
In this way, the interpolation of new tensors is more accurate in comparison to
ordinary approaches. We tested NmoGp against state-of-the-art methods in two
different datasets: simulation of crossing fibers, and a dMRI segment. Outcomes
proved that proposed model outperforms to the comparison methods evaluat-
ing accuracy with Frobenius and Riemann distances. Although, our proposed
approach is accurate and robust for interpolation of complex tensor fields, there
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is an important issue: initialization of parameters and hyperparameters is not
straightforward. Currently, we use a cross-validation procedure. As future work,
we would like to extend non-stationary kernel functions to more complex models
such as generalized Wishart processes and tractography procedures.
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