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Abstract. Agent Based Modelling (ABM) systems have become a pop-
ular technique for describing complex and dynamic systems. ABM is the
simulation of intelligent agents and how these agents communicate with
each other within the model. The growing number of agent-based appli-
cations in the simulation and AI fields led to an increase in the number of
studies that focused on evaluating modelling capabilities of these applica-
tions. Observing system performance and how applications behave dur-
ing increases in population size is the main factor for benchmarking in
most of these studies. System scalability is not the only issue that may
affect the overall performance, but there are some issues that need to be
dealt with to create a standard benchmark model that meets all ABM
criteria. This paper presents a new benchmark model and benchmarks
the performance characteristics of the FLAME GPU simulator as an
example of a parallel framework for ABM. The aim of this model is to
provide parameters to easily measure the following elements: system scal-
ability, system homogeneity, and the ability to handle increases in the
level of agent communications and model complexity. Results show that
FLAME GPU demonstrates near linear scalability when increasing pop-
ulation size and when reducing homogeneity. The benchmark also shows
a negative correlation between increasing the communication complex-
ity between agents and execution time. The results create a baseline for
improving the performance of FLAME GPU and allow the simulator to
be contrasted with other multi-agent simulators.
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1 Introduction

Agent-based modelling (ABM) systems (also known as multi-agent systems)
have become a popular technique to study complex systems in various domains,
such as biology, social sciences and business complexity. ABM can be defined as
a modelling paradigm used to simulate the actions and reactions of individual
entities and to measure their effects on the whole system. Many phenomena,
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even complex ones, can be described as systems of autonomous agents following
a number of rules to communicate with each other [14].

According to Macal and North [13,14], the structure of an agent-based model
is based on three elements: (1) the number of agents, their attributes and
behaviours; (2) the agents’ relationships and the mechanisms with which they
interact with others; and (3) each agent’s environment, the actions and reactions
of the agent with respect to its environment and other agents. By identifying
and programming these elements, a model designer can easily create an ABM
that simulates reality.

There are a number of popular agent-based modelling and simulation frame-
works that are used to build models such as Swarm, NetLogo, Repast and
MASON. The limitations of scalability and performance in these systems prevent
modellers from simulating complex systems at very large scales. This is because
some of these frameworks were designed to be run on a single CPU architecture
and some of them cannot deal with a large number of agents within one model.
For this reason, a number of platforms and simulators were implemented to deal
with such systems. Repast HPC [28], D-Mason and FLAME GPU [23] are exam-
ples of these kinds of platforms that use parallel and distributed approaches to
run simulations.

There have been several studies in the literature reporting computational
performance in most ABM frameworks [2,7,11] for specific models. Varying the
population size to measure system scalability is the most common benchmark.
A benchmarking process is an excellent method to discover the characteristics of
simulator performance, but unfortunately, so far there is no standard method to
benchmark simulation tools. Thus there is a need to design a benchmark model
that meets complexity and scalability standards. The OpenAB community1 sum-
marised a number of criteria that may affect the performance as follows:

– Arithmetic intensity: the computational complexity of an agent or population.
– Scale: varying population size.
– Model memory: the internal memory requirements of an agent or population.
– Inter-connectivity: the level of communication between agents.
– Homogeneity: divergence of behaviour within an agent or population.

This paper proposes a benchmark model that allows each of these criteria
to be tested and we have implemented this model in FLAME GPU. The main
contribution of this paper is creating a benchmark model that can be a stan-
dard to measure the execution efficiency of the existing ABM systems. This new
model will be able to examine the following elements: system scalability, system
homogeneity, and the ability to handle an increase in the level of agents’ com-
munications and agents’ internal memories. The results will give insight into the
performance characteristics of simulations and provide a baseline for which to
measure simulator improvements.

1 http://www.openab.org/.
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2 Related Work

Numerous ABMs have been used to address a number of issues such as testing
and analysing simulation tools and comparing ABM platforms, and they have
been used as teaching tools for modelling real systems. This section reviews some
of these models and their purposes.

Railsback et al. [17] proposed a simple model called StupidModel that can
be easily implemented on any ABM platform. This model contains a number
of versions to increase simulation complexity, starting from moving agents to a
full predator-prey model. StupidModel was developed to be a teaching model
for ABM platforms such as NetLogo and Swarm. It is also used as a benchmark
model to compare modelling capabilities and performance between several ABM
platform [11,12,18,27].

Predator-prey is the most commonly used model in the field of ABM and
simulation. Developed by Alfred Lotka (1925) and Vito Volterra (1926), it is
based on two differential equations to describe the dynamics of predator-prey
behaviour. The basic rules of predator-prey in ABM can be summarised as fol-
lows: (1) two types of populations represent prey and predator agents; (2) the
prey population will increase by moving to food resources and decrease by being
eaten by the predators; (3) the predator population will increase by eating the
prey and will decrease by starvation; and (4) both populations are moving ran-
domly and following simple rules to communicate with the environment and with
each other.

Several studies have reported comparisons of execution efficiencies between
ABM platforms using predator-prey models [7,23]. Execution efficiencies have
also been used as a benchmark to show the modelling ability of Repast Sim-
phony [28] and by Borshchev and Filippov [3] to compare three approaches to
simulation modelling: System Dynamics, Discrete Events and ABM.

The Sugarscape model is an artificial society model presented by Epstein
and Axtell in their book Growing Artificial Societies: Social Science from the
Bottom Up [6]. This model was replicated by several ABM platforms such as
NetLogo2, MASON [2] and Repast [24]. Agents in the basic Sugarscape model
follow very simple rules. They move towards deserted areas with high levels of
sugar resources. The Sugarscape Wealth Distribution model, as described by
Epstein and Axtell, has more complexity in the relations between agents.

Boids is an artificial life model developed by Reynolds [20,21] that describes
the behaviour of flocking of fish or birds. According to Reynolds (2001), flock-
ing is an example of emergence, by which the interactions of simple local rules
produce a complex global behaviour. There are three simple steering behaviours
that an agent in the Boids model can follow: (1) alignment, which is steer-
ing towards the average heading of nearby neighbours; (2) separation, steer-
ing to avoid crowding nearest neighbours; and (3) cohesion, steering to move
toward the average position of the immediate flockmates [19]. Flocking models

2 http://ccl.northwestern.edu/netlogo/models/community/Sugarscape.
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have been used widely to measure the modelling ability of some ABM plat-
forms [8,15,18,23].

Rousset et al. [26] used their reference model [25] to benchmark 10 existing
platforms that support parallel and distributed systems. The reference model
they used is based on three main behaviours for each agent: (1) agent percep-
tion, (2) agent communication and (3) agent mobility. This benchmark model
is used to evaluate the ability of each platform regarding their parallelism sup-
port. A large and growing body of literature has focused on the comparison
between parallel and serial execution methods to run simulation [1,4,5,7,11,16].
All ABMs reviewed above were used as benchmarks for two purposes; to eval-
uate modelling capabilities of platforms and/or to make comparisons between
simulators. Observing system performance and how applications behave during
increases in population size is the main factor for benchmarking in most of these
studies. System scalability is not the only issue that may affect the overall perfor-
mance, but there are some issues that need to be dealt with to create a standard
benchmark model that meets all ABM criteria.

3 The Benchmark Model

Our model is based on the concept of particle-based simulation which represents
each molecule in the system as an individual entity. This entity has attributes,
such as position, velocity and type of molecule. Entity movements and the reac-
tions within the system will be computed using these attributes through methods
to update system behaviour. The representation of the molecule (agent) will fol-
low Brownian Dynamics methods, where each agent is represented as a point-like
particle moving randomly in the environment.

This type of model is relevant to a wider class of ABMs. For example, both
cellular models and social system models have similar behaviours, when con-
sidered from the view point of mobile agents with local interactions, birth and
death and binding (combining). To make this model more complex and to meet
all the criteria highlighted above, we propose a reaction-diffusion like model with
different rules. Our model is able to convert formula syntax (such as A + B = C)
that represents a chemical reaction to a number of mobile agents that can com-
municate with each other and captures important characteristics of ABM.

A simple reaction will occur when one A molecule combines with one B
molecule to produce a C molecule, assuming that A + B = C represents the rela-
tionship between the three molecules. The model that resulted from the given
example above contains three agents A, B, and C as follows: agent A (master
agent), agent B (slave agent) and agent C (combined agent). Each of these agent
specifications is defined by a set of variables and functions that help to establish
the simulation. At the beginning of the simulation, agents A and B are moving
randomly, and both agents are communicating with each other looking for the
closest complementary agent. Agent B will send its location and then agent A
will choose the closest B and replied with the ID of closest B. Once the ID of B
is confirmed both agents will die and produce the new agent C.
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3.1 Implementation

This section consists of three parts: (1) an overview of FLAME GPU, (2) how the
benchmark model is implemented using FLAME GPU and (3) model generation.
The FLAME GPU framework [22] is a template for agent-based simulation on
the Graphics Processing Unit (GPU). It consists of a number of X-agents (the
agent representation of an X-machine [10]) specifications. Each instance of an x-
agent has its own memory that holds a set of variables. All instances of x-agents
have transition functions that can read and write to their memory a start state
and an end state. Agents can communicate by sending and receiving messages
and their functions can read and write these messages at any time between start
and end states for each agent. Creating a model using FLAME GPU is very
similar to the original FLAME3 which required writing the model specification
in XML format within an X-Machine Mark-up Language (XMML) document.
However, the syntax that is used to write the model in FLAME GPU uses
an extended version of the FLAME XML schema. The GPUXMML extension
outlines the GPU specific model description elements such as the maximum
size of an agent memory [22]. This allows a formal agent specification to be
transformed to optimised C-based CUDA code through GPU-specific templates.

The FLAME GPU implementation of the above example consists of three
agents A, B, and C. Each agent is defined by a set of variables, transition func-
tions, start and end states, and communication messages as shown in Table 1.
The representation of agents as a state machine is shown in Fig. 1. During a
single iteration of the simulation, each type of agent will move from the start-
ing state to the end state, completing each function in turn. The diagram is
divided into three parts, each part showing the agent-transition functions and
the communication dependency messages (green) for each agent.

At the beginning of the simulation, agents A and B are moving randomly
using their move functions to update their locations during each cycle, as shown
in Fig. 2 Part A. Agent B will use send locationB to output a locationB mes-
sage holding all B information (agent ID, location, etc.). Agent A after that will
get all B’s locations using a need locationB function that inputs the locationB
message. This function will calculate the distance between A and B and then
compare it with the binding radius. If the distance is less than or equal to the
binding radius, the internal memory of A will be updated (the state variable
will be set equal to 2, the defined value of binding (2 is the defined value of the
combined state.), and the closest ID and the closest point will be stored). The
send bindB function will output bindB messages holding the updated informa-
tion for agent A (only messages that have the state variable equal to 2 as a
function condition (An agent function condition indicates that the agent func-
tion should only be applied to agents which meet the defined condition which
are in the correct state specified by current State [22])). In the next step, the
receive bindB function will input bindB messages to check for the closest A
that is ready to combine. B’s internal memory will be updated (the state variable

3 http://flame.ac.uk/.

http://flame.ac.uk/
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Fig. 1. State graph of the model that represents A + B= C. (Color figure online)

will be set to 3 (3 is the defined value of the dead state.), and the closest ID and
closest point will be stored) after finding the closest A that is ready to combine.
The send combinedB function will output combinedB messages that meet the
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Table 1. Agent specifications

Agent Type Internal Memory Function Name Function Description
Master agent Agent ID

Agent Position:
X,Y,Z
Closest_id

Closest_point

state

1.move_A
2.need_locationB
3. send_bindB
4. created_C
5. death_A

1.To update A’s location
2.Choose closest B
3.Send request to closest B
4.Output agent C
5.Remove agent A from simu-
lation

Slave agent Agent ID
Agent position:
X,Y,Z
Closest_id

Closest_point

state

1.move_B
2.send_locationB
3. receive_bindB
4.send_combinedB

1.To update B’s location
2.Send B location
3.Verify and choose closest A
that is ready to bind.
4.Send notification to A to
combine and then remove
agent B from the simulation

Combined
agent

Agent ID
Agent position:
X,Y,Z
Closest_id

Closest_point

state

move_C To update C’s location

condition (the state variable is equal to 2), and the B agent will be removed from
the simulation. The next function will be created C. This function will input
combinedB messages (only messages that meet the condition that the state is
equal to 3), output agent C, and update A’s internal memory (the state variable
will be updated to meet the next function condition). All A’s that meet the
condition of death A will be removed at this stage. A visualisation of the model
after a number of iterations is shown in Fig. 2 Part B.

Fig. 2. Part A: Screenshot of the first iteration showing agents A (red) and B (yellow)
moving randomly. Part B: Screenshot after 100 iterations showing agents C (blue)
moving randomly and two of A (red) and two of B (yellow) still moving. (Color figure
online)
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To save time and effort, and to implement several chemical reactions at the
same time automatically, a model generator is needed. This section presents a
FLAME GPU model generator that can easily convert lines of formula syntax
into movement models of agents. This generator after parsing the syntaxes will
output three files that are required to run a FLAME GPU model: (1) a FLAME
GPU XML model (XMLModelFile.xml) file that consists of model specifications,
(2) a function.c file that holds the scripted agent functions, and (3) initial values
of each agent for the simulation state data which is stored in a FLAME GPU
XML file (0.xml).

4 Benchmarking Results

The model generator helped to vary the model in a different way and allowed
modelling of different types of chemical reaction. FLAME GPU version 1.4.3 was
used for the performance benchmarking on a NVIDIA GeForce GTX 970 GPU
with 1665 CUDA cores and 4 GB of memory. This section shows four different
benchmarks to measure FLAME GPU framework performance.

Divergence within a population: The purpose of this benchmark is to
observe the system performance when doubling the number of equations. This
benchmark starts with a simple model with three types of agent, ten agent func-
tions and three type of message and ends with more than 40 agent types, 150
agent functions, and 45 message types. Adding more equation input lines (every
line contains three different types of agent) increases the execution time linearly
with a value of regression �0.9945, as shown in Fig. 3 (axis x1 against axis y1).
processing time increases by �0.5 a second with the addition of a new equa-
tion. This benchmark was implemented using an agent population of 2000 for
each type of agent with the same environment size, and each simulation was
performed for 100 iterations.

Divergence within an agent: This benchmark gives us the average execution
time for increasing slave agent types (more chemicals per line). This experiment
will increase divergence within the master agent of this line. Adding a new
chemical will extend the master agent functions, and that means more functions
in each layer every cycle. In FLAME GPU function layers represent the control
flow of simulation processes [9]. All agent functions are executed in a sequential
order to complete one iteration and by adding more functions for the same agent
that will increase execution time in every iteration. This can be observed in the
results in Fig. 3 (axis x2 against axis y2). The processing time is increasing
linearly by increasing chemicals per line given a value of the regression equal to
0.9956. This benchmark was implemented using an agent population of 2000 for
each type of agent with the same environment size, and each simulation was run
for 100 iterations.
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Fig. 3. Processing time of the same environment size against the type of agent that
have been added at every step (appears with a red line). Processing time of the same
environment size against the number of slave agents that has been added every time
(appears with a blue line). (Color figure online)

Population sizes: The goal of this benchmark is to measure the ability of
this model to scale to examine ABM systems scalability. The population size
of each agent type starts with 4,096 agents and ends with 262,144 agents. This
benchmark uses A + B = C as an example to run this experiment for 100 itera-
tions each time. The performance of implementing our model on FLAME GPU
with respect to agent population size is shown in Fig. 4 with linear correlation
coefficient equal to 0.9811.

Fig. 4. Increasing population size led to increased processing time.
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Level of communication and complexity: Two changes have been made to
agent behaviour to slow down the simulation and add extra arithmetic inten-
sity within agent functions: (1) decreased interaction radius and (2) decreased
agent movement speed. Figure 5 (axis x1 against axis y1) shows the relationship
between decreasing the interaction radius and increasing processing time to pro-
duce 50 agents C from the A + B = C equation with same movement speed. This
experiment allows agents to move for a longer time until reaching the needed
radius, during this movement, several operations occur such as calculating agent
position, sending and receiving messages between agents looking for the nearest
agent to combine with. The next experiment is shown in Fig. 5 (axis x2 against
axis y2), which shows the relationship between slowing down the agent speed the
number of iterations required to produce 50 agents. This experiment has been
implemented with a constant radius and same environment size. Slowing down
the movement speed allows additional operations during the simulation and this
help to measure the ability of the system to handle many computational opera-
tions for a long time and how to manage using the resources.

Fig. 5. Decreasing interaction radius led to increased time to produce 50 agents
(appears with a red curve). Decreasing agent movement speed led to increased time to
produce 50 agents (appears with a blue curve) (Color figure online)

5 Conclusion

This paper presents the implementation of a new benchmark model using
FLAME GPU. The aim of this model is to measure the following elements:
system scalability, system homogeneity, and the ability to handle increases in
the level of agent communications and model complexity. Unfortunately, mea-
suring the ability to handle increases in the internal memory requirements of an
agent or population was not covered by this paper. However, it will be involved
in our future work.



A Formula-Driven Scalable Benchmark Model for ABM 713

Four benchmark experiments have been carried out, demonstrating the abil-
ity of this benchmark model to examine each element. The first two experiments
focused on increasing agent and population divergence, and this led to increased
the execution time due to the additional agent functions, messages and com-
munication information that is held by these messages. The third experiment
showed that we could easily scale the population size of this model to measure
the system scalability. The results showed that scaling the population size led to
varying the execution time from 0.5 s per 100 iterations for 4069 agents till 72 s
per 100 for 262144 agents. In the last experiment, computational complexity was
added by decreasing the value of two variables that are used within agent func-
tions to update agents behaviour. This experiment causes the model to reach a
steady state at a slower rate, this allows assessment of the system capabilities.

Divergence is known to reduce performance in GPU simulations and our
benchmark model confirms this. The obtained results will be used for assessing
simulator improvements to achieve improved scaling with respect to divergence
and better overall performance for increasing the population size. The perfor-
mance results obtained indicate that our benchmark model is a suitable model
to be used as an experimental tool to evaluate modelling capabilities of an ABM
system if it is replicated in a suitable way.
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