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Abstract. Maintaining the performance of high-performance comput-
ing (HPC) applications with the expected increase in failures is a major
challenge for next-generation extreme-scale systems. With increasing
scale, resilience activities (e.g. checkpointing) are expected to become
more diverse, less tightly synchronized, and more computationally inten-
sive. Few existing studies, however, have examined how decisions about
scheduling resilience activities impact application performance. In this
work, we examine the relationship between the duration and frequency
of resilience activities and application performance. Our study reveals
several key findings: (i) the aggregate amount of time consumed by
resilience activities is not an effective metric for predicting application
performance; (ii) the duration of the interruptions due to resilience activ-
ities has the greatest influence on application performance; shorter, but
more frequent, interruptions are correlated with better application per-
formance; and (iii) the differential impact of resilience activities across
applications is related to the applications’ inter-collective frequencies; the
performance of applications that perform infrequent collective operations
scales better in the presence of resilience activities than the performance
of applications that perform more frequent collective operations. This
initial study demonstrates the importance of considering how resilience
activities are scheduled. We provide critical analysis and direct guid-
ance on how the resilience challenges of future systems can be met while
minimizing the impact on application performance.
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1 Introduction

Fault tolerance is a key challenge to building exascale systems. Next-generation
systems are projected to have dramatically higher node counts than today’s
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Fig. 1. Example of how delays introduced by unsynchronized resilience mechanisms
may propagate along application communication dependencies. The processes p1, p2,
and p3 exchange two messages m1 and m2 in each of the three scenarios. The black
regions marked with a white δ denote the execution of coordinated (subfigure (b))
and uncoordinated (subfigure (c)) resilience activities. The grey regions denote periods
in which the execution of a process is stalled due to an unsatisfied communication
dependency.

largest systems. The complexity and component count of individual nodes are
also projected to grow. These two trends mean that future systems will experi-
ence more frequent failures than current systems. Moreover, power optimizations
(e.g., decreases in supply voltages) may further increase failure rates. Advances
in component technology and system design mean that these systems may fail
in new and different ways. In addition to fail-stop faults (e.g., node failure),
Byzantine faults [18] due to silent data corruption may also be prevalent [3].

Currently, coordinated checkpoint/restart (cCR) [5] is the most commonly-
used method for addressing failures on large-scale HPC systems. However,
because the overhead of cCR grows as systems increase in size there is concern
that cCR will no longer be a viable option for exascale systems [6]. First, the
overhead of coordinating among application processes to determine when to take
a checkpoint is expected to be prohibitive. Second, cCR (and checkpoint/restart
in general) is only capable of handling fail-stop faults; by itself, it is not able
recover from silent errors that may cause the application to produce incorrect
results. Finally, as failures become more frequent, resilient operation may require
a non-trivial amount of on-node computation to ensure that the application can
continue to make meaningful progress. The combination of these factors means
that resilience methods on future systems will be more diverse, less tightly syn-
chronized, and more computationally intensive.

Significant effort has been devoted to developing alternatives to cCR that
are able to effectively address failures on next-generation systems [6,8,19]. How-
ever, few of these existing studies have examined how decisions about schedul-
ing resilience activities may impact application performance. The mechanism
by which independently-scheduled resilience activities affect application perfor-
mance is analogous to the impact of operating system noise on HPC applications,
see e.g., [7]. Drawing on this analogy, Fig. 1 illustrates how applications may
be affected by the degree to which resilience activities are synchronized across
processes. Figure 1a represents the execution of a simple application running
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without resilience on three processes: p0, p1, and p2. Time progresses from left
to right. These processes exchange two messages, m1 and m2, at times t1 and
t2, respectively. For the purposes of this discussion, we assume that these mes-
sages represent tight dependencies: the receiving process will immediately stall
if the expected message is delayed. Figure 1b shows how the application’s execu-
tion is affected when the delays introduced by resilience are perfectly synchro-
nized. Because each process is delayed by the same amount at the same time,
the inter-process timings are preserved. In contrast, Fig. 1c demonstrates the
potential impact of allowing resilience mechanisms to execute in the absence of
inter-process synchronization. For example, if the execution of the application on
p0 is delayed by the execution of a fault tolerance mechanism, then it may delay
the transmission of message m1. As a consequence, process p1 stalls waiting for
the arrival of this message. Moreover, this delay may ultimately propagate to
process p2 because of its dependency on communication from process p1.

In this paper, we investigate how decisions about scheduling resilience activ-
ities affect application performance. Specifically, our initial study yields several
key findings:

– The aggregate amount of time spent on resilience activities is not an effective
metric for predicting application performance at scale (Sect. 3.1).

– The duration of interruptions due to resilience activities has the greatest influ-
ence on application performance; shorter, but more frequent, interruptions are
correlated with better application performance (Sect. 3.1).

– The differential impact of resilience activities across applications is related to
the applications’ inter-collective frequencies; the performance of applications
that perform infrequent collective operations scales better in the presence of
resilience activities than the performance of applications that perform more
frequent collective operations (Sect. 3.2).

This study of the importance of considering how resilience activities are
scheduled has wide-ranging implications for fault-tolerant computing in gen-
eral. It also provides critical analysis and direct guidance on how the resilience
challenges of future systems can be met while ensuring that overheads remain
tolerable.

2 Experimental Approach

2.1 Modeling Local Checkpoint/Restart

In general, the communication structure of Message Passing Interface (MPI) pro-
grams cannot be determined offline because message matches cannot be estab-
lished statically [2]. This makes modeling application performance analytically
challenging even if all parameters of the application (e.g., the complete commu-
nication structure and all relative inter-process timings) are known. We therefore
use a validated discrete-event simulation framework to evaluate the impact of
local checkpointing activities on the performance of real applications.
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Our simulation-based approach models checkpointing activities as CPU
detours: periods of time during which the CPU is taken from the application
and used to compute and commit checkpoint data. This approach allows a level
of fidelity and control not always possible in implementation-based approaches.
It also allows us to examine simulated systems much larger than those generally
available.

Our simulation framework is based on LogGOPSim [13] and the tool chain
developed by Levy et al. [20]. LogGOPSim uses the LogGOPS model, an exten-
sion of the well-known LogP model [4], to account for the temporal cost of com-
munication events. An application’s communication events are generated from
traces of the application’s execution. These traces contain the sequence of MPI
operations invoked by each application process. LogGOPSim uses these traces
to reproduce all communication dependencies, including indirect dependencies
between processes which do not communicate directly.

LogGOPSim can also extrapolate traces from small application runs; a trace
collected by running the application with p processes can be extrapolated to sim-
ulate performance of the application running with k ·p processes. The extrapola-
tion produces exact communication patterns for MPI collective operations and
approximates point-to-point communications [13]. The validation of LogGOPSim
and its trace extrapolation features have been documented previously [13]. Simi-
larly, its ability to accurately predict local checkpointing overheads has also been
documented [8,20].

2.2 Simulating Different Resilience Schedules

To simulate the impact of depriving the application of CPU cycles in order
to perform local resilience operations (like checkpoints), LogGOPSim accepts a
resilience activity trace: an ordered list of events, expressed as the start time
and duration of each event. We use three different aggregate resilience activ-
ity percentages (1%, 5%, and 10%), each representing an aggregate amount of
computation time taken away from the application over the course of the entire
run. These aggregate amounts are then scheduled along a spectrum from high
frequency, low duration detours to low frequency, high duration detours. The
sum total of noise in each schedule equals the given aggregate percentage.

We make two simplifying assumptions in our investigation. First, we assume
no failures. While including failures would not change our overall message and
results, we disregard them in order to better understand the measured overheads.
Second, we assume no additional interference events occur in the run of the
application (e.g. slowdowns due to true operating system noise).

In the remainder of the paper, we present results from simulation experiments
based on the behavior of a set of four workloads. These workloads were chosen to
be representative of scientific applications that are currently in use and compu-
tational kernels thought to be important for future extreme-scale computational
science. They include:

– LAMMPS: A scientific application developed by Sandia National Laboratories
to perform molecular dynamics simulations. For our experiments, we used the
Lennard-Jones(LJ) and 2D crack potentials [24].
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– HPCCG: A conjugate gradient solver from the Mantevo suite of mini-appli-
cations [12].

– LULESH: An application that represents the behavior of a typical hydro-
code [17].

LAMMPS is an important U.S. Department of Energy (DOE) application
which runs for long periods of time on production machines and exhibits a range
of different communication structures. HPCCG represents an important com-
putational pattern in key HPC applications. LULESH is a proxy for important
exascale applications developed by the DOE’s Exascale Co-Design Center for
Materials in Extreme Environments (ExMatEx).

3 Results and Discussion

Our experiments explored the effect of different strategies for scheduling
resilience activities on the runtime of our chosen workloads. To make our results
applicable across a wide range of resilience strategies and application require-
ments, we used three general classes of resilience-related activity. These classes
are characterized by the percentage of total application runtime taken up by
resilience activity; we studied cases where 1%, 5%, and 10% of application time
was used.

For each case, we explored different representations of the actual resilience
activity. While the total time taken for resilience might sum up to, say, 5%
of application runtime, the frequency and duration of those activities can vary
depending on overall resilience strategy, hardware capabilities, contention for
storage, and other factors. We have explored the tradeoffs between frequency
and duration in uncoordinated checkpointing systems in previous work [8,25]. We
focused in these experiments, however, on modeling this tradeoff more abstractly.

We generated a detour list for a set of discrete frequency/duration combina-
tions in each of the 1%, 5%, and 10% cases. A detour list consists of a set of pairs
(timestamp, duration) indicating when each detour begins and how long it lasts,
representing the particular frequency/duration tradeoff for a particular scenario.
We then conducted simulations using execution traces of our chosen workloads
and each detour list, simulating the execution of the workload in the presence
of the indicated resilience activity pattern and (implicitly) amount. For each
case, we simulated the effects of the following combinations of detour frequency
and duration: 100 KHz/110 ns, 10 KHz/1.1µs, 1 KHz/11µs, 100 Hz/110µs, and
10 Hz/1.1 ms. While not all of these combinations of detours and resilience activ-
ity amounts may represent conditions that occur in practice, our goal in this work
is to explore the nature of the tradeoffs in this space rather than examine the
effects of particular ones on applications or systems in detail.

We present results for all of our chosen workloads with 32Ki simulated pro-
cesses, and due to technical constraints, for 3 workloads with 64Ki simulated
processes1.
1 We use the binary prefixes defined by the International Electrotechnical Commission

(IEC). For example, 1Ki processes denotes 210 = 1024 processes.
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Fig. 2. 1% resilience activity with varying frequency/duration compositions.

Fig. 3. 5% resilience activity with varying frequency/duration compositions. The bars
for LAMMPS-crack at 10 Hz/5.5 ms in each plot have been truncated; the magnitude
is displayed as an annotation in the plot.

3.1 Discussion

The results of our experiments are presented in Figs. 2, 3 and 4. These figures
plot the total application time-to-solution slowdown for each scenario. The most
general result of note from these figures is that each application behaves differ-
ently under each resilience activity schedule, with LAMMPS-crack showing the
greatest impacts and LAMMPS-lj showing the least. Also of significance is that
the composition of a resilience activity (the frequency and duration) has a greater
effect on application runtime than does the aggregate amount of that resilience
activity. This is easily visible in all of the cases (Figs. 2, 3 and 4), where increas-
ing the duration of detours eventually results in significant slowdowns for all
our tested workloads, even as the total time taken in detours remains the same.
Similar results were observed at the two different simulated process counts we
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Fig. 4. 10% resilience activity with varying frequency/duration compositions. The bars
for LAMMPS-crack at 10 Hz/11 ms in each plot have been truncated; the magnitude
is displayed as an annotation in the plot.

studied, implying that the effect of increasing duration appears to be generally
insensitive to application size.

Our results also raise the possibility that there may not be a strictly linear
relationship between application slowdown and the proportion of runtime spent
servicing each detour event. In other words, a factor of 5 increase in duration
between two cases, does not imply a factor 5 overall slowdown in application
performance. In fact, in most cases it is strictly less. Lastly, it is important to
note that for each of the aggregate noise cases (1%, 5% and 10%), there exists a
fine-grained schedule that significantly reduces overall impact and therefore can
possibly be exploited by future applications.

3.2 Application Inter-collective Times

In this section, we examine the reasons behind the differential performance
impact across applications described in the previous section. Specifically, we
examine the relationship between application performance and the application’s
inter-collective period.

Figure 5 shows the discrete cumulative distribution functions (CDF) of the
inter-collective periods for the MPI collective operations performed by each of
our workloads. In this figure, a point at (x, y) indicates that, for a given applica-
tion, at least (x ∗ 100)% of the inter-collective times are smaller than y seconds.
For example, Fig. 5d shows that for LULESH 100% of the inter-collective times
for MPI Allreduce() are less than 150 ms.

Our first observation is that MPI Allreduce() is the most common collec-
tive operation for all four workloads. In fact, for LULESH and HPCCG, MPI -
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Fig. 5. Discrete cumulative distribution function (CDF) of the MPI collective inter-
arrival time for each application. note: the CDF for MPI Barrier() is represented
by a single point for both LAMMPS-crack and LAMMPS-lj because only two such
operations occur during their execution.

Allreduce() is the only collective operation.2 The next observation is that the
frequency of MPI Allreduce() varies significantly between applications:

– in HPCCG, the inter-collective times for MPI Allreduce() are bimodal:
approximately half are between 40 and 50 ms, and approximately half are
between 300 and 500 ms;

– in LAMMPS-crack, 80% of the MPI Allreduce() inter-collective times are
between 9 and 10 ms, but there are also a small number inter-collective peri-
ods that exceed 150 ms;

– in LAMMPS-lj, half of the MPI Allreduce() inter-collective times are between
10 and 100 ms, but more than 10% are in excess of 5 s; and

– in LULESH, all of the MPI Allreduce() inter-collective times are approxi-
mately 100 ms.

2 Although MPI Allreduce() is the only collective operation that we observed in our
experiments, the occurrence of MPI collective operations may depend on the inputs
provided to the application.
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We also observe from these CDFs that for the total aggregate noise cases,
applications which perform more frequent collective operations are slowed down
more by resilience activities that are longer in duration but occur less frequently.
The exact interplay between inter-collective periods and resilience activity dura-
tions is beyond the scope of this paper, but is fertile ground for future investi-
gation.

4 Related Work

In this paper, we study how the schedule of a general resilience mechanism
can influence HPC application performance. To the best of our knowledge, no
published works explicitly examine the influence of schedules. In this section we
attempt to provide an overview of more loosely-related work.

Our study has origins in published research that characterizes application
behavior in the presence of OS noise [7]. Collectively, this research shows that
the pattern of OS noise events determines the impact on application performance
and the benefits of coordination. Moreover, it shows that the duration of an OS
noise event can significantly slowdown application performance.

Closely related, Ferreira et al. [8] studied the effects of communication on
uncoordinated checkpointing at scale. This previous work makes a number of
contributions that relate directly to the present paper. First, the authors show,
contrary to previous work in the area, that a completely uncoordinated local
checkpointing protocol can lead to significant application slowdown at scale.
These local checkpoints can lead to process delays that can propagate through
messaging relations (typically MPI collectives) to other processes causing a cas-
cading series of delays. To ameliorate these slowdowns, the authors demonstrate
how a hierarchical (or clustered) checkpointing approach [11] typically used to
reduce message log volumes also can be effective at reducing impacts from local
checkpoints. While our work has antecedents in this previous work, we investi-
gate the role of fine-grained scheduling in reducing overheads for local resilience
approaches.

Checkpoint/restart protocols in HPC systems have been extensively stud-
ied. There are many descriptions of the foundations of both coordinated and
uncoordinated CR protocols available in the literature [16,21]. Beyond uCR and
cCR, many other checkpoint/restart protocols have been proposed. Alvisi et al.
examined the performance impact of coarse-grained communication patterns
on the performance of three communication-induced checkpoint/restart (ciCR)
algorithms [1]. ciCR uses the application’s communication patterns to avoid
checkpoints that cannot be used to recover a consistent global state. Hierar-
chical checkpointing attempts to group application processes into clusters that
communicate frequently with each other [11,22]. cCR is used within a cluster
and uCR plus message logging is used between clusters. Because the number of
processes in a cluster is smaller than the total application, contention for filesys-
tem resources is reduced. Also, because most of the communication is within a
cluster, the volume of message log data is also reduced.
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Significant research has been conducted on how to reduce checkpoint com-
mit time. The approaches that have arisen out of this research include: com-
pression [14], exploiting faster storage media [23], excluding unchanged memory
contents from checkpoints [9,10], and de-duplication [15].

In this paper, we extend the results of these studies of checkpointing and
general resilience mechanisms to examine how best to schedule these activities to
reduce application performance. Specifically, we show that, as a whole, lowering
the duration of each resilience event is more important to performance than
decreasing the frequency.

5 Conclusion

Near-future HPC application developers will need to understand the performance
implications of their design choices. This is especially true for applications imple-
menting fault-tolerance strategies, as predicted scalability ceilings force explo-
ration of alternate approaches. The work we describe in this paper contributes in
several ways. We have presented a simulation-based approach for examining the
tradeoffs between resilience activity duration and frequency, without regard to
a particular resilience strategy. Our results reinforce earlier performance charac-
terizations of uncoordinated checkpointing which suggested that detour duration
has greater impact than detour frequency. This paper confirms this result for a
range of frequency/duration compositions of a particular detour profile.

We intend to pursue several directions of future work based on this research.
One is characterization of the relationship between the overall amount of
resilience activity and the duration of detours for particular applications. Can
an application’s communication pattern suggest, a priori, how resilience activ-
ities should be scheduled to minimize the impact on application performance?
We also plan to extend our study to additional workloads and a wider range of
application sizes.
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