
Linking Application Description with Efficient
SIMD Code Generation for Low-Precision

Signed-Integer GEMM

Günther Schindler1(B), Manfred Mücke2, and Holger Fröning1

1 Institute of Computer Engineering, Ruprecht Karls University,
Heidelberg, Mannheim, Germany

{guenther.schindler,holger.froening}@ziti.uni-heidelberg.de
2 Materials Center Leoben Forschung GmbH, Leoben, Austria

manfred.muecke@mcl.at

Abstract. The need to implement demanding numerical algorithms
within a constrained power budget has led to a renewed interest in low-
precision number formats. Exploration of the degrees of freedom provided
both by better support for low-precision number formats on computer
architectures and by the respective application domain remains a most
demanding task, though.

In this example, we upgrade the machine learning framework Theano
and the Eigen linear algebra library to support matrix multiplication
of formats between 32 and 1 bit by packing multiple values in a 32-bit
vector. This approach keeps all the optimizations of Eigen to the overall
matrix operation, while maximizing performance enabled through SIMD
units on modern embedded CPUs. With respect to 32-bit formats, we
achieve a speedup between 0.45 and 21.17 on an ARM Cortex-A15.

1 Introduction

Digital computers implement computer arithmetic over finite number sets. The
past decades saw improved support for higher-precision number formats resulting
in native support of double-precision (64-bit) floating-point on almost all com-
puting platforms from supercomputers to desktops and mobile devices. Recently,
though, there is a substantial interest in reduced-precision number formats to
execute demanding algorithms within limited time, memory, or power budgets.
The key driver for this development are complex algorithms executed on mobile
platforms, for instance for speech recognition, computer vision, or augmented
reality. An extreme example of this trend are binarized neural networks [3], in
which the weights and activations are represented by either a plus one or a minus
one, allowing storing each parameter in a single bit.

Driven by various trends, including big data, deep learning, and a steadily
increasing resolution in image processing, the complexity of applications contin-
ues to grow. This applies to computational complexity, algorithmic complexity,

c© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 688–699, 2018.
https://doi.org/10.1007/978-3-319-75178-8_55



Linking Application Description with Efficient SIMD Code Generation 689

and memory complexity. At the same time, algorithms continue to rely heav-
ily on Basic Linear Algebra Subroutines (BLAS) like matrix-vector or matrix-
matrix multiplication. As an example, a trained neural network uses matrix-
vector and matrix-matrix operations for the inference, in which new information
is detected. As the number of layers for neural networks is continuously grow-
ing, up to extreme examples including 100 or 1000 layers [8], the execution time
and memory footprint for such a workload increases accordingly. Unfortunately,
single-thread performance is stagnating since the end of Dennard scaling, and
now performance scaling usually requires parallelization.

Short-vector units (also known as single-instruction multiple-data – or SIMD
– units) exploit the low cost of data-level parallelism in current CMOS processes.
SIMD units are ubiquitous in current architectures from server CPUs to micro-
controllers. They typically support multiple number formats with throughput
doubling at half of the bit width. While the performance of SIMD units looks
good on paper, the challenge is to map numerical algorithms to matching number
formats and to exploit the complex instruction sets.

Quantization is a form of lossy data compression, with the benefit of lower
memory footprint and lower computational complexity. While originally studied
in the context of computer arithmetic, it can also be seen in the context of
approximate computing, which also looks at different techniques like logic design
[13] and architecture [4], as well as software aspects including data type qualifiers
[10] and loops [11].

This work is motivated by the wish to use complex (BLAS-based) algorithms
for highly resource-constrained systems with limited computational performance.
ARM architectures dominate many domains of embedded computing today. We
see ARM-based CPUs as a viable option that should be explored initially, as
they offer in comparison to specialized processors a relatively high productivity,
versatility and rather unconstrained memory capabilities. By computing locally
on the mobile device, one avoids traffic to cloud-based processing solutions, and
especially the need for online connectivity. Under real-time constraints or secu-
rity considerations this might be a strong argument. We assume that selected
application domains are able to map relevant tasks onto lower-precision number
format. We are concerned with the question how lower-precision number formats
can be effectively used. That includes direct use at the application level as well
as resulting low-level code making best use of available SIMD units.

Here, we report insights from our explorations and optimizations to enable
ARM processors to efficiently perform computations on extremely quantized
data. In particular, the main contributions of this work are as follows:

– A review of architectural support in embedded ARM processors for compu-
tations based on extreme forms of quantizations, in particular non-standard
representations

– The design, optimization, and evaluation of building blocks for efficient quan-
tized computations



690 G. Schindler et al.

– Based on our findings, a discussion of the implications with regard to the
compute stack, or how to extend the compute stack to allow generalized
forms of such computations.

The remainder of this work is structured as follows: Sect. 2 provides a back-
ground on matrix multiplication, ARM processors, and NEON vector instruc-
tions. Section 3 describes our solution in detail and explains optimizations. Next,
Sect. 4 reports performance results. We discuss our observations in Sect. 5 before
we conclude in Sect. 6.

2 Background

In this section, we shortly introduce the necessary background in combination
with the most important related work.

2.1 Implementation and Optimization of GEMM

One of the key operations in linear algebra is General Matrix Multiply (GEMM).
GEMM is implemented in BLAS. GEMM takes two two-dimensional arrays of
size M × N and N × K as inputs and returns a two-dimensional array of size
M × K. The values of the output matrix are calculated as shown in Eq. 1, with
A and B as input arrays and C as output array.

ci,j =
∑N

n=1
ai,n ∗ bn,j (1)

Thus, GEMM consists of iterating over the input arrays and applying
Multiply-Accumulate (MAC) operations. Despite the simplicity of the GEMM
algorithm it requires multiple, hardware-dependent optimization techniques in
order to achieve high performance on any given architecture. Modern compilers
are capable of detecting cache ineffective source code or integrate some auto-
vectorization, but this is usually not sufficient to reach state-of-the-art perfor-
mance for GEMM. Thus, libraries like Eigen, Atlas, or OpenBLAS focus on
highly optimized BLAS algorithms [6]. For instance, the Eigen library imple-
ments a hand-tuned GEMM that exploits a variety of optimizations for a set of
SIMD-capable processors [7].

2.2 ARM Processors and Their SIMD Extensions

Single Instruction Multiple Data (SIMD) refers to a vectorization technique that
enables the computation of multiple data elements with a single instruction.
With the introduction of the ARMv7 architecture, ARM processors supports a
SIMD extension named NEON [1,2] to accelerate media applications. NEON is
able to process 128 bit wide vectors and supports 16 × 8-bit, 8× 16-bit, 4× 32-
bit, and 2× 64-bit integer and floating-point operations. With the upcoming
introduction of the ARMv8-A architecture and its Scalable Vector Extension
(SVE), ARM is extending the vector processing capabilities for vector lengths
that scale from 128 to up to 2048 bit.



Linking Application Description with Efficient SIMD Code Generation 691

2.3 ARM NEON ISA Review

Table 1 summarizes the most important NEON instruction for the MAC opera-
tion, relevant to implement GEMM for different number formats.

Table 1. Instruction overview for the MAC operation

Operation Instruction Description

Multiplication VMLA Multiplies the elements of two vectors and
accumulates the elements of a third vector -
Supports 32/16/8 bit

VMUL Multiplies the elements of two vectors - Supports
32/16/8 bit

VMULL Multiplies the elements of two vectors and doubles
the bit width - Supports 32/16/8 bit

VAND+ VEOR Bitwise logic instruction - Supports 32/16/8 bit

Reduction VPADDL Adds adjacent pairs of elements of a vector -
Supports 32/16/8 bit

VPADAL Adds adjacent pairs of elements of a vector and
accumulates the result by elements of a second
vector - Supports 32/16/8 bit

VCNT Counts the number of set bits of a vector -
Supports 8 bit

Accumulation VADD Adds the elements of two vectors - Supports
32/16/8 bit

All instruction listed in Table 1 support the full NEON-SIMD width of 128
bit with the exception of VMULL. Due to bit-width doubling, this instruction
can only process 64-bit vectors.

2.4 Relevant Libraries

Libraries supporting reduced-precision computations are relatively sparse. The
MPFR C++ library [9] which is built upon the MPFR library [5] supports multi-
precision floating-point number formats and is available as support module for
the Eigen library. A library supporting reduced-precision GEMM is Google’s
Gemmlowp1 which is integrated in the application framework Tensorflow and
supports 8-bit representation. The library currently supports CPUs and is opti-
mized for NEON and SSE vectorization. ARM’s Compute Library2 supports
reduced-precision GEMM for 16-bit representation and is supported for NEON-
capable processors.

1 https://github.com/google/gemmlowp.
2 https://github.com/ARM-software/ComputeLibrary.

https://github.com/google/gemmlowp
https://github.com/ARM-software/ComputeLibrary


692 G. Schindler et al.

3 Reduced-Precision Signed-Integer GEMM
on ARM NEON

Specialized BLAS libraries are pervasively used to improve execution time of
numerical algorithms. Impressive results up to achieving almost theoretical peak
performance exist. However, specialized BLAS libraries generally support single-
and double-precision floating-point only. They typically lack any support for
lower-precision number format.

In this work, we show the optimization potential of a signed-integer GEMM
on a NEON-capable ARM processor. We use 32-, 16-, 8-, 2-, 1-bit signed integer,
and show how NEON SIMD instructions allow for fast data-parallel computation
of GEMM. We extend the Eigen BLAS library, which has demonstrated com-
petitive performance and is widely used, for low-precision integers. In particular,
we show that support for reduced-precision number formats can be implemented
by leaving most of the algorithm untouched and only adapting the highest and
lowest level of the operator. Finally, we integrate this extension in the math-
ematical expression framework Theano [12] to maximize the usability of such
custom forms of representations.

To benefit from the advantages of lower-precision number formats, it is nec-
essary to implement operators that can handle these kinds of representation. For
the GEMM example we can simply extend the equation by another summation
loop as shown in Eq. 2, with W representing the full-precision bit width divided
by the reduced-precision bit width.

ci,j =
∑N

n=1
ai,n ∗ bn,j =

∑N/W

n=1

∑W

w=1
ai,n+w ∗ bn+w,j (2)

We can furthermore simplify this equation by packing W values from a and
b to apacked and bpacked and overwriting the MAC operation (Eq. 3).

ci,j =
∑N/W

n=1
apackedi,n ∗ bpackedn,j (3)

Within the MAC operation, W scalar products can be vectorized in SIMD
fashion and summed up using reduction. As a result, we can extend the Eigen
GEMM operator to support reduced precision by overwriting the MAC opera-
tion, packing W reduced-precision values into a single full-precision value, and
dividing the matrix depth N by W .

In order to integrate the reduced-precision operator into Theano, we propose
the following workflow: the value packing is performed within Theano and the
packed matrices are propagated via references to Eigen’s GEMM operator. Then,
Eigen performs its high-level transformations and forwards the data in form of
128-bit vectors to the customized MAC operator. Finally, the MAC operator
performs the actual computations by exploiting optimized code on SIMD units.

3.1 Implementation

We use the NEON SIMD-MAC operation to evaluate the scalar product of the
input vectors a and b, followed by accumulating the result by input vector c. The



Linking Application Description with Efficient SIMD Code Generation 693

SIMD-MAC operation is illustrated in Fig. 1 on the example of int8 t input rep-
resentation. As can be seen, the scalar product of two vectors is implemented by
pairwise multiplying elements of input vectors a and b. The results of the multi-
plication are reduced into a int32 t intermediate representation and accumulated
by elements of input vector c. Input and output vectors for the MAC operations
are mapped to the full NEON-SIMD width of 128 bit, with precision depend type
for a and b (int32x4 t, int16x8 t, int8x16 t, int4x32 t, int2x64 t, and int1x32 t)
and full-precision type int32x4 t for input vector c and output vector.

Fig. 1. Simplified illustration of the MAC operation for int8 t representation

A performance-sensitive pitfall of the MAC operation is bit-width doubling
when performing the multiplication in order to avoid integer overflows. Bit-
width doubling is performed for int16 t, int8 t, and int4 t input representation.
int2x64 t and int1x32 t representations cannot cause overflows since the result’s
range is identical with the input range (+1, −1 and −1, 0, +1).

3.2 Supporting Different Bit Widths

The baseline implementation of the MAC operation assumes input vectors a
and b of type int32x4 t. For this case, NEON includes the Fused-Multiply-
Accumulate (FMA) instruction, which is able to multiply and accumulate 4
operands (128-bit vector) in one instruction.

int16x8 t and int8x16 t MAC: NEON also includes FMA instructions for 16-
bit and 8-bit representations. However, the FMA instructions are not applicable
here because the reduction has to be performed after the multiplication and
before the accumulation.

Thus, we use a multiplication instruction with bit-width doubling. Since
instructions with bit-width doubling only can process 64-bit vectors, the mul-
tiplication of the highest and lowest 64 bit of input vectors a and b has to be



694 G. Schindler et al.

performed sequentially. Then, both resulting vectors are sequentially reduced
by adding adjacent pairs of elements (one reduction layer for int16x8 t MAC
and two reduction layers for int8x16 t MAC). Finally, both resulting vectors are
combined to a single vector and its values are summed up.

int4x32 t MAC: While 16-bit and 8-bit representation is supported inherently
by NEON, it lacks support for 4-bit formats. In particular, the extraction of
int4 t values from the input vectors causes a high instruction overhead. In order
to perform the extraction, we mask out even and odd indexed int4 t values
from the 128-bit input vectors a and b via bit-wise logic operations and split
the values into two separate 128-bit vectors. Once the extraction is done, the
obtained vectors can be simply multiplied without bit-width doubling. Then,
a three-layer reduction is performed before the resulting vector elements are
summed up.

int2x64 t MAC: The multiplication of the int2x64 t MAC is realized by eval-
uating the resulting positive and negative values separately via bit-wise logic
operations (AND, XOR). Then, a 8-bit population count is performed to count
the positive and negative values within a 8-bit vector. The resulting positive val-
ues are subtracted by the resulting negative values. Two reduction levels trans-
form the int8x16 t representation into a int32x4 t intermediate representation
and accumulate the vector by elements of input vector c.

int1x128 t MAC: For the int1x128 t MAC, we use the approach proposed by
Courbariaux et al. [3]. The basic idea is to replace the actual multiplications of
input vectors a and b with bit-wise XOR operations and perform the reduction
via population count. Since NEON includes only a 8-bit population count, we use
two further reduction levels to reduce the results into a int32x4 t intermediate
representation. Afterwards the result is accumulated by input vector c.

3.3 Optimizing Reduction Overhead

Halving the bit representation causes an additional reduction layer within the
MAC operation to obtain a 32-bit intermediate representation. In most cases,
this 32-bit intermediate representation cannot be avoided without causing an
overflow. However, int1 t and int2 t representation differ because the multipli-
cation results are in between −1 and +1.

As shown in Sect. 3.2, the first reduction layer of int1 t and int2 t MAC is
performed via 8-bit population count. Considering that the scalar product of
a row vector and a column vector takes N (matrix depth) accumulations of a
maximum value of 8, the maximum scalar value is N ∗ 8 for the first reduction
layer and N ∗ 16 for the second reduction layer. Therefore, a reduced bit width
(Width) for the intermediate representation is sufficient if N < 2Width

Width holds.
Using this observation, we can modify the GEMM implementation for int1 t

and int2 t input representation to dynamically adapt among 32-bit, 16-bit, and
8-bit intermediate representation by only evaluating the matrix’ depth. Conse-
quently, compared to 32-bit intermediate representation, a 16-bit intermediate



Linking Application Description with Efficient SIMD Code Generation 695

representation requires one reduction layer less, and an 8-bit intermediate repre-
sentation requires two reduction layer less. Obviously, the resulting representa-
tion of this optimization differs from the expected output representation. Thus,
the last MAC operation of the scalar product of a row vector and a column
vector has to reduce the intermediate representation to a 32-bit output repre-
sentation. As a result, the computational complexity of the reductions can be
reduced from O(n2) to O(n) which directly translates into a significant perfor-
mance improvement for small (N < 32) and mid-sized (N < 4096) matrices.

4 Performance Results

In this section we report execution times and memory footprint of our reduced-
precision signed-integer GEMM Eigen extension. We compare the results to
Eigen’s int32 t GEMM.

All results are obtained via averaging on a system with a 2.32 GHz ARM
quad-core Cortex-A15 CPU and 2 GB DDR3L memory. The C++ source code
with NEON intrinsics is compiled using GNU g++ (version 4.8.4) with the
following command-line switches set: Optimization level: -Ofast, OpenMP par-
allelization: -fopenmp.

Table 2 summarizes the results of the signed-inter GEMM operator. The exe-
cution time refers to the required time to perform the pure matrix multiplication
without memory allocation and value packing.

Table 2. Summary of the obtained results: execution time and speed-up over int32 t
representation

Size Metric int32 t int16 t int8 t int4 t int2 t int1 t

128× 128 Time 0.18 ms 0.37 ms 0.16 ms 0.22 ms 0.12 ms 0.05 ms

Speedup 1.00 0.48 1.06 0.81 1.43 3.61

256× 256 Time 1.34 ms 2.94 ms 1.26 ms 1.66 ms 0.44 ms 0.08 ms

Speedup 1.00 0.46 1.07 0.85 3.10 17.09

512× 512 Time 11.54 ms 24.02 ms 10.03 ms 12.92 ms 3.27 ms 0.54 ms

Speedup 1.00 0.48 1.15 0.89 3.52 21.17

1024× 1024 Time 90.10 ms 192.08 ms 81.63 ms 104.03 ms 26.17 ms 4.73 ms

Speedup 1.00 0.47 1.11 0.87 3.43 18.99

2048× 2048 Time 0.70 s 1.52 s 0.61 s 0.83 s 0.20 s 0.04 s

Speedup 1.00 0.46 1.10 0.85 3.45 19.81

4096× 4096 Time 5.53 s 12.15 s 5.10 s 6.57 s 1.60 s 0.26 s

Speedup 1.00 0.46 1.09 0.84 3.43 20.83

8192× 8192 Time 44.72 s 97.36 s 40.88 s 52.53 s 12.74 s 3.11 s

Speedup 1.00 0.45 1.10 0.85 3.50 14.34



696 G. Schindler et al.

The expected execution time of the core code sequence can be estimated using
instruction latency data from the ARM Technical Reference Manual [1]. Table 3
summarizes the estimated and the actual speed-up of the GEMM operator for
different input representations, compared to int32 t representation. As can be
seen, the expected speed up is achieved in most cases with the exception of small
matrices (<256 × 256) combined with int1 t and int2 t representation. This is
caused by Eigen optimizations which enforce padding of small matrices.

Table 3. Expected and actual speed up of the signed-integer GEMM derived from the
required cycles of the MAC operation

Input rep. Cycles Estimated speed-up Observed speed-up

int32x4 t 6 1 1

int16x8 t 30 0.40 0.45–0.48

int8x16 t 36 0.67 1.06–1.15

int4x32 t 69 0.70 0.81–0.89

int2x64 t 39 2.46 1.43–3.52

int1x128 t 15 12.80 3.61–21.17

Figure 2 shows the improvement of reduced representation over full repre-
sentation in terms of memory footprint and execution time for signed integer
GEMM. The line showing the theoretical improvement assumes that reducing
the bit representation by a certain factor results in a performance improvement

Fig. 2. Memory footprint and execution time of 32-bit and reduced-precision signed
integer GEMM



Linking Application Description with Efficient SIMD Code Generation 697

of the same factor. Obviously, the memory footprint improvement meets the
expected theoretical improvement since halving the bit representation results in
half the memory usage.

There is a significant gap between theoretical improvement and the improve-
ment of execution time. In particular, for int16 t, int8 t, and int4 t, the GEMM
only performs similar or even worse compared to int32 t. Besides the additional
reduction overhead, this is mainly due to instruction serialization caused by
bit-width doubling when the multiplication is performed. As can be seen, bit
representations without the need of bit-width doubling (int2 t and int1 t) are
clearly superior. The simplicity of computing the int1 t MAC combined with
the reduction optimization (discussed in Sect. 3.3) shows its advantage by nearly
reaching the theoretical improvement.

5 Discussion

The suggested GEMM implementation avoids integer overflows within the MAC
operator and therefore produces the same results as the full-precision operator.
The drawback of this design is that it results in a mismatch between input
and output representation and, most importantly, requires bit-width doubling
in most of the cases. As we have seen, bit-width doubling leads to a significant
performance penalty.

In future work, we plan to show how quantization information can be prop-
agated from the application framework to the operator and extend our custom-
precision GEMM to also support custom quantization. The current implemen-
tation uses a 32-bit data type (int32t) as a container to transparently transport
short vectors of lower-precision data from the application framework (Theano)
via Eigen to actual code, exploiting SIMD units on selected architectures (value
packing). Value packing is required since lower-precision types are not known
and therefore not interpretable by the application framework and Eigen. How-
ever, high-level transformations of matrix operators are optimized on a fixed size
(e.g. SIMD width or cache size) and not a specific data type. As a consequence,
this approach enables the use of these existing transformations on collections of
values packed into 32-bit. Obviously the packed format reduces the granularity
of matrix operations in the application framework and Eigen from single value
to up to 32 values (in the case of 1-bit data types) and, thus, inhibits other
operations on the matrices. Currently we rely on packing/unpacking the data
whenever reduced-/full-precision operators are used. This approach benefits from
a reduced execution time, but the advantage of a reduced memory footprint is
partially lost when the data has to be unpacked.

Ultimately, the number format should therefore be interpretable by other
matrix operators. This could be achieved by matrix operators supporting a
generic (precision-agnostic) data type. The GNU MPFR library [5] implements
multiple-precision floating-point (i.e. with user-defined mantissa and exponent)
computations with correct rounding. Many interfaces to MPFR exist. The



698 G. Schindler et al.

mpfr::real class3 and bigfloat library implement full-featured interfaces (i.e. keep-
ing all the format information) to C++ and Python respectively. The MPFR
project webpage lists two linear algebra libraries compatible with some MPFR
APIs:

– The ALGLIB.NET project implements multiple-precision linear algebra using
MPFR4

– Eigen, a C++ template library for linear algebra, via Pavel Holoborodko’s
MPFR C++ wrapper [9]

In future work, we plan to use and explore effects on the performance of the
Eigen MPFR wrapper.

6 Conclusion

We presented and discussed an approach of extending linear-algebra operators to
support reduced-precision representations. Using the example of signed-integer
GEMM, we showed that the highly optimized Eigen library can be extended by
only modifying the MAC operation and packing several reduced-precision values
into a 32-bit value. We reviewed the NEON ISA and showed its applicability to
support reduced-precision arithmetic. Based on our findings, we optimized the
MAC operation for NEON-capable processors and integrated our implementa-
tion into Eigen’s GEMM operator and interfaced the operator to the application
framework Theano.

Our results show that selected reduced-precision number formats can benefit
from reduced GEMM execution time on NEON units. In particular, the perfor-
mance of int1 t and int2 t GEMM is promising, and matches well with the rising
interest on these data formats in the machine-learning community [3,14]. 16-, 8-,
and 4-bit signed integer GEMM, however, show no performance advantage over
32-bit for this ARM architecture. Better support for reduction operations would
be needed to achieve performance improvements for these number formats.

Last, we would like to encourage developers of BLAS libraries and application
frameworks to design software with consideration for custom/reduced precision,
as support for these representations is mostly not present today.

Acknowledgments. The main author is sponsored by the German Research Foun-
dation (DFG). The financial support by the Austrian Federal Government, within the
framework of the COMET Funding Programme is gratefully acknowledged. We also
acknowledge the valuable discussions with various people, including Franz Pernkopf
and Matthias Zöhrer (Graz University of Technology, Austria), and Michaela Blott
(Xilinx).

3 http://chschneider.eu/programming/mpfr real/.
4 www.alglib.net.

http://chschneider.eu/programming/mpfr_real/
www.alglib.net


Linking Application Description with Efficient SIMD Code Generation 699

References

1. ARM: Cortex-A9 NEON Media - technical reference manual. Technical report
(2008)

2. ARM: Introducing NEON - development article. Technical report (2009)
3. Courbariaux, M., Bengio, Y.: BinaryNet: training deep neural networks with

weights and activations constrained to +1 or −1. CoRR (2016)
4. Esmaeilzadeh, H., Sampson, A., Ceze, L., Burger, D.: Architecture support for

disciplined approximate programming. SIGPLAN Not. 47(4), 301–312 (2012)
5. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: a

multiple-precision binary floating-point library with correct rounding. Research
report RR-5753, INRIA (2005)

6. Goto, K., van de Geijn, R.A.: Anatomy of high-performance matrix multiplication.
ACM Trans. Math. Softw. 34(3), 12:1–12:25 (2008)

7. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). http://eigen.tuxfamily.org
8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

CoRR arXiv:1512.03385 (2015)
9. Holoborodko, P.: MPFR C++ (2008–2012). http://www.holoborodko.com/pavel/

mpfr/
10. Sampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D., Ceze, L., Grossman,

D.: EnerJ: approximate data types for safe and general low-power computation.
In: Proceedings of 32nd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2011. ACM, New York (2011)

11. Sidiroglou-Douskos, S., Misailovic, S., Hoffmann, H., Rinard, M.: Managing per-
formance vs. accuracy trade-offs with loop perforation. In: Proceedings of 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foundations
of Software Engineering, ESEC/FSE 2011. ACM, New York (2011)

12. Theano Development Team: Theano: A Python framework for fast computation of
mathematical expressions, May 2016. arXiv e-prints arXiv:1605.02688

13. Venkataramani, S., Sabne, A., Kozhikkottu, V., Roy, K., Raghunathan, A.: Salsa:
systematic logic synthesis of approximate circuits. In: Proceedings of 49th Annual
Design Automation Conference, DAC 2012, pp. 796–801. ACM, New York (2012)

14. Zhu, C., Han, S., Mao, H., Dally, W.J.: Trained ternary quantization. CoRR (2016)

http://eigen.tuxfamily.org
http://arxiv.org/abs/1512.03385
http://www.holoborodko.com/pavel/mpfr/
http://www.holoborodko.com/pavel/mpfr/
http://arxiv.org/abs/arXiv:1605.02688

	Linking Application Description with Efficient SIMD Code Generation for Low-Precision Signed-Integer GEMM
	1 Introduction
	2 Background
	2.1 Implementation and Optimization of GEMM
	2.2 ARM Processors and Their SIMD Extensions
	2.3 ARM NEON ISA Review
	2.4 Relevant Libraries

	3 Reduced-Precision Signed-Integer GEMM on ARM NEON
	3.1 Implementation
	3.2 Supporting Different Bit Widths
	3.3 Optimizing Reduction Overhead

	4 Performance Results
	5 Discussion
	6 Conclusion
	References




