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Abstract. Future Exascale architectures will likely make extensive use
of computing accelerators such as Field Programmable Gate Arrays
(FPGAs) given that these accelerators are very power efficient. Often-
times, these FPGAs are located at the network interface card (NIC) and
switch level in order to accelerate network operations, incorporate con-
tention avoiding routing schemes, and perform computations directly on
the NIC and bypass the arithmetic logic unit (ALU) of the CPU. This
work explores just such a heterogeneous FPGA architecture in the con-
text of two kernels that are driving applications in leadership machines:
the 3-D Fast Fourier Transform (3-D FFT) and Asynchronous Multi-
Tasking (AMT). The machine explored here is a DataVortex system
which consists of conventional processors but with programmable logic
incorporated in the memory architecture. The programmable logic con-
trols the network and is incorporated both in the network interface cards
and the network switches and implements a contention avoiding network
routing. Both the 3-D FFT and AMT kernels show compelling perfor-
mance for deployment to FFT driven applications in both molecular
dynamics and density functional theory.
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1 Introduction

Future Exascale architectures will likely make extensive use of computing accel-
erators such as Field Programmable Gate Arrays (FPGAs) given that these
accelerators are very power efficient. Oftentimes, these FPGAs are located at
the network interface card (NIC) such as in the NetFPGA project [16] which
has generated a large body of research on ways this configuration can improve
networks. Programmable logic at the NIC not only offloads computation from
the CPU to the NIC, but also enables more complicated routing schemes and
topologies that can reduce contention at the scales Exascale researchers attempt
to address. This work explores just such a heterogeneous FPGA architecture in

c© Springer International Publishing AG, part of Springer Nature 2018
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the context of two kernels that are driving applications in leadership machines:
the 3-D Fast Fourier Transform (3-D FFT) and Asynchronous Multi-Tasking
(AMT).

The 3-D FFT kernel is a well known high performance computing (HPC)
benchmark and is a key kernel in a wide range of HPC applications includ-
ing molecular dynamics and density functional theory. AMT kernels, on the
other hand, come from those emerging runtime models which combine multi-
threading with some form of message-driven computation. These runtime mod-
els, sometimes referred to as “Asynchronous Multi-Tasking” or “AMT”, feature
the ability to express and perform fine grain thread parallelism in the context
of distributed computation while also supporting the coarse grained parallelism
of conventional parallel programming practice. Some examples of experimen-
tal AMT implementations include OCR [7], Legion [6], the Habanero family
of languages [23,25,29,33], the Grappa framework for distributed shared mem-
ory [30], HPX [3,4], Qthreads [8], X10 [10], and Charm++ [1]. An emerging
challenge for AMT implementations is that they generate a large number of
small messages when operating in the modality of fine grain computation. While
this may present a problem for a conventional system, a heterogeneous FPGA
architecture is better equipped to handle this modality of operation.

The machine explored in this work is a DataVortex 200 series [2] which
consists of conventional processors but with programmable logic incorporated in
the memory architecture. The programmable logic controls the network and is
incorporated both in the network interface cards and the network switches and
implements a contention avoiding network routing. In June 2016 a DataVortex
200 series ranked 20th in the Green Graph 500 list [22] achieving 8.39 MTEPS
per Watt.

For the 3-D FFT kernel, the expanded memory hierarchy in the network
serves to significantly accelerate global memory rotations resulting in a signif-
icant speedup in FFT performance. For the AMT kernel, the incorporation of
programmable logic directly controlling the network enables high memory band-
width for small message sizes. These traits may prove crucial for applications in
an Exascale setting.

This work is structured as follows. Related work is given in Sect. 2, followed
by a detailed description of the prototype system and qualitative analysis of the
potential of this type of architecture for Exascale in Sect. 3. Section 4 explores
AMT runtime system requirements for dynamic applications and presents
microbenchmark results empirically exploring small message behavior on the
machine. Section 5 introduces the 3-D FFT kernel and explores the performance
of this kernel in both a conventional and FPGA accelerated modality. The con-
clusions and directions for future work are given in Sect. 6.

2 Related Work

The incorporation of programmable logic into network interface cards has
become extremely popular. The open source NetFPGA project [16] has been
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cited in hundreds of academic works and is an open source field programmable
gate array (FPGA) PCI Express board with Gigabit or Ten Gigabit Ethernet
networking ports. This project has enabled hundreds of groups to experiment
with programmable logic at the network interface card level with SRAM for data
rearrangement and buffering. There are also many vendors selling PCI Express
boards with programmable logic for building systems like the prototype sys-
tem explored in this work including Bittware [12] and Alpha Data [11]. The
widespread adoption of this technology for networks itself suggests the impor-
tance of studying a prototype system for potential Exascale use. The use of
FPGAs for low-latency contention avoiding networking designs has already been
adopted by high frequency traders in the financial industry [26,28].

Concurrent with the massive interest in programmable logic in network cards
is the large body of topology work aimed at improving communication band-
width through the elimination of link contention. Some examples of adaptive
routing schemes to avoid contention include those of Reed [32], Deniziak and
Tomaszewski [19] and Zhao et al. [36]. Topologies matter for performance and this
is especially well illustrated in the Dragonfly work [24]. A significant strength of
the prototype system explored in this work is the contention-avoiding topology.

3 Experimental Setup

The prototype system for exploring the FFT and AMT kernels is the DataVortex
200 series system described here. The system consists of 8 nodes with one Intel
Xeon E5-1630v3 operating at 3.7 GHz per node and 8 FPGA-based network
interface cards. Each of these cards is an Altera Stratix 5 A7 FPGA and has
32 MB of SRAM. These network interface cards are connected to a switchboard
consisting of four Altera Stratix 5 B6 FPGAs. The cards operate at a throughput
of 550 million packets/sec and are connected across the PCIe 3.0 controller using
eight lanes with an aggregate packet bandwidth of 35.2 GB/s in each direction
for the entire 8 nodes. For network comparison studies, the prototype system also
contains Mellanox Infiniband cards (Connect-X 3 VPI) to provide a redundant
network against which to compare performance. The stream benchmark [9] on a
single core of the prototype system indicates a sustained memory bandwidth of
14.5 GB/s.

All results in this work originate from the prototype system including both
the AMT and FFT control cases which do not use programmable logic with
SRAM and the DataVortex FPGA architecture cases which do. Due to the
small size of the prototype system, there is no expected performance impact
from the contention avoiding routing at the prototype system scale. The con-
tention avoiding routing algorithm implemented is that of Reed [32]. In both the
AMT and FFT kernels, the SRAM of the FPGAs is heavily utilized in order
to accelerate strided memory accesses in conjunction with network operations.
The small message behavior of the FPGA driven network is key for just the
AMT kernel. Small messages are a key component of AMT runtime systems and
have shown significant potential for improving the scalability and performance
of scaling constrained applications [18,34].
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4 Asynchronous Multi-tasking Kernel

Asynchonrous Multi-Tasking runtime systems frequently target medium to fine
grain thread parallelism rather than the coarse-grained process parallelism
employed in conventional parallel programming practices. This approach can
significantly improve efficiency in algorithms with irregular and time-varying
execution properties and show promise for Exascale usage. However, dynamic
task and resource management execution for fine grain thread parallelism also
results in a large number of small messages rather than the relatively small
number of large messages that frequently appears when using conventional par-
allel programming practice. An example of this is illustrated in Fig. 1. Figure 1
shows a visualization of the sparsity pattern of network communication and size
of messages for two different execution modalities of the Livermore Unstruc-
tured Lagrangian Explicit Shock Hydrodynamics (LULESH) mini-application.
LULESH [5] is a proxy application representing a commonly used kernel in sci-
entific computation intended to better measure and reflect realizable perfor-
mance on high performance computing architectures than benchmarks such as
High Performance Linpack (HPL) [20] while also serving as a performance mea-
sure for potential Exascale architectures and to optimize for power, energy, and
performance [27]. The two different execution modalities explored are coarse
grain parallelism as typified using conventional parallel programming practice
and asynchronous multi-tasking for fine grain parallelism and the modalities
were explored using the SST/macro simulator [21] where MPI was used for the

(a) Conventional Practice (b) AMT runtime

Fig. 1. A visualization of the sparsity pattern of network communication and size
of messages for the LULESH mini-application for both coarse grained conventional
practice and a fine grained AMT approach. The color indicates the size of the messages
with red being the largest and black being zero size. The conventional practice shows
fewer but larger mesages while the AMT approach shows many more messages of much
smaller size. (Color figure online)
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conventional approach and HPX was used for the AMT approach. LULESH per-
formance and network behavior were simulated on 64 nodes of a Cray XE6 for
both modalities with significant overdecomposition in the AMT modality. The
AMT approach generates significantly many more smaller messages than the
conventional approach. Most networks, however, show their best efficiency with
fewer, larger messages. In order to explore typical AMT behavior, the AMT ker-
nel explored in this section is alltoall communication limited to 8 byte messages.

The prototype system programmable logic network shows behavior substan-
tially different from conventional networks and favors large numbers of small
messages such as what is seen in AMT runtime executions like that of Fig. 1.
Alltoall communication bandwidth for 8 byte messages comparing infiniband
and the programmable logic network of the prototype system is shown in Fig. 2.
For many small messages the programmable logic network significantly increases
communication bandwidth for typical AMT execution modalities. This charac-
teristic may become an important feature for future Exascale architectures and
is a natural consequence of the programmable logic network created for the
prototype system here.

Fig. 2. Alltoall communication bandwidth for 8 byte messages comparing infiniband
and the programmable logic network of the prototype system. For many small mes-
sages such as that in the AMT modality of Fig. 1, the programmable logic network
has the benefit of not only employing contention avoiding routing but also increasing
communication bandwidth for AMT execution modalities.

5 3-D Fast Fourier Transform

The 3-D Fast Fourier Transform (FFT) is a key scientific computing kernel used
in many widely used software frameworks and toolkits. Some of these include
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widely used molecular dynamics toolkits such as NAMD [31] and Gromacs [14]
and Density Functional Theory toolkits such as VASP [17]. In NAMD, the
smooth Particle-Mesh Ewald method [35] is critically dependent on the dis-
tributed 3-D FFT implementation for both performance and scalability. The
3-D FFT is also an important kernel for computational fluid dynamics simula-
tions. Any potential Exascale architecture will need to compute the 3-D FFT
extremely efficiently as well as strong scale without generating a lot of network
contention.

Among the many ways to implement a 3-D FFT, several global memory rota-
tions are usually implemented so that a 1-D FFT is applied along 1-D lengths of
data that are stored consecutively in memory for fast access. No strided memory
accesses occur this way and such 3-D FFT implementations are very fast. How-
ever, such global memory rotations are expensive requiring both a large alltoall
operation and some data reordering. The incorporation of SRAM in the pro-
grammable logic network enables the network to also perform such a memory
rotation when taking each of the x, y, and z FFTs and thereby compute the
FFTs using the fastest memory layout possible. These rotations are illustrated
in Fig. 3. The 3-D data is decomposed across the distributed memory system in
just one dimension giving each CPU access to the entire fast dimension domain
memory each time an FFT is computed. The initial memory layout has fastest
access in the z direction and so the z FFT is computed first. The first rotation
then places fastest memory access in the x direction for computing the x FFT.
The second rotation places the fastest memory access in the y direction for com-
puting the y FFT. The last rotation returns the memory to the original layout.
Rotations in memory and FFT computations are entirely overlapped due to the
expanded memory hierarchy in the network.

Fig. 3. The programmable logic network and associated SRAM are used to perform
quick memory rotations and network communication for optimal memory layout of FFT
computations. For a memory layout that begins with fastest access in the z direction,
the z FFT is computed first. The first rotation then places fastest memory access
in the x direction for computing the x FFT. The second rotation places the fastest
memory access in the y direction for computing the y FFT. The last rotation returns
the memory to the original layout.
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For comparison purposes, the FFT kernel on the programmable logic network
is compared against performance from the widely used MPI-FFTW library [13]
and the FFT NAS Parallel Benchmark [15]. All of the comparison cases using
MPI-FFTW or the NAS Parallel Benchmark were conducted on the prototype
system but used the infiniband network. Figure 4 gives the time to solution for a
fixed problem size, 10243 3-D FFT run from 1 to 8 nodes on the prototype sys-
tem for complex double precision. In this figure, the lower the time to solution,
the better the result. The programmable logic network version significantly out-
performs the MPI-FFTW comparison in each case by around a factor of 4 or 5.
The performance of the programmable logic network FFT is also better even on
a single node, reflecting the usage of the fast programmable logic SRAM for data
rearrangement and optimal FFT computation even while not in a distributed
modality. Figure 5 gives the strong scaling speedup for the complex double 3-D
FFT calculations. The programmable logic network FFT scales linearly with the
number of nodes in both cases in addition to giving the significant performance
advantage illustrated in Fig. 4.

The NAS Parallel Benchmark for FFT enables a comparison in terms of
GFlops with the programmable logic network FFT. This comparison is shown in
Fig. 6. In these results, several different problem sizes were explored consistent
with NAS PB classes A–D while the programmable logic network FFT was
performed at cubic sizes. In each case, the entire 8 node system was used. The
performance improvement when using the programmable logic network versus

Fig. 4. Strong scaling result showing the time to solution between a 10243 complex
double 3-D FFT using either MPI-FFTW over infiniband or the FFT with the pro-
grammable logic network. In this plot, the lower the line, the faster the time to solution
and the better the result. All simulations used the prototype system. The scaling com-
parison for this data is found in Fig. 5.
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the NAS PB over infiniband is between a factor of 3 and 4. The peak sustained
performance for the programmable logic network version of the 3-D FFT was
163.1 GFlops over 8 nodes.

Fig. 5. Strong scaling result showing the speedup between a 10243 complex double 3-D
FFT using either MPI-FFTW over infiniband or the FFT with the programmable logic
network. In this plot, the higher the line, the better the scalability and the result. All
simulations used the prototype system. The time to solution comparison for this data
is found in Fig. 4.

Fig. 6. A comparison of sustained GFlops for the FFT operation comparing the NAS
Parallel FT Benchmark over Infiniband with the FFT over the programmable logic
network. All results used the prototype system and use the the full system (8 nodes).
Multiple 3-D problem sizes are explored. The NAS parallel FT benchmark peaks at 49
GFlops while the FFT over the programmable logic network peaks at 163 GFlops.
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6 Conclusions

Because it is expected that FPGAs will likely play a significant role in reduc-
ing power consumption in emerging and future supercomputers, this work has
explored a heterogeneous FPGA machine which incorporates programmable
logic that both expands the memory architecture and controls the network. Two
application motivated scientific computing kernels were explored on a small 8
node prototype system: an AMT kernel consisting of alltoall with 8 byte mes-
sages and the 3-D fast Fourier transform. While the AMT kernel tested the small
message communication bandwidth capability of the system, the 3-D FFT kernel
tested the global memory rotation capability of the system in order to accelerate
performance over conventional practice.

High communication bandwidth for small messages was explored due to
its importance for asynchronous multi-tasking runtime systems which target
medium to fine grain thread parallelism and generate large numbers of small
messages. This was demonstrated explicitly in this work using the SST/macro
simulator. AMT runtime systems may become key components of the Exas-
cale software stack both to improve efficiency and programmability. The FPGA
machine was able to significantly outperform the equivalent infiniband 8 byte
message alltoall. While a conventional application running on a conventional
machine addresses this performance issue through message coalescence, AMT
applications will often opt to avoid coalescence for greater overlap of computa-
tional phases. In this modality, the FPGA machine shows promise.

Fast rotations in conjunction with the programmable logic network enable
a very fast algorithmic approach to 3-D FFT’s so that the memory layout is
arranged for optimal access at the same time the network exchanges necessary
data between nodes. This results in performance improvements of as much as
a factor of 5 over conventional practice in computing 3-D FFT’s for the small
prototype system in this work. Future work will directly explore the perfor-
mance impact of this architecture on molecular dynamics toolkits like NAMD
and density functional theory toolkits like VASP.
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