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Abstract. With ever-increasing execution scale of parallel scientific sim-
ulations, potential unnoticed corruptions to scientific data during simu-
lation make users more suspicious about the correctness of floating-point
calculations than ever before. In this paper, we analyze the issue of the
trust in results of numerical simulations and scientific data analytics.
We first classify the corruptions into two categories, nonsystematic cor-
ruption and systematic corruption, and also discuss their origins. Then,
we provide a formal definition of the trust in simulation and analytical
results across multiple areas. We also discuss what kind of result accu-
racy would be expected from user’s perspective and how to build trust by
existing techniques. We finally identify the current gap and discuss two
potential research directions based on existing techniques. We believe
that this paper will be interesting to the researchers who are working on
the detection of potential unnoticed corruptions of scientific simulation
and data analytics, in that not only does it provide a clear definition and
classification of corruption as well as an in-depth survey on corruption
sources, but we also discuss potential research directions/topics based on
existing detection techniques.
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1 Introduction

Today and future scientific simulations or data analytics are facing a huge risk
with potential unnoticed corruptions because of ever-increasing execution scale
and more and more complicated system architecture. Multiple examples of hard-
ware bugs in floating-point units and software bugs in application stack make
users more suspicious about the correctness of floating-point calculations. In
2004 the AMD Opteron had an instruction bug that could result in succeeding
instructions being skipped or an incorrect address size or data size being used
[4]. Other bugs were reported in the Opteron processor in 2012 and 2014 [3].
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In this paper, we investigate several key aspects of the trust that a user
can give to the results of numerical simulations and scientific data analytics.
The notion of trust is related to the integrity of numerical simulations and data
analytics applications and not on whether the application actually completes.

To simplify the presentation without loss of generality, we consider that trust
in results can be lost (or the results’ integrity impaired) because of any form
of corruption happening during the execution of the numerical simulation or
the data analytics application. In general, the sources of such corruption are
threefold: errors, bugs, and attacks. Current applications are already using tech-
niques to deal with different types of corruption, but these techniques are not
all-encompassing. The current level of trust that a user has in the results is at
least partially founded on ignorance of this issue or the hope that no undetected
corruptions will occur during the execution.

So far, there have been a lot of research studying the trust/reliability issue,
such as detection of silent data corruptions (SDC) in numerical simulations (to
be detailed in Sect. 6). However, there are no specific surveys to categorize, for-
malize the research from the perspective of technical background and summarize
the corresponding solutions comprehensively. The work in this paper aims to fill
this gap.

In this paper, we look at (1) exploring the sources of trust loss; (2) review-
ing the definitions of trust in several areas; (3) providing numerous cases of
result alteration, some of them leading to catastrophic failures; (4) examining
the current notion of trust in numerical simulation and scientific data analyt-
ics; (5) providing a gap analysis; and (6) suggesting two important research
directions and their respective research topics. We also, specifically, suggest rec-
ommendations for developing a more scientifically grounded notion of trust in
aforementioned applications. We first formulate the problem and show that it
goes beyond previous questions regarding the quality of results such as Verifi-
cation and Validation (V&V), uncertainty quantification, and data assimilation.
We then explore the complexity of this difficult problem, and we sketch comple-
mentary general approaches to address it.

The product of simulation or of data analytic executions is the final element of
a potentially long chain of transformations, where each stage has the potential
to introduce harmful corruptions. These corruptions may produce simulation
results that deviate from the user-expected accuracy without notifying the user of
this deviation. There are many potential sources of corruption before and during
the execution; consequently, in this paper we do not focus on the protection of
the end result after the execution (latter is covered in the paper [10], through
the notion of provenance and trustable communications and storage).

2 Corruption Classification and Origins

In this section, we focus on corruptions that stay unnoticed. The corruptions for
which significant research efforts are needed in the context of trust are those that
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corrupt the results in a harmful way but are not detected by hardware, software,
or the users. We consider two main classes of corruptions: nonsystematic and
systematic.

Nonsystematic corruptions are those affecting an execution in a unique way;
that is, the probability of repetition of the exact same corruption in another
execution is very low. A harmful corruption is manifested as an alteration of one
of more data elements. Origins of such corruptions may be radiations (cosmic
ray, alpha particles from package decay), bugs in some paths of nondetermin-
istic executions, attacks targeting executions individually, and other potential
sources.

Systematic corruptions (including conception/model errors and epistemic
uncertainties) affect multiple executions of the same code, with the same input
parameters, in the same way. The harmful corruption also is manifested as an
alteration of one of more data elements. Executions do not need to be iden-
tical to produce the same corruptions because of possible uncertainty of the
input/execution data or so. Origins of these corruptions are twofold: (1) bugs
or defects (hardware or software) that are exercised the same way by executions
(different executions will execute a same code region or the same instruction
that will cause the same corruption) and (2) attacks that will consistently affect
executions the same way.

A question that usually arises is that is the trust in numerical results
a real problem? We argue that trust is a serious and insufficiently recognized
problem. For a list of software bugs that impacted users in domains such as space
exploration and telecommunications, see [1].

Two serious issues could be raised because of such unnoticed corruptions.

1. A large number of executions may have been corrupted before the discovery;
bad decisions may have been taken [2]; and it might be difficult after-the-fact
to check whether executions have actually been corrupted or not, without
heavy checking (e.g., re-executing the simulations entirely)

2. Even if silent corruptions do not lead to accidents, they may lead to significant
productivity losses.

3 Definition of Trust in Multiple Areas (Computer
Science, Sociology, Economy)

All types of corruptions mentioned in this paper are considered as part of the
general dependability problem as formulated in the paper [12]: “the ability
to deliver service that can justifiably be trusted”. Table 1 shows the relation
between dependability, survivability, and trustworthiness, as mentioned in the
paper [12]: the three concepts essentially cover equivalent goals and threats.

A survey of definitions related to dependability and trustworthiness is pre-
sented in the paper [13]. In that survey, trust depends on many elements: safety,
correctness, reliability, availability, confidentiality/privacy, performance, certifi-
cation, and security.

Multiple definitions of trust [6] are relative to other contexts: social sciences,
psychology, philosophy, and economics. The definitions that may help address
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Table 1. Relation between dependability, survivability, and trustworthiness

Concept Dependability Survivability Trustworthiness

Goal (1) ability to deliver
service that can
justifiably be trusted;
(2) ability of a system
to avoid failures that
are more frequent or
more severe than is
acceptable to the
user(s)

capability of a system
to fulfill its mission in a
timely manner

assurance that a
system will perform
as expected

Threats present (1) development faults
(e.g., software flaws,
hardware errata,
malicious logic); (2)
physical faults (e.g.,
production defects,
physical deterioration);
(3) interaction faults
(e.g., physical
interference, input
mistakes, attacks,
including viruses,
worms, and intrusions)

(1) attacks (e.g.,
intrusions, probes,
denials of service); (2)
failures (internally
generated events due
to, e.g., software design
errors, hardware
degradation, human
errors, corrupted data);
(3) accidents
(externally generated
events such as natural
disasters)

(1) hostile attacks
(from hackers and
insiders); (2)
environmental
disruptions
(accidental
disruptions, either
manmade or
natural); (3) human
and operator errors
(e.g., software flaws,
mistakes by human
operators)

Reference this paper “Survivable network
systems” (Ellison el al.
1999)

“Trust in
cyberspace”
(Schneider 1999)

the trust problem in our context are the following: “One party (trustor) is willing
to rely on the actions of another party (trustee)” and “The trustor is uncertain
about the outcome of the other’s actions; they can only develop and evaluate
expectations”.

Although there exist several metrics for trust [7] and approaches to building
trust, there is no consensus on or norm for which metrics should be used in
which case. In numerical simulation and scientific data analytics, there is a lack
of trust metrics that could be used to quantitatively compute and express the
trustworthiness of the execution results.

4 Building Trust in Application Results

The trust in the results of numerical simulation and data analytics execution
is related to two main notions: correctness of computation and integrity of the
execution stack. However, neither of them could be proven formally for nontrivial
execution scenarios. To address this issue, users have to develop a process to build
trust in their execution results.



Understanding and Improving the Trust in Results of Numerical Simulations 549

The simple pattern of building trust generally involves the following process.
The users first start with the smallest-scale, simplest problem that can be rea-
sonably modeled, and compare the output with expectations. The simulation
is then repeatedly scaled up in complexity and size (both simulation size and
system size), while repeating the comparisons of output with expectations. Any
odd or unexpected behavior is scrutinized and assumed to be an error until
demonstrated otherwise.

4.1 Expected Result Accuracy

Expected result accuracy is application dependent. Some applications are sensi-
tive to the details of calculation; for example, they can even act as tests of the
randomness of the pseudo-random number generator used. Other applications
model systems following a trajectory to an attractor state and small perturba-
tions to that trajectory have no impact on the final outcome. During the exe-
cution, accuracy is affected by round-off errors; such errors accumulate, and the
expected accuracy at the end of the execution is much lower than the machine
precision. Typical expected accuracies at the end of the execution are 10−6 for
the HACC cosmology code executions and 10−8 for Nek5000 computational fluid
dynamics executions.

At its most fundamental, expected result accuracy can be defined as follows:
If the corruption of the data does not result in any measurable changes to any
physically meaningful statistics of the simulation between a run that contained
the corruption and a run that does not, then the user’s expectation of accu-
racy has been satisfied. This definition suggests that research should focus on
detecting corruptions that make the end results diverge from the expected user
accuracy, as did by the adaptive impact-driven SDC detector [18].

4.2 How Existing Techniques Help Building Trust

Verification and validation form the basis for building trust in codes and the
models underlying them. We follow the convention of [16], whereby validation
determines the faithfulness of the mathematical/computational models to the
real world and verification determines the faithfulness of the code to the math-
ematical/numerical models. While solution verification techniques quantify the
accuracy at which algorithms solve the model, code verification techniques certify
that a code is a truthful implementation of the algorithms themselves. Follow-
ing best practices (e.g., unit and regression testing) and standards for software
design is a common, although incomplete, attempt toward verification.

Another common software development technique for building trust is to
incorporate physical, mathematical, and numerical knowledge alongside a com-
putation in order to flag potential errors. Examples in the course of a computa-
tion can include ensuring that mass or other quantities are conserved, that two
linear basis vectors remain orthogonal, and that an accumulated remainder term
lies below a round-off bound.
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Uncertainty quantification is an umbrella term for several activities involved
in improving the trust in the simulations and data in the hope of accounting
for all sources of uncertainty involved in the simulation of real-world/physical
quantities. Several techniques are used to improve the trust in the numerical
model, data, and simulation productivity under random effects. For example,
gridded or complete data sets are constructed from sparse data by solving inverse
problems. Simulations are corrected (or guided) by using data through a process
referred to as data assimilation. Complex mathematical models and models that
are used to represent real processes that are not well understood typically use
parameterizations. Parameterizations are surrogate models that depend on a set
of parameters that do not necessarily have a physical meaning. These parameters
are usually calibrated by solving a parameter estimation problem. Although UQ
techniques are often segregated along domain science and scientific community
lines, they support a common mathematical formulation and are often used in
tandem or in a manner that is not always transparent.

5 Gap Analysis

Many techniques are already applied from the hardware to the application in
order to detect corruptions. These techniques do not cover all potential sources
of corruptions, however, and large gaps put execution results at risk.

Harmful nonsystematic corruptions (undetected corruptions that corrupt
execution results in a non-noticeable way) can be detected by classic approaches
such as replication or algorithm-based fault tolerance (ABFT). Replication is too
expensive in our domain to be applied on all executions, however, and ABFT
covers only the data protected by the ABFT scheme: other application data are
not protected. Ensemble computations also offer a way to deal with nonsystem-
atic corruptions, since statistical analysis of the ensemble results may detect or
absorb the corruptions.

Harmful systematic corruptions are not detected by replication because repli-
cation detects errors by comparing identical (or comparable) executions. Since
the systematic corruptions will affect replicated executions the same way, the
comparison of executions will not detect any corruption. Ensemble computa-
tions will suffer the same limitation and will not be able to detect or absorb
such corruptions.

One approach to detect systematic corruptions, called n-version program-
ming [11], was proposed three decades ago. In this approach, which has some
similarity with the notion of alternates in recovery blocks [21], the results of the
executions of multiple different versions responding to the same specification
are compared in order to detect potential corruptions. The higher the diver-
sity of the versions (from hardware to application), the higher is the chance of
detecting corruptions. This approach does not seem applicable in our domain,
however, because of the cost of developing multiple versions of all levels of the
stacks, from the hardware to the application. Moreover, it has been demonstrated
experimentally that different versions may suffer the same bugs (and lead to the
same corruptions) [19].



Understanding and Improving the Trust in Results of Numerical Simulations 551

Formal validation and verification often presuppose the availability of a cor-
rect reference solution that can be used to assess model accuracy and code cor-
rectness. Although codes can be designed to capture these subsystems as special
cases, the potential for increased trust is rarely deemed to outweigh the result-
ing efficiency loss; and this gap widens at scale. As highlighted in the paper
[16], problem classes for which formal V&V methods exist (e.g., quantifying the
numerical error in the solution of linear elliptic PDEs) seldom overlap with the
complex simulations performed for DOE.

Uncertainty quantification considers that the hardware and the software stack
produce correct results. Uncertainty quantification is almost entirely focused on
addressing randomness introduced through the mathematical model. In general,
all algorithms assume that the hardware/software stack produces asymptotically
correct, if not exact, results. In the presence of numerical errors or spurious
software, outcomes can lead to biases in UQ that render the analysis useless or
can have a significant detrimental effect on trust.

6 Analysis of Research Directions and Solution

Since the trust problem spans all layers of the stack, from the hardware to the
application, and is related to many aspects of numerical simulation and data
analytics (modeling, initial conditions, numerical accuracy, parametric settings,
etc.), we believe that holistic approaches, considering all potential sources of
corruptions, have a better chance of succeeding. Figure 1 presents complementary
research directions.

Fig. 1. Complementary research directions to address the trust problem

The first direction performs on-line verification by using an external algo-
rithmic observer that does not trust the execution stack. During the execution,
the transformations applied by the hardware and software stack to the data
are verified against trusted models run by the observer. This direction is close
to n-version programming but uses verification algorithms much simpler than
the execution stack (the external algorithmic observer method assumes that the
observer is simpler to code than the full execution stack, hence can be more easily
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Table 2. Advantages and drawbacks of two research directions

External observer Trust relations

Detection
approach

Simulation and observer are
checking each other

Checking object results

Detection
assumptions

External observer is correct
(should be verified, validated)

All verifications and reputation
calc. are correct

Detection
latency

Short (depends on sampling
rate, typically 1 appl. iteration)

Long (actual detection could be
long: months)

Timeliness of
notification
after detection

Short (one iteration to next) Short (immediate upper layer)

Time to build
trust

Low (trust depends on
verisimilitude of results not on
components)

High (h/w and s/w components
need to acquire trust level)

Targeted level
of trust

User-expected accuracy Machine precision (modulo
round-off errors)

Dev. time and
cost

Low (requires only to develop
the observer)

High (affects all layers of the stack)

Tolerance High (corruptions of the appl.
data lower than user-expected
accuracy are tolerated)

Low (any corruption at object level
is suspicious since the consequence
on appl. data is unknown)

verified). The second direction establishes trust relations between levels of the
execution stack. Establishing these trust relations may involve thorough verifi-
cation of each level, reputation mechanisms, and layer-level on-line verification.
Table 2 shows the advantages and drawbacks of the two directions.

6.1 External Algorithmic Observer

The external observer approach is similar to the simplex architecture technique
for critical systems [22]. It is also similar in principle to a direction developed
for cyber security at the UIUC/Information Trust Institute where the pre-
dictable/expected behavior of a system is defined and used for detecting anoma-
lies [9]. The main idea is that the external observer checks that the observed
execution respects constraints set by the developer of the application/user.

In our context, the external algorithmic observer executes a model of the
data transformation performed by the application. There are several related
techniques proposed recently. Di et al. [17] proposed a silent data corruption
detection method with error-feedback control and even-sampling for HPC appli-
cations. It is designed particularly for iterative scientific simulations with multi-
ple time steps/snapshots generated. The detection performs the data prediction
mainly along the time series dimension for each data point in each snapshot.
Based on that work, they further proposed an improved solution [18] by tak-
ing into account only significant corruptions regarding their impact on the final
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execution results. They also proposed an adaptive solution allowing each pro-
cess/rank to select the best-fit prediction method based on its dynamic local
dataset, significantly improving the detection ability and lowering the memory
cost meanwhile. In absolute terms, Experiments with about 20 benchmarks indi-
cate that it can detect 80–99.99% of influential SDCs with the false positive rate
reduced to 0–1% in most cases. In addition, Berrocal et al. [15] explored par-
tial replication to improve lightweight silent data corruption detection for HPC
Applications.

Alternatively, the detection model could be derived from observed properties
of the data transformation [17], learned using some machine leaning algorithms,
or could implement a simpler version of the model used in the application [14,
24]. The critical point is that the application and the external model should
be diverse enough that they would not be affected by systematic corruptions
in the same way. In principle this approach allows a very large spectrum of
model complexities (compute and memory complexities) that could go up to the
complexity of the application plus the stack running the application. Since we
cannot afford such complexity in our domain, however, the research should focus
on models of a much lower complexity.

Low-complexity models implement trade-offs between complexity, accuracy,
and other properties. For example, the model proposed by Benson et al. [14]
relaxes numerical stability assuming that (1) the model can be restarted at
each step from the verified results of application at the previous step and (2)
corruptions happening in one step are detected in the same step. In Di et al.’s
work [17], the model computes only local predictions for the next simulation step,
from the application results at the current step (one step prediction), leveraging
the spatiotemporal continuity present in many applications simulating physics
phenomena. This model does not compute solutions of the equations governing
the simulation; rather, it verifies that the simulation respects a particular physics
property between steps.

Because the model is purposely simpler than the simulation, the data pro-
duced by the model diverges slightly from the one of the application. Therefore,
the detection cannot be based on perfect comparison. A tolerance margin should
be considered that controls the detection accuracy that conditions the number
of false positives (detection of a corruptions that did not happen) and false
negatives (nondetection of corruptions that actually happened). Other metrics
include overhead in execution time and overhead in memory occupation (the
model needs memory space for its execution). The tolerance margin should avoid
false detection due to the natural divergence between the model and the applica-
tion. It also should be lower than the user-expected accuracy in order to ensure
that corruptions exceeding the user-expected accuracy will be detected.

An important advantage of this approach is that by being much simpler than
the simulation stack, the software implementing the model is also easier to ver-
ify and to protect. For example, the multiversion programming approach is not
applicable to the simulation stack but it is applicable to the software implement-
ing the model. Several implementations of the same model or several different
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models could be executed and compared. Because the software implementing
the model has a low compute complexity, in principle, it could be executed on a
more secure environment, such as a secure processor. This allows increasing the
trust in the model itself.

6.2 Trust Relations

The direction based on trust relations is more mature in the sense that a large
body of research has been devoted to this topic in computer science. The DOE
report on Cybersecurity for Scientific Computing Integrity [10] provides con-
siderable coverage of the issues and approaches related to this direction. This
section complements the report by providing additional analysis and references.

To simplify the presentation, we call an “object” any piece (or layer) of soft-
ware of hardware that needs to be trusted. The trust relation direction supposes
at least (1) a way to certify that each used object is actually the object it is
supposed to be, (2) a method to evaluate a level of trust for each object involved
in the execution, (3) a metric of the level of trust, and (4) a way to protect the
trust level acquired by an object.

Considering points (1) and (4), the Trust Computing Group [5] has produced
the Trusted Platform Module (TPM) specification [8], which is an ISO/IEC
international standard. This specification details embedded crypto capability
that supports user, application, and machine authentication. More than 500
million PCs have shipped with TPM. One application of TPM is the verifica-
tion of the integrity of the platform to ensure no unauthorized changes have
occurred in the BIOS, disk master boot record, boot sector, operating system,
and application software. We believe that points (1) and (4) can leverage this
well-established technology to reduce the risk of attack-induced corruptions.
However, TPM does not protect against sophisticated attacks, and some TPM
circuits showed vulnerability [23,26].

Regarding point (2), the evaluation of the trust level of an object could
rely on extensive verification and validation of that object by a combination
of formal verification when applicable and empirical methods (checking against
known results, checking results against actual measurements). In principle the
external observer approach can be applied for each object. However, modeling
the data transformation of some functions in order to perform effective and
efficient detection may require a model complexity close to that of the function.

Regarding point (3), the trust metrics could have multiple dimensions (such
as time since first trusted, time since last verification, number of independent
verifications, or number of validations). The trust metrics would help compute a
trust level for the whole execution (a function of the trust of each object involved
in the execution). Thus, a user could explore different combinations of objects
for a given overall trust level. Conversely, the user could explore different com-
binations of objects and their impact on the overall trust score. Researchers in
security and networking domains [20,25] have already investigated this problem:
they represent objects in a graph where edges are trust relations and the trust
evaluation is modeled as a path problem on a directed graph.
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All these precautions will not avoid corruptions from a highly trusted object,
however, because verification and validation cannot test exhaustively the behav-
ior of all objects. This fact motivates research in the context of trust relations
beyond reputation or research, in order to develop new reputation techniques.

7 Conclusion

In this paper, we analyze the research issue of the trust in numerical simula-
tion results and scientific data analytics and identify possible research directions
based on existing state-of-the-art solutions. A classic assumption that users make
when running numerical simulations and data analytics is that floating-point
computations are correct. Unfortunately, multiple examples of hardware bugs
in floating-point units and software bugs in application stack make users more
suspicious about the correctness of floating-point calculations. A significant issue
for hardware bugs is that the time until the detection and the time between the
detection of the issue and the repair could be very long. At the application level,
fixing bugs that lead to corruptions in a version of a software does not mean that
the number of corruptions would be lower accordingly. Parameterization defects
leading to wrong results could be considered as a form of user-level corruptions.
There are two possible research directions/solutions about the detection of cor-
ruptions: (1) performing on-line verification by using an external algorithmic
observer that does not trust the execution stack; (2) establishing trust relations
between levels of the execution stack.
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