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Abstract. Asymmetric single-ISA multicore processors (AMPs), which
integrate high-performance big cores and low-power small cores, were
shown to deliver better energy efficiency than symmetric multicores for
diverse workloads. Previous work has highlighted that this potential of
AMP systems can be realizable with help from the OS scheduler. Notably,
delivering fairness on AMPs still constitutes an important challenge, as
it requires the scheduler to accurately track the progress of each thread
as it runs on the various core types throughout the execution. In turn,
this progress depends on the speedup that an application derives on a big
core relative to a small one. While existing fairness-aware schedulers take
application relative speedup into consideration when tracking progress,
they do not cater to the performance degradation that may occur nat-
urally due to contention on shared resources among cores, such as the
last-level cache or the memory bus. In this paper, we propose CAMPS,
a contention-aware fair scheduler for AMPs. Our experimental evalua-
tion, which employs real asymmetric hardware and scheduler implemen-
tations in the Linux kernel, demonstrates that CAMPS improves fairness
by 10.6% on average with respect to a state-of-the-art fairness-aware
scheme, while delivering higher throughput.
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1 Introduction

Previous research has shown that asymmetric single-ISA (instruction set archi-
tecture) multicore processors (AMPs), which integrate a mix of complex high-
performance big cores and power-efficient small cores on the same chip, can
deliver higher performance per watt than their symmetric counterparts for
diverse workloads [8,15]. To bring the potential of AMPs to unmodified applica-
tions, the operating system has to face a number of challenges [9], some of which
must be properly addressed by the OS scheduler [10].

Most asymmetry-aware schedulers have been designed to optimize the system
throughput for multi-application workloads [3,7,8,12]. To this end, the scheduler
must devote big cores to running applications that use these cores efficiently,
c© Springer International Publishing AG, part of Springer Nature 2018
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since they derive performance improvements (speedup) relative to running on
small cores [8]. Further throughput gains can be obtained by using big cores to
accelerate different scalability bottlenecks present in parallel programs [6,12].

Unfortunately, asymmetry-aware schedulers that strive to optimize through-
put alone are known to be inherently unfair [14]. Unfairness gives rise to a num-
ber of undesirable effects on multicore systems [5,18]. For example, equal-priority
applications may not experience the same performance degradation (slowdown)
when running together relative to the performance observed when each applica-
tion runs alone on the AMP. Moreover, when attempting to optimize through-
put, the completion time of an application on an AMP may largely depend on its
co-runners [14]. These issues make priority-based scheduling policies ineffective,
reduce performance predictability, and can lead to wrong billings in commercial
cloud-like computing services, where users are charged for CPU hours.

These QoS-related issues can be addressed on AMPs via fairness-aware
scheduling algorithms [3,9,14,16]. Most of these algorithms rely on tracking the
progress that individual threads make when running on the various core types
throughout the execution, and attempt to deliver fairness by swapping threads
between different cores based on the observed progress. In tracking progress,
existing schedulers [14,16] factor in the slowdown that a thread experiences when
it is mapped to a small core, which can differ greatly across applications and vary
over time as a program goes through different execution phases [3,12]. Notably,
these schedulers do not consider the performance degradation that comes from
contention on the shared resources among cores, which may also lead to unfair-
ness [5,20]. In current AMP hardware [2,4], clusters of cores of the same type
typically share a last-level cache and other memory-related resources. Applica-
tions running on the various cores may contend for shared resources, which could
degrade their performance in an uneven and unpredictable way [5,18–20].

To address this shortcoming, we propose CAMPS, an OS-level contention-
aware scheduler for AMPs that seeks to optimize fairness while maintain-
ing acceptable throughput. CAMPS is equipped with a novel mechanism to
approximate a thread’s current slowdown, which leverages past performance his-
tory gathered at runtime in low contention scenarios. Unlike other schedulers,
CAMPS does not need special hardware extensions [16] or platform-specific pre-
diction models [7,12,14] to function. Instead, it relies on performance counters
available in commercial hardware, which makes the scheduler highly portable
across architectures. To assess the effectiveness of our proposal, we implemented
it in the Linux kernel and evaluated it on a real AMP platform that features an
ARM big.LITTLE processor [2]. Our analysis reveals that CAMPS improves fair-
ness by 10.6% on average compared to a state-of-the-art fairness-aware schedul-
ing scheme [14], and at the same time improves throughput by up to 17%.

The rest of the paper is organized as follows. Section 2 motivates our pro-
posal and discusses related work. Section 3 outlines the design of the CAMPS
scheduler. Section 4 showcases our experimental results and Sect. 5 concludes.
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2 Background and Related Work

In this section we first introduce the notion of fairness used in our work, and
discuss the challenges associated with determining the slowdown at runtime. We
then present a brief experimental study that showcases the main observation we
exploit to determine the slowdown on-line on AMPs, and discuss related work.

2.1 Fairness on AMPs and Determining the Slowdown

Previous research on fairness for CMPs [5,18] and AMPs [6,14,16] define a
scheme as fair if equal-priority applications in a multi-program workload suf-
fer the same slowdown due to sharing the system. To cope with this notion of
fairness, we turned to the lower-is-better unfairness metric [5]:

Unfairness =
MAX (Slowdown1, ..., Slowdownn)
MIN (Slowdown1, ..., Slowdownn)

(1)

where n is the number of applications in the workload and Slowdowni =
CT sched,i/CT alone,i. In turn, CTsched,i denotes the completion time of applica-
tion i under a given scheduler, and CTalone,i is the completion time of application
i when running alone on the AMP (with all the big cores available).

The slowdown of an individual thread (or that of a single-threaded applica-
tion) observed during a certain execution phase can be defined in terms of the
number of instructions per second (IPS ) as follows:

Slowdown = IPSalone/IPS sched (2)

where IPSalone represents the number of instructions per second observed for the
specific phase when the thread runs alone on the system, and IPS sched denotes
the IPS achieved by the thread when it runs the same execution phase, but in
the context of a multi-program workload under a given scheduling algorithm.

In this work, we assume that the IPSalone on an AMP is maximized when
the thread runs on a high-performance big core in isolation. That is the case
across all the applications explored in our experiments. We should also highlight
that in the context of multi-threaded programs, the IPS can be a somewhat
misleading performance metric, since a thread can exhibit a high IPC when busy
waiting (spinning) for other threads to arrive at a synchronization point (e.g.
barrier). To make the OS scheduler aware of these situations, where threads do
no useful work, our scheduling scheme leverages spin notifications from the user-
level runtime system by following a similar approach to that proposed in [13].

Delivering fairness entails ensuring that the slowdown accumulated by the
various application threads throughout the execution remains as even as pos-
sible [5,14,16,18], while maintaining acceptable throughput. To this end, the
scheduler must be equipped with a mechanism to determine a thread’s slowdown
at runtime. However, measuring the slowdown directly by using Eq. 2 is difficult
in practice; while a thread’s IPS sched can be easily obtained via performance
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counters, accurately determining IPSalone online is a challenging task, even on
symmetric CMPs [20]. For that reason, existing scheduling algorithms for sym-
metric CMPs typically rely on estimation models to approximate IPSalone [18],
or employ different heuristics to determine the degree of performance degrada-
tion indirectly via contention-related metrics [20]. Unfortunately, these schedul-
ing algorithms are not suitable for AMPs, as they assume that the key perfor-
mance metrics used to drive scheduling decisions (e.g., IPC or LLC miss rate)
do not vary across cores when the application runs alone on the system. On cur-
rent AMP hardware [2,4,15], this assumption is not valid, as cores may exhibit
different microarchitectural features and cache sizes [7,14].

Recently proposed fairness-aware schedulers for AMPs [14,16], implicitly rely
on the assumption that the performance degradation experienced by a thread on
an AMP (relative to its solo execution) is negligible when it runs on a big core,
even if it runs simultaneously with other threads. Thus, a thread’s slowdown
is estimated to be 1 when it runs on a big core; and the thread’s big-to-small
performance ratio – also referred to as the speedup factor (SF) [12] – is used to
approximate the slowdown when the thread runs on a small core. In turn, the SF
can be determined online by various means, such as direct measurement (IPC
sampling) [3,8], prediction models based on hardware counters [7,12,14] or by
leveraging special hardware extensions [16].

2.2 Performance Impact of Shared Resource Contention on AMPs

Assuming that a thread’s slowdown is negligible when it runs on a big core
(as done in [14,16]) is unrealistic in scenarios where threads heavily contend
for shared resources with each other. To illustrate this fact, we analyzed the
slowdown experienced by different single-threaded applications under varying
degree of contention. Our analysis reveals that contention-related degradation
can be substantial, and should be accounted for to avoid unfairness.

For our experiment, we used two AMP configurations based on the ARM
Juno development board [2] – equipped with a mix of Cortex A57 and Cortex
A53 cores, and the Intel QuickIA prototype [4], a dual-socket system featuring
an Intel Atom N330 processor and a Xeon E5450 processor. The ARM-based
configuration – presented in more detail in Sect. 4, features two big cores and
four little cores. The Intel-based configuration integrates two big and two small
cores. On both asymmetric platforms, the set of cores of the same type (big or
small), which make up a cluster, share a last-level cache (L2) and a bus interface
(FSB on Intel, AMBA on ARM) with the remaining cores in the cluster. Both
platforms integrate a single DRAM controller shared among all cores.

Our experiment consists in measuring the slowdown experienced by diverse
programs when mapped to a big core and run simultaneously with a different
number of instances of an aggressor application. As the aggressor, we used the
bandwidth benchmark [19], which causes substantial contention on the LLCs,
shared buses and DRAM controller. On our platforms, we observed that this
benchmark is capable of causing even a higher degree of contention than the one
generated by highly memory-intensive SPEC CPU benchmarks, such as lbm.
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Fig. 1. Slowdown experienced by various benchmarks when running together with
several instances of bandwidth on the Juno board (left) and the Intel QuickIA (right).

Figure 1 shows the slowdown (relative to the solo execution) that different
applications experience when running simultaneously with several instances of
the bandwidth application. Note that we measured the slowdown for all bench-
marks in the SPEC CPU2000 and CPU2006 suites, but due to space constraints
we only display the results for a few representative benchmarks that cover the full
spectrum of slowdown values observed on both AMP platforms.For each bench-
mark, which is always assigned to a big core in our experiments, we explored
different scenarios. In the first one, denoted as “1-aggressor-big” in Fig. 1, the
benchmark runs simultaneously with one instance of bandwidth, which is also
mapped to a big core; the small cores remain idle in this case. In the remain-
ing scenarios, labeled as “N -aggressors-small”, N instances of bandwidth are
mapped to small cores; thus, in leaving one big core unused, we remove con-
tention on the LLC and the bus interface associated with the big core cluster,
but not on the DRAM controller (shared among all cores).

As is evident, the performance penalty that a thread may suffer on a big
core due to interference with memory-intensive threads mapped to big cores
is much greater (up to 1.89x on the ARM platform, and 2.98x on the Intel
platform) than the degradation that comes from placing multiple aggressors on
small cores (up to 1.26x, reached with the highest number of simultaneous small-
core aggressors possible). This stems from two main factors. First, the contention
on the LLC and on the shared bus (big-core cluster) is removed completely in the
“N -aggressors-small” scenarios. Second, we observed that the pressure a single
aggressor puts on the shared memory resources is higher when it runs on a big
core than on a small one. We hypothesized that this has to do with the fact that
in-order small cores cannot handle multiple outstanding cache misses, leading to
a smaller bus and memory bandwidth utilization, and as a result to a smaller
degree of contention. This observation suggests that monitoring the IPS of a
thread when it runs on a big core in a contention-free scenario on a big cluster
(e.g. with the other big cores idle) could be a good estimate for IPSalone . Our
scheduling proposal leverages this observation to approximate the slowdown.

We also observe that some programs, such as sixtrack or mesa, experi-
ence very low slowdown when executed together with memory-intensive aggres-
sors. As pointed out in [18,20], CPU-intensive applications with a very small
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working set and good cache locality, or those that do not use the memory
hierarchy substantially, do not experience significant performance penalty due
to contention. As in [18], our scheduling proposal uses the bus transfer rate
(BTR) to identify scenarios where threads are unlikely to suffer from contention
when running on a big core. In our platforms, the BTR is measured as follows:
(bus read accesses ∗ LLC cache line size ∗ processor freq) /total cycle count .

2.3 Related Work

The first approach to fairness-aware scheduling on AMPs was an asymmetry-
aware Round-Robin (RR) scheduler that simply fair-shares big cores among
applications by triggering periodic thread migrations [3]. Fair-sharing big cores
has proven to provide better performance and more repeatable completion times
across runs on AMPs than default schedulers in general-purpose OSes [9,11],
which are largely asymmetry agnostic. For this reason, RR has been widely used
as a baseline for comparison [3,12]. Note, however, that RR and other schemes
that also rely on fair sharing big cores, such as A-DWRR [9] do not take into
account the fact that applications derive different speedup factors when using
big cores on the platform, and that these speedups may vary over time. This
leads to degrading fairness and throughput [14].

Currently, the state-of-the-art OS-level fairness-aware scheduling scheme is
ACFS [14]. To optimize fairness, ACFS leverages per-thread speedup factor (SF)
values to continuously track the relative progress that each thread in the work-
load makes on the AMP, and enforces fairness by evening out the slowdown
observed across applications. A thread’s SF is determined online by feeding
a platform-specific estimation model with the values of different performance
metrics gathered via hardware counters. In [14] the authors experimentally
demonstrated that ACFS clearly outperforms previous fairness-aware schedul-
ing schemes, such as RR [3], Equal-Progress [16], and A-DWRR [9], for a wide
range of workloads running on real asymmetric hardware. The main limitation of
ACFS [14] (also present in previous schemes [16] based on thread progress track-
ing mechanisms), is the fact that the scheduler does not take shared-resource
contention effects into consideration. As our experiments reveal, failing to cater
to the degradation that comes from contention leads the scheduler to exhibit
unfair behavior when multiple memory-intensive programs are included in the
workload. CAMPS effectively improves fairness in this scenario.

3 The CAMPS Scheduler

CAMPS consists of two components: the performance monitor and the core
scheduler. The performance monitor continuously gathers the value of various
runtime metrics for each thread in the workload using performance counters,
and feeds the core scheduler with critical information it needs, such as estimates
of threads’ slowdowns. The core scheduler assigns threads to big and small cores
so as to preserve load balance in the system, and swaps threads between cores
when necessary to ensure that applications achieve similar progress on the AMP.
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In the remainder of this section we first describe the mechanism used by
CAMPS to predict a thread’s slowdown at runtime. Then we outline the progress
tracking mechanism and discuss how fairness is enforced via thread swaps.

3.1 Determining the Slowdown at Runtime

The performance monitor approximates a thread’s current slowdown by using
Eq. 2; the actual IPS is measured with performance counters, and IPSalone is
estimated by using a history table maintained for each thread at runtime. This
table stores IPS values observed in past execution phases when the thread was
mapped to a big core in a low-contention scenario. As shown in Sect. 2, when a
thread runs on a big core, the performance degradation that comes from inter-
ference with small-core threads is typically very low. Based on this observation,
big-core low-contention IPS values are used to approximate the IPSalone .

To detect low-contention scenarios on a big core, the scheduler leverages
the heuristics based on the bus transfer rate (BTR) metric proposed in [17,18].
Essentially, a thread whose BTR is smaller than a given low btr threshold are not
likely to suffer noticeably from contention. In a similar vein, when the aggregate
BTR across threads running a given core cluster falls below a given high btr
threshold we can assume that degradation due to contention will be very low [18].
These thresholds can be quickly determined via synthetic benchmarks [17,18]. If
low-contention scenarios do not occur naturally as a result of the thread-to-core
assignments performed by CAMPS, the core scheduler will enter a special mode
(described later), which introduces low-contention scenarios artificially.

Indexing a thread’s history table, which is necessary to approximate the
slowdown and to record new IPS samples, requires the performance monitor to
figure out whether information on the current program phase already exists in the
table or not. To this end, we leverage a variant of the phase-detection mechanism
used in a previous work [1]. In that work, the scheduler continuously monitors the
percentage of instructions of different types (int/FP, load, store, branches, etc.)
retired during the last sampling period, which make up a instruction type vector
(ITV). Specifically, if the Manhattan distance of the ITVs for two performance
samples (collected at different intervals) is smaller than a threshold, then both
samples are assumed to belong to the same phase. Unfortunately, this scheme
cannot be implemented in the real AMP platform we used, as the Performance
Monitoring Unit is not equipped with the necessary performance events. To
overcome this issue, we adapted this approach by monitoring two alternative
control metrics along with the thread’s BTR and its IPS: the number of L1
cache accesses per 1K instructions, and the percentage of branches retired over
the total instruction count. As the instruction composition, the value of these
two control metrics for a specific phase remain the same under different levels of
shared resource contention, and more importantly, they do not vary significantly
across core types. In addition, we observed that the value of these metrics changes
dramatically when an application enters a new execution phase exhibiting a
different degree of memory intensity and branch-prediction related behavior,
which have a great impact on cross-core performance on AMPs [7,14]. These
facts make the selected control metrics very suitable to index the table.
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The history table is updated at the end of a monitoring interval in which
the thread ran on a big core cluster in a low-contention scenario. If there is
not any information of the current phase, a new IPS entry is created; otherwise
the existing is updated with a running average of the low-contention IPS values
recorded for that phase. When the thread runs on a small core, or a big core
under potential contention, CAMPS accesses the history table to estimate the
slowdown. If the IPS for the current phase is found in the table (i.e. phase
hit), the slowdown is estimated with the ratio of the IPS value retrieved from
the table, and the current IPS value measured in the last sampling interval.
Otherwise (i.e. phase miss), the slowdown is approximated with the ratio of the
average IPS samples stored in the history table, and the current IPS value.

3.2 Progress Tracking and Enforcing Fairness

CAMPS’s core scheduler maintains a progress counter for each thread referred
to as amp progress, which enables the scheduler to track progress and enforce
fairness. This counter tracks how much progress the thread has made thus far
relative to the progress that would have resulted from running it on a big core
the whole time in isolation. When a thread runs for a clock tick on a given core
type, the scheduler increments amp progress by Δamp progress, defined as follows:

Δamp progress = (100 · Wdef) / (CS · Wt) (3)

where Wt is the thread’s weight, derived directly from the application priority
(set by the user); Wdef is the weight of applications with the default priority; and
CS is the thread’s current slowdown as estimated by the performance monitor.

The definition of Δamp progress is very similar to the formula that the ACFS
scheduler [14] uses to update progress counters. The main difference lies in how
the CS factor is defined. ACFS assumes that a thread’s current slowdown is
always 1 (no performance degradation) when it runs on a big core, and uses the
thread speedup factor (predicted via a platform-specific model) to approximate
the slowdown when the thread runs on a small core. In doing so, ACFS does not
take shared resource contention into consideration when updating progress. This
aspect is factored in by CAMPS, as the slowdown is determined by comparing
the thread’s actual performance with an estimate of IPSalone .

Threads mapped to big cores by the scheduler typically make faster progress
than threads running on small ones, which causes unfairness. Note that the
CS factor (slowdown) is usually bigger when the thread runs on a small core;
thus, progress counters of small-core threads are incremented at a slower pace
than that of big-core threads. CAMPS strives to enforce fairness by evening
out the progress counter across threads. To make this possible, it may need to
perform thread swaps (migrations) between different core types every so often.
Like ACFS, CAMPS swaps a thread running on a big core with another thread
running on a small core when the difference of their progress counters exceeds a
given threshold. Specific instructions are provided in [14] for selecting the most
appropriate value of this threshold for a given platform.
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We found that relying on progress counters alone (as ACFS does) is ineffective
in the event that a contention-sensitive application and an aggressor are mapped
to the big-core cluster simultaneously. As shown in Sect. 2, this may slow down
contention-sensitive applications substantially. To overcome this issue, CAMPS
uses the BTR-based heuristics [18] to detect high contention scenarios, and favors
those threads swaps that contribute to reducing contention on the big core cluster
(e.g. a big-core aggressor thread is migrated to a small core). The main goal of
this is to reduce the slowdown experienced by threads mapped to the big-core
cluster simultaneously, and in turn, to improve fairness and throughput.

Finally, it is worth noting that when the number of memory-intensive threads
in the workload is high, low contention scenarios may not occur that often. In
these cases, CAMPS transitions into a non-work-conserving (NWC) mode in
which low contention scenarios are created artificially. To control transitions into
this special mode, the scheduler operates as follows. Every time that a thread
completes k consecutive monitoring intervals (being k a configurable parameter),
CAMPS calculates the thread’s phase-hit rate and the number of IPS samples
that were inserted into the history table over that time period. If the phase-hit
rate is not high enough (falls below 80% in our experimental platform) and not
a single IPS sample was inserted in the table during that period, the scheduler
enters the NWC mode. When in this mode, if the thread was not running on a
big core already, it will be swapped with a big-core thread to preserve load bal-
ance; in doing so, CAMPS tries to select a memory-intensive thread as the swap
partner, so as to reduce contention on the big core cluster. If a low-contention
scenario is still not present on the big-core cluster, the scheduler will disable as
many big cores as necessary (for a very short period of time) to mimic such a sce-
nario. Making this possible comes down to disabling only a few big cores: those
where potentially aggressor (high-BTR) threads are running at this point. The
scheduler transitions back into the normal operating mode when (1) a number
of IPS samples have been gathered, or (2) when the thread blocks/exits.

4 Experimental Evaluation

We compare the effectiveness of CAMPS with that of two previously proposed
fairness-aware schedulers for AMPs: ACFS [14] and an asymmetry-aware Round-
Robin (RR) scheme [3]. We opted to use RR instead of the default OS sched-
uler, which is known to deliver highly variable completion times for compute-
intensive workloads [11]. For the sake of completeness, we also experimented with
a scheduler that attempts to optimize throughput by preferentially running on
big cores those applications that derive a higher big-to-small speedup [7,12]. We
will refer to this scheduler as HSP (High SPeedup). All the schemes considered
in our study were implemented as a separate scheduling class in the Linux kernel
v3.10. Except for RR, all the schedulers rely on performance monitoring counters
(PMCs) to function. Our implementation of HSP and ACFS determine threads’
speedup factors on-line by monitoring different PMC events, and by feeding an
estimation model with the obtained event counts, as described in [11].
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Table 1. Multi-application workloads

Name Applications Name Applications

W1 GemsFDTD, equake, soplex, milc, povray, bzip2 W13 GemsFDTD, bwaves, gamess, hmmer, crafty, astar

W2 galgel, hmmer, soplex, lbm, fma3d, bzip2 W14 bzip2, bwaves, hmmer, lucas, gobmk, gzip

W3 galgel, equake, gamess, lbm, bzip2, astar W15 soplex, art, vortex, lbm, fma3d, gobmk

W4 twolf, bwaves, equake, soplex, astar, gobmk W16 galgel, equake, hmmer, lbm, fma3d, h264ref

W5 GemsFDTD, bwaves, equake, povray, fma3d, astar W17 bwaves, equake, gamess, povray, astar, libquantum

W6 bwaves, equake, gamess, lbm, fma3d, bzip2 W18 GemsFDTD, galgel, gamess, hmmer, astar, libquantum

W7 GemsFDTD, applu, perlbmk, sixtrack, astar, gzip W19 swim, mcf, perlbench, h264ref, gobmk, gzip

W8 bwaves, perlbmk, povray, fma3d, astar, gzip W20 galgel, equake, hmmer, povray, mgrid, gobmk

W9 galgel, perlbmk, sixtrack, mgrid, astar, libquantum W21 galgel, equake, hmmer, bzip2, perlbench, h264ref

W10 GemsFDTD, vortex, perlbmk, fma3d, astar, gzip W22 galgel, equake, gamess, hmmer, sixtrack, povray

W11 bzip2, equake, hmmer, vortex, crafty, astar W23 gamess, art, bzip2, gobmk, sixtrack, vortex

W12 gamess, hmmer, soplex, art, astar, gzip W24 galgel, gamess, hmmer, povray, perlbench, gobmk
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Fig. 2. Unfairness and throughput for workloads in Table 1

To assess the effectiveness of the various algorithms, we employed multi-
application workloads consisting of compute-intensive benchmarks from differ-
ent benchmarks suites (SPEC CPU, PARSEC, etc.) running on two real AMP
platforms with different number of cores. Due to space constraints however, we
could only include the discussion for the results of workloads consisting of single-
threaded programs, and running on the ARM Juno board [2]. In using this kind
of workloads, we ensure a fair comparison against HSP, RR and ACFS, as these
schemes were evaluated before using similar workloads [3,7,14]. The ARM Juno
board used for our experiments features a big.LITTLE processor that consists of
two Cortex A57 “big” cores (running at 1.10 GHz) and four Cortex A53 “small”
cores (running at 850 MHz). Each core has a private L1 cache and shares a last-
level (L2) cache with the other cores of the same type. Specifically, big cores
share a 2 MB/16-way L2 cache, and small ones feature a 1 MB/16-way cache.
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For the evaluation on the Juno board, we randomly built 24 program mixes
that combine a different number of light-sharing programs – whose performance
does not suffer noticeably under contention, and memory-intensive programs,
which are subject to high contention-related performance degradation or put
significant pressure on shared resources. Table 1 displays the workloads sorted
in descending order by the number of memory-intensive programs they include.
Figure 2 reports the unfairness and throughput values for each workload and
scheduler, normalized with respect to the results of the HSP scheduler. To assess
throughput we employed the Aggregate Speedup (ASP) metric as in [11,14].

The results illustrate that optimizing one metric may lead to substantial
degradation of the other metric. This is consistent with what was observed in
previous work [11,14], which underscores that fairness and throughput are largely
conflicting optimization goals on AMPs. As is evident, the HSP scheduler, which
strives to optimize throughput achieves the best ASP values for the most work-
loads, at the expense of the worst unfairness numbers (the higher, the worse)
across the board. Conversely, the remaining schedulers (fairness aware), achieve
substantial reductions in unfairness vs. HSP (up to 72% – CAMPS under W17),
at the cost of potentially high throughput degradation (up to 38% – RR, W19).

ACFS, RR and CAMPS exhibit a clear trend across the board. Specifically,
for most workloads ACFS delivers better throughput and higher reductions in
unfairness than RR. This is the expected behavior since ACFS takes applications’
big-to-small speedups into consideration when distributing big-core cycles among
applications, whereas RR does not. Despite the higher throughput, the fact
that ACFS does not take contention effects into consideration, leads it similar
unfairness figures to those of RR in some cases (e.g. W4-W6, W15 or W17).
By contrast, our proposal (CAMPS) is able to reduce unfairness even further:
by up to 11% with respect to ACFS (W17) and by up to 28% relative to RR
(W19). At the same time, CAMPS is capable to reap higher throughput gains.
Notably, under those workloads with a low degree of contention (W20-W24) –
due to the small number of memory-intensive applications, CAMPS and ACFS
perform very similarly. This demonstrates that our proposal is also suitable for
low-contention scenarios, as it delivers similar unfairness and throughput figures
to ACFS, which provides the best results under these circumstances [14]. All in
all, CAMPS achieves an average 10.6% reduction in unfairness with respect to
ACFS while improving throughput by up to 17% (4% average increase).

Finally, we also observed that HSP is especially affected by contention effects
under workloads W5 and W13-W15, where the two applications with the highest
speedup constitute a pair consisting of an aggressor and a contention-sensitive
program. In these cases, HSP maps these conflicting applications simultaneously
to the two available big cores very often. Despite the fact that the applications
derive benefits from running on a big core alone, they also contend for shared
resources, which gives rise to throughput degradation. Fairness-aware schedulers
mitigate this issue by swapping threads between core types every so often, which
reduces the amount of time that the conflicting applications are mapped together
on the same cluster; this contributes to improving throughput. Specifically, the
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results reveal that all fairness-aware schedulers reap high normalized throughput
figures under these workloads (W5, W13-W15). More importantly, our proposal,
is able to outperform HSP for some of these conflicting workloads (W5 and W15).
This is possible thanks to the fact that CAMPS swaps threads based on their
observed progress and by catering to the degree of contention.

5 Conclusions

In this paper, we have proposed CAMPS, an OS-level fairness-aware scheduler for
asymmetric single-ISA multicores. Unlike other fairness-conscious asymmetry-
aware schemes [3,14,16], our approach effectively caters to the performance
degradation that comes from contention on shared resources among cores.
CAMPS accurately tracks the progress that the various threads in the work-
load make when running on the different core types throughout the execution,
and enforces fairness by evening out the progress across threads. To this end,
CAMPS approximates the current slowdown of an application thread by com-
paring its actual performance, with the performance observed in the past for
the thread when it ran on a big core in low contention scenarios. Notably,
our proposal does not require special hardware extensions [16] or platform-
specific speedup-prediction models [7,14] to function. Instead, CAMPS relies
on performance counters available in commercial AMP platforms, which makes
it portable across CPU architectures. We implemented CAMPS in the Linux ker-
nel and assessed its effectiveness on a real AMP system that features an ARM
big.LITTLE processor. An extensive comparison was performed with existing
asymmetry-aware schedulers [3,7,14,16]. Our experiments reveal that CAMPS
outperforms the state-of-the-art fairness-aware scheme – ACFS [14] – in both
fairness and throughput.
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