
Impact of Compiler Phase Ordering When
Targeting GPUs

Ricardo Nobre1,2(B) , Lúıs Reis1,2 , and João M. P. Cardoso1,2

1 Faculty of Engineering of the University of Porto, Porto, Portugal
{ricardo.nobre,luis.cubal}@fe.up.pt, jmpc@acm.org

2 INESC TEC, Porto, Portugal

Abstract. Research in compiler pass phase ordering (i.e., selection of
compiler analysis/transformation passes and their order of execution)
has been mostly performed in the context of CPUs and, in a small num-
ber of cases, FPGAs. In this paper we present experiments regarding
compiler pass phase ordering specialization of OpenCL kernels targeting
NVIDIA GPUs using Clang/LLVM 3.9 and the libclc OpenCL library.
More specifically, we analyze the impact of using specialized compiler
phase orders on the performance of 15 PolyBench/GPU OpenCL bench-
marks. In addition, we analyze the final NVIDIA PTX assembly code
generated by the different compilation flows in order to identify the main
reasons for the cases with significant performance improvements. Using
specialized compiler phase orders, we were able to achieve performance
improvements over the CUDA version and OpenCL compiled with the
NVIDIA driver. Compared to CUDA, we were able to achieve geometric
mean improvements of 1.54× (up to 5.48×). Compared to the OpenCL
driver version, we were able to achieve geometric mean improvements of
1.65× (up to 5.70×).

Keywords: GPU · Phase ordering · Optimization

1 Introduction

High Performance Computing (HPC) can offer Petaflops of performance by rely-
ing on increasingly more heterogeneous systems, such as the combination of
Central Processing Units (CPUs) with accelerators in the form of Graphics Pro-
cessing Units (GPUs) programmed with languages such as OpenCL [1] or CUDA
[2]. Heterogeneous systems are widespread as a way to achieve energy efficiency
and/or performance levels that are not achievable by a single device/architecture
(e.g., matrix multiplication is much faster on GPUs than on CPUs for the same
power/energy budget [3]). These accelerators offer a large number of special-
ized cores that the CPUs can use to offload computation that exhibits data-
parallelism and often other types of parallelism as well (e.g., task-level paral-
lelism). This adds an extra layer of complexity if one wants to target these sys-
tems efficiently, which in the case of HPC systems such as supercomputers is of
c© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 427–438, 2018.
https://doi.org/10.1007/978-3-319-75178-8_35

http://orcid.org/0000-0003-1639-4545
http://orcid.org/0000-0001-5962-2718
http://orcid.org/0000-0002-7353-1799


428 R. Nobre et al.

utmost importance. An inefficient use of the hardware is amplified by the magni-
tude of such systems (hundreds/thousands of CPU cores and accelerators), with
increasing utilization/power bill and/or cooling challenges as a consequence. In
order to efficiently utilize the hardware resources, programmers need advanced
compilers and they also need high levels of expertise. The programmer(s) and the
compiler(s) have to be able to target different computing devices (CPU, GPU,
and/or FPGA) and/or architectures (e.g., system with ARM or x86 CPUs) in a
manner that achieves suitable results for certain metrics, such as execution time
and energy efficiency.

Compiler users tend to rely on the standard compiler optimization levels,
typically represented by flags such as GCC’s -O2 or -O3. These flags represent
fixed sequences of analysis and transformation compiler passes, also referred to
as compiler phase orders. Programs compiled with these flags tend to outperform
the unoptimized equivalent. However, there are often other assembly/binary rep-
resentations of the source application in the solution space with higher perfor-
mance than the ones achieved through the use of the standard optimization lev-
els [4–8]. However, we can often achieve further performance, energy or power
improvements by using specialized optimizing compiler sequences. Domains such
as embedded systems or HPC tend to prioritize metrics such as energy effi-
ciency that typically receive less attention from the compiler developers, so these
domains benefit further from these specialized sequences [9].

Ideally, the standard compiler optimization levels would already correspond
to the use of the best compiler phase selection/order for a given metric. How-
ever, there appears to be no single best phase order that applies to all programs.
This is caused by the complex interactions between compiler passes. Some com-
piler passes negatively or positively interact with other compiler pases, resulting
in the creation/destruction of optimization opportunities when executing the
latter [11]. As such, a customized approach that produces different phase selec-
tions/orders for different functions/programs can lead to better performance.

Heterogeneous systems typically include a number of sub-devices with sub-
stantial differences. For this reason, different optimization strategies are needed
for each computing component. With phase ordering, we can achieve closer-
to-optimal optimization for these sub-devices, by specifying custom compiler
sequences for each of them. This approach is orthogonal to other optimization
strategies. For instance, it does not interfere with user and hardware optimiza-
tions. The use of compiler phase order specialization can reduce engineering
costs. In a number of cases the same source code can be used when targeting
architecturally different computing devices and/or different metrics through the
use of different compiler phase orders. This reduces or mitigates the need to
develop and maintain multiple versions of the same function/application.

The contributions of this paper are the following:

1. Compare performance between OpenCL and CUDA kernels implementing
the same freely available and representative benchmarks (PolyBench/GPU)
using recent NVIDIA drivers and CUDA toolchain, on an NVIDIA GPU with
an up-to-date architecture (NVIDIA Pascal).



Impact of Compiler Phase Ordering When Targeting GPUs 429

2. Assess the performance improvement that can be achieved using compiler
pass phase ordering specialization with LLVM 3.9, in comparison with both
use of that same LLVM compiler version without the use of phase ordering
specialization and in comparison with the default OpenCL and CUDA kernel
compilation strategies to NVIDIA GPUs.

3. Explain why the versions produced by phase selection/ordering specializa-
tion outperform the remaining ones, by analyzing the generated NVIDIA
PTX assembly. We compare the specialized versions with CUDA’s NVCC
and OpenCL LLVM outputs.

Additionally, to the best of our knowledge this is the first work to present
results of compiler pass phase ordering specialization targeting GPUs and con-
sidering OpenCL kernels.

The rest of this paper is organized as follows. Section 2 describes the method-
ology for the experiments presented in this paper. Section 3 presents the exper-
imental results. Final remarks about the presented work and ongoing work are
presented in Sect. 4.

2 Experimental Setup

We extended our compiler phase ordering Design Space Exploration (DSE) sys-
tem [8] to support exploring compiler sequences targeting NVIDIA GPUs using
Clang/LLVM and the libclc OpenCL library.

We used a workstation with an Intel Xeon E5-1650 v4 CPU, running at 3.6
GHz (4.0 GHz Turbo) and 64 GB of Quad-channel ECC DDR4 at 2133 MHz.
For the experiments we relied on Ubuntu 16.04 64-bit with the NVIDIA CUDA
8.0 toolchain (released in Sept. 28, 2016) and the NVIDIA 378.13 Linux Display
Driver (released in Feb. 14, 2017).

The GPU used for the experiments is a variant of the NVIDIA GP104 GPU
in the form of an EVGA NVIDIA GeForce GTX 1070 graphics card (08G-P4-
6276-KR) with a 1607 MHz/1797 MHz base/boost graphics clock and 8 GB of
256 bit GDDR5 memory with a transfer rate of 8008 MHz (256.3 GB/s memory
bandwidth). The graphics card is connected to a PCI-Express 3.0 16x interface.

The GPU is set to persistence mode with the command nvidia-smi -i
<target gpu> -pm ENABLE. This forces the kernel mode driver to keep the GPU
initialized at all instances, avoiding the overhead caused by triggering GPU ini-
tialization at application start. The preferred performance mode is set to Prefer
Maximum Performance under the PowerMizer settings tab in the NVIDIA X
Server Settings, in order to reduce the occurrence of extreme GPU and memory
frequency variation during execution of the GPU kernels.

In order to reduce DSE overhead, and given the fact that we found experi-
mentally that multiple executions of the same compiled kernel on the GTX1070
GPU had a small standard deviation in relation to registered wall time, each
generated code is only tested a single time during DSE. Only in a final phase on
the DSE process are the top solutions executed 30 times and averaged in order to



430 R. Nobre et al.

select a single compiler phase order. All execution time metrics reported (base-
line CUDA/OpenCL and OpenCL optimized with phase ordering) in this paper
correspond to the average over 30 executions.

2.1 Kernels and Objective Metric

In this paper we use the Polybench/GPU benchmark suite [10] kernels to assess
the potential for improvement with phase ordering when targeting NVIDIA
GPUs. We selected this particular benchmark as it is freely available and thus
contributes to making the results presented in this paper reproducible.

We modified the benchmarks to ensure that the CUDA and OpenCL versions
use the same floating-point precision. For instance, the OpenCL implementation
of the original MVT kernel uses double floating point precision, while the CUDA
implementation uses single precision. We performed the minimum of changes to
ensure a fair comparison.

Polybench/GPU is a collection of codes implemented for GPUs using CUDA,
OpenCL, and HMPP. This benchmark suite includes kernels from 15 bench-
marks from different domains which represent computations that would be per-
formed on GPUs in the context of HPC, including convolution kernels (2DCONV,
3DCONV), linear algebra (2MM, 3MM, ATAX, BICG, GEMM, GESUMMV, GRAMSCH, MVT,
SYR2K, SYRK), datamining (CORR, COVAR), and stencil computations (FDTD-2D).

For our experiments we use both the CUDA and the OpenCL implemen-
tations available for each PolyBench/GPU benchmark. We rely on the default
dataset shape so that reproducibility of our results (e.g., performance improve-
ment using the specialized phase orders presented in this paper) is more straight-
forward.

2.2 Compilation and Execution Flow with Specialized Phase
Ordering

We use Clang compiler’s OpenCL frontend with the libclc library to generate
an LLVM IR representation of a given input OpenCL kernel. The libclc library
is an open source library with support for AMDGCN and NVPTX targets that
implements functions as specified in OpenCL 1.1.

Then, we use the LLVM Optimizer tool (opt) to optimize the IR using a
specific optimization strategy represented by a compiler phase order, and we
link this optimized IR with the libclc OpenCL functions for our target using
llvm-link. Finally, using Clang, we generate the NVIDIA PTX representation
of the kernel from the LLVM bytecode resulting from the previous step, using the
nvptx64-nvidia-nvcl target. PTX is NVIDIA’s intermediate representation for
GPU computations, and is used by NVIDIA’s OpenCL and CUDA implemen-
tations. Although PTX is itself an IR and not a direct match to the code that
is executed on the GPU, it is the closest we can get without direct access to the
internals of NVIDIA’s drivers.

Normally, programs that use OpenCL load the kernels and pass it to the
clCreateProgramWithSource, which compiles them (online compilation). For



Impact of Compiler Phase Ordering When Targeting GPUs 431

specialized phase ordering, we instead compile the source code to PTX using
Clang/LLVM and pass the PTX to the clCreateProgramWithBinary (offline
compilation).

A compiler phase order represents not only the compiler passes to execute
in the compiler pipeline, which can be in order of the hundreds, but also their
order of execution. The fact that compiler passes are interdependent and inter-
fere with each other’s execution in ways that are difficult to predict can make
it extremely hard to manually generate suitable compiler sequences. For the
experiments presented in this paper, the OpenCL kernels from each of the Poly-
Bench/GPU benchmarks were compiled/tested with a set of 10, 000 randomly
generated compiler phase orders (the same set was used with all OpenCL codes)
composed of 256 LLVM pass instances (can include repeated calls to the same
pass). Passes were selected from a list with all LLVM 3.9 passes except the ones
that resulted in compilation and/or execution problems when used individually
to compile the PolyBench/GPU OpenCL kernels.

2.3 Validation of the Code Generated After Phase Ordering

Each PolyBench/GPU benchmark has verification embedded in its code that
consists in executing the OpenCL GPU kernel(s) followed by a functionally
equivalent sequential C version on the CPU, and comparing the two. This alone
poses a challenge, as CPU executing using the same parameters as the ones
used for GPU execution takes a long time for a considerable number of the
PolyBench/GPU benchmarks. This would have an unreasonable impact on the
phase ordering exploration time.

To reduce the time for each DSE iteration, we separate the validation from
the measurement phases. We validate the programs by executing on the CPU
and GPU (as in the original PolyBench/GPU) with inputs that can be processed
quickly. However, we also execute the same GPU code using the original inputs
(without CPU validation) in order to measure the execution time.

We further reduce exploration time by checking whether an identical PTX
file was previously generated. If so, we reuse the results (i.e., correctness and
performance) from that previous execution.

At the end of phase ordering exploration, all compiler pass sequences that
were iteratively tested during DSE are ordered by their resulting objective met-
rics. For the experiments presented in this paper, sequence/metric pairs are
ordered from the one resulting in the fastest execution time to the one resulting
in least performance. Then, as a final validation process, the optimized version
that resulted in highest performance is executed with the original inputs on both
the non-optimized CPU version and the optimized GPU version, and also with
30 randomly generated inputs that result in the same number of operations. We
choose the fastest optimized version that passes validation.

This is performed to eliminate possible situations where a compiled PTX
kernel gives correct results using a small input set but gives wrong results with
the original input set.



432 R. Nobre et al.

The PolyBench/GPU kernels are mostly composed of floating-point opera-
tions and the result of floating-point operations can be affected by reordering
operations and rounding. Because of this we allow for up to 1% difference between
the outputs of CPU and GPU executions when testing if a given compiler phase
order results in code that generates valid output.

3 Results

For each of the benchmarks, we measured the execution times for the CUDA
version, the original OpenCL (from source), an offline compiled OpenCL without
optimization, an offline compiled OpenCL with standard LLVM optimization
levels (i.e., the best of -O1, -O2, -O3 and -Os for each benchmark, which we
will refer to as -OX) and an offline compiled OpenCL with our custom compiler
optimization phase orders resulting from DSE.

3.1 Performance Evaluation

We compared the results for the various versions of the benchmarks (offline
OpenCL versions, OpenCL from source and CUDA) to determine how they per-
form. Using custom phase orders found by iterative compilation produced code
that consistently outperforms the other OpenCL variants, and nearly always
outperforms the CUDA version.

Figure 1 depicts the performance improvements with phase ordering over the
OpenCL compiled online and CUDA baselines and the other OpenCL base-
lines (compiled with Clang/LLVM). With phase ordering specialization we were
able to achieve a geometric mean performance improvement of 1.54× over the
CUDA version and a performance improvement of 1.65× over the execution of
the OpenCL kernels compiled from source. Additionally, code compiled with
specialized phase ordering can be up to 5.48× and up to 5.70× faster than the
respective CUDA implementation and the OpenCL compiled from source.

For the tested benchmarks, there were mostly no significant performance
difference between the offline compilation model using Clang/LLVM without
custom phase ordering and the OpenCL versions from source. There were excep-
tions, such as GESUMMV and SYR2K, that were 1.18× and 1.15× slower when using
Clang/LLVM (with no optimization) to compile the kernels offline.

Using the LLVM standard optimization level flags did not result in noticeable
improvements in terms of the performance of the generated code for most bench-
marks. We believe this is because the PTX code is further aggressively optimized
by the NVIDIA driver before generating the final assembly code for the target
NVIDIA GPU [12], so effectively we are using LLVM only as a pre-optimizer.

For 2DCONV, FDTD-2D and SYR2K all of the standard optimization level flags
(including -O0) resulted in the same code being generated. For benchmarks 2MM,
3DCONV, 3MM, ATAX, BICG, GEMM, GESUMMV, GRAMSCHM, MVT and SYRK, the optimiza-
tion level flags lead to code that is different from the code without optimizations.
CORR and COVAR are the only benchmarks for which different optimization level



Impact of Compiler Phase Ordering When Targeting GPUs 433

0.79

1.56
1.06

1.55
1.25 1.28

5.14
5.48

1.00

1.67
1.07 1.49 1.32

1.99

1.01

1.54
1.00

1.63
1.05

1.82

1.47

1.48

5.36
5.70

1.01

1.73

1.02

1.52 1.44

2.05
1.14 1.65

1.01

1.63

1.00

1.75
1.47 1.45

5.44 5.79

1.00

1.71
1.20 1.52 1.46

2.36

1.12

1.68

1.01

1.63

1.00

1.74
1.47

1.45

5.40 5.78

1.00

1.70
1.12

1.52 1.46

2.36

1.12

1.67

0

1

2

3

4

5

6

7

2D
CO

N
V

2M
M

3D
CO

N
V

3M
M

AT
AX

BI
CG

CO
RR

CO
VA

R

FD
TD

-2
D

G
EM

M

G
ES

U
M

M
V

G
RA

M
SC

HM M
VT

SY
R2

K

SY
RK

G
EO

M
EA

N

Sp
ee

du
p

 Over CUDA
 Over OpenCL
 Over OpenCL w/ LLVM
 Over OpenCL w/LLVM -OX

Fig. 1. Performance improvements from phase ordering with LLVM over CUDA imple-
mentations and OpenCL using the default online compilation pipeline for the NVIDIA
GTX1070 GPU and over OpenCL to PTX compilation using Clang/LLVM without
(OpenCL w/LLVM) and with standard optimization levels (OpenCL w/LLVM -OX).

flags produce different code. However, even in these benchmarks, the perfor-
mance impact was minimal (within 1%).

For the GESUMMV and GRAMSCHM, there were significant performance improve-
ments associated with the use of standard optimization levels. In the case of
GESUMMV, the use the standard optimization levels resulted in 1.07× performance
improvement over the non-optimized version. For GRAMSCHM, the non-optimized
version was 1.04× faster than the versions produced by the optimization level
flags.

The difference between the OpenCL baselines is that one represents the de
facto OpenCL compilation flow (with compile from source) and the others repre-
sent the compilation using LLVM (with compile from binary) using the standard
optimization level that results in the generation of code with highest performance
on a kernel-by-kernel basis, and compilation using LLVM but with no optimiza-
tion. Finally, on these benchmarks, performance with CUDA tends to be better
than with OpenCL, if no specialized phase ordering is considered. The geomet-
ric mean (considering all 15 PolyBench/GPU benchmarks) of the performance
improvement with CUDA (over OpenCL from source) is 1.07×. The 2DCONV,
3MM, ATAX, BICG and SYRK benchmarks are at least 1.1× faster in CUDA than
with OpenCL. All other benchmarks with exception for 3DCONV and GESUMMV
are still faster in CUDA than in OpenCL, although by a smaller margin.

Table 1 depicts LLVM 3.9 compiler phase orders found to have better per-
formance than the OpenCL baseline that relies on Clang/LLVM and the libclc
OpenCL library.



434 R. Nobre et al.

Table 1. Compiler phase orders that resulted in compiled kernels with highest perfor-
mance. Compiler passes that resulted in no performance improvement were eliminated
from the compiler phase orders. No compiler phase orders resulted in improving the
performance of 2DCONV, 3DCONV or FDTD-2D.

Benchmark Compiler phase order

2MM -cfl-anders-aa -dse -loop-reduce -licm -instcombine

3MM -loop-reduce -gvn-hoist -reg2mem -cfl-anders-aa -sroa -licm

ATAX -bb-vectorize -loop-reduce -licm -cfl-anders-aa

BICG -gvn -loop-reduce -cfl-anders-aa -licm

CORR -cfl-anders-aa -loop-reduce -gvn -loop-extract-single

-loop-unswitch -loop-unswitch -ipsccp -reg2mem -licm

-nvptx-lower-alloca

COVAR -cfl-anders-aa -loop-unswitch -sink -loop-unswitch

-loop-reduce -jump-threading -reg2mem -licm

-nvptx-lower-alloca

GEMM -cfl-anders-aa -print-memdeps -loop-reduce -licm

GESUMMV -instcombine -reg2mem -instcombine -mem2reg -cfl-anders-aa

-loop-reduce -nvptx-lower-alloca -gvn-hoist -licm

GRAMSCHM -sink -reg2mem -licm -cfl-anders-aa -sroa

MVT -gvn -loop-reduce -cfl-anders-aa -licm

SYR2K -loop-reduce -loop-unroll -instcombine -loop-reduce -licm

-cfl-anders-aa

SYRK -licm -cfl-anders-aa -reg2mem -licm -sroa

3.2 Analysis of the Results

We explain for each PolyBench/GPU benchmark what are the reasons behind
the performance improvement achieved with phase ordering, comparing with
the performance achieved with the OpenCL and CUDA baselines compiled with
the NVIDIA driver. More specifically, we compare the PTX output resulting
from OpenCL offline compilation with specialized phase ordering with PTX
generated from OpenCL offline compilation without phase ordering and with
PTX generated from the CUDA versions.

For 2DCONV, CUDA is 1.26× faster than the OpenCL version optimized with
phase ordering. The compiler pass phase ordering DSE process was not able to
find an LLVM sequence capable to optimize this benchmark. The main improve-
ment of CUDA over OpenCL seems to be the generation of more efficient code
for loads from global memory. Figure 2 shows the difference between the two
approaches. Whereas load operations typically result in a single CUDA oper-
ation, the equivalent for OpenCL typically results in 5 PTX instructions. We
believe this difference is the primary reason for CUDA’s advantage over OpenCL.

For 2MM, the OpenCL version optimized with phase ordering is 1.63× and
1.56× faster than the OpenCL and CUDA baselines, respectively. The main



Impact of Compiler Phase Ordering When Targeting GPUs 435

Fig. 2. PTX code for equivalent load operations, for CUDA and OpenCL with offline
compilation (2DCONV benchmark)

reason for this speedup is the removal of store operations within the kernel loop.
Both the OpenCL and the CUDA baseline versions of this kernel repeatedly
overwrite the same element and this has a negative impact on performance.
The phase ordered version instead uses an accumulator register and performs
the store only after all the loop computations are complete, which substantially
reduces the number of costly memory accesses. It is unclear why the baseline
OpenCL and CUDA versions do not perform this optimization. One possibility
is that they are unable to determine that there are no aliasing issues. In the
context of this benchmark, this assumption is correct in OpenCL 2.0, as any
aliasing would result in a data race, which is undefined behavior [1]. We do not
know if the optimization was applied because LLVM correctly discovered this
fact, or if there is a bug that happened to result in correct code by accident. Even
if the optimization turns out to be the result of a bug, we believe this speedup
represents an opportunity for approaches based on Loop Versioning transforma-
tions. Although this benchmark uses two kernels, both are equivalent (the only
difference being kernel and variable names), and thus the same analysis applies
to both. There are two differences between the baseline CUDA and OpenCL
compiled versions that can explain the different execution times. The first being
the aforementioned issue with load instructions (see Fig. 2), the second being
a different loop unroll factor as the phase ordered version based on OpenCL
uses efficient load instructions, but also uses a loop unroll factor of 2 (while the
CUDA version uses an unrolling factor of 8).

For 3DCONV, we were unable to achieve a speedup on this benchmark using
any of the tested compiler phase orders, when compared with LLVM w/ or w/o
the optimization level flags. We believe this happens because most of the time
spent on the benchmark is due to global memory loads that are not removed
or improved by any LLVM pass. Any optimization will only modify the rest
of the code, which takes a negligible amount of time compared to the memory
operations. There is a speedup from the use of the LLVM PTX backend compared
with the OpenCL from source compilation path (1.05×) and the compilation
from CUDA (1.06×).



436 R. Nobre et al.

On the 3MM benchmark, we were able to achieve speedups of 1.55× and 1.82×
over the baseline CUDA and OpenCL version compiled from source, respectively.
The main reason for the performance improvement is the removal of the memory
store operation from the computation loop.

The OpenCL version of ATAX optimized with phase ordering achieves a
speedup of 1.47× and 1.25× over the baseline OpenCL and CUDA versions,
respectively. Once again, the phase ordered version is able to move memory
stores out of the innermost loops of the kernels, which explains the speedups.
The difference between the CUDA and the baseline OpenCL versions can be
explained by a different loop unroll factor (2 for OpenCL, 8 for CUDA). The
CUDA version uses the previously described simpler code pattern for memory
loads compared to these baseline OpenCL versions, but the phase ordering ver-
sion also uses an efficient memory load pattern.

On the BICG benchmark, we were able to achieve a speedup of 1.48× over
OpenCL, and 1.28× over CUDA. The main differences between the versions
are the memory stores in the kernel loop, the unroll factor and the inefficient
memory access patterns in the baseline offline OpenCL versions.

The CORR benchmark is one of the benchmarks that benefits the most from
phase ordering (5.36× and 5.14× over baseline OpenCL from source and CUDA
versions, respectively). Phase ordering is capable of moving global memory stores
out of loops, which neither the CUDA version nor the baseline OpenCL versions
do. In general, for this benchmark, the CUDA version tends to produce more
compact load instructions and use higher loop unroll factors than the OpenCL
versions.

COVAR and CORR use the same mean kernel and reduce kernel functions. How-
ever, this represents only a fragment of the total execution code, so the compiler
sequences for the two benchmarks are different. Regardless, the same conclu-
sions from CORR apply to COVAR: phase ordering removes global stores from the
loop. COVAR improved by 5.7× and 5.48× with phase ordering specialization,
compared with the OpenCL compiled from source and the CUDA version.

The functions of the FDTD-2D benchmark are very straightforward, with little
potential for optimization. As such, phase ordering had no impact.

The performance differences for the GEMM benchmark (1.73× and 1.67× over
the OpenCL from source and the CUDA baselines) can be explained by the
removal of the memory store operation from the kernel loop and the different
pattern of memory load instructions.

There was only a small performance improvement for the GESUMMV benchmark
(1.07× over CUDA and 1.02× over the baseline OpenCL from source). The
phase ordering sequence is able to extract the memory stores out of the main
computation loop, but uses a smaller loop unroll factor (2) than the baseline
OpenCL and CUDA versions (4 and 16, respectively).

We were able to obtain speedups of 1.49× and 1.52× over the baseline CUDA
and OpenCL versions on the GRAMSCHM, respectively. Phase ordering is able to
move the memory storage operations out of the loop. Aside from that, it uses
the same load from memory instruction pattern and unroll factor as the baseline
OpenCL versions.



Impact of Compiler Phase Ordering When Targeting GPUs 437

The MVT benchmark benefits from phase ordering by a factor of 1.32× and
1.44× over the baseline CUDA and OpenCL versions. The main reason for this
improvement is the extraction of the store operation from the computation loop.

The SYR2K benchmarks benefits from phase ordering by a factor of 1.99× and
2.05× over the baseline CUDA and OpenCL versions, respectively. In general,
the same memory load pattern, loop unroll factor and loop invariant memory
storage code motion conclusions apply to this benchmark. Phase ordering also
seems to outline the segment of the code containing the kernel loop, but this
does not seem to be the reason for the performance difference.

For the SYRK benchmark, phase ordering improves performance by 1.14×
over the OpenCL baseline compile from source. We could not achieve signifi-
cant speedups over the CUDA version. Once again, the main reason for this
improvement is the extraction of the store from the loop.

4 Conclusion

This paper showed that compiler pass phase ordering specialization allows
achieving considerable performance improvements when compiling OpenCL ker-
nels to NVIDIA GPUs. Using Clang/LLVM 3.9 and libclc we were able to
improve the performance of code compiled from PolyBench/GPU OpenCL ker-
nels to up to 5.70× and 1.65× on average over the default NVIDIA OpenCL
compilation flow. The performance of OpenCL compiled with specialized com-
piler pass phase orders also tends to surpass the performance of CUDA imple-
mentations of the same kernels compiled with NVCC (from NVIDIA CUDA 8.0
toolchain). The use of phase ordering on top of the OpenCL versions of the ker-
nels resulted in a maximum speedup of 5.48× and a geometric mean speedup
of 1.54× when compared with the performance of the equivalent CUDA kernels
compiled with NVCC.

We gave insights explaining why the OpenCL kernels compiled with LLVM
specialized compiler pass phase orders tend to have considerably higher perfor-
mance than both the kernels compiled with the traditional OpenCL compilation
from source and the CUDA equivalent kernels. One of the optimizations with
most impact in performance of the compiled OpenCL kernels over the perfor-
mance resulting from OpenCL online compilation from source and the CUDA
versions consists of moving memory writes out of inner loops of GPU kernels by
using of an accumulator register. This avoids the overhead caused by repeated
expensive global memory writes. The optimization can be performed even in
cases where its correctness can not be proven at compilation time. This can be
achieved with Loop Versioning, which consists of adding runtime checks that will
result in the selection of what loop version (i.e., optimized or non-optimized) to
execute at runtime.

We are currently evaluating the potential of compiler phase ordering for GPU
energy consumption reduction, and how it correlates with performance as we
previously did in the context of C code targeting x86 and ARM based systems
[9]. Given the fact that GPUs are used in domains with energy (and power)



438 R. Nobre et al.

concerns (e.g., HPC, embedded), there may be scenarios where it is acceptable
to sacrifice performance for less total energy use.

We extended our DSE system to be able to target AMD GPUs, and we are
currently exploring software optimization leveraged by compiler phase ordering
specialization on these devices.

Acknowledgments. This work was partially supported by the TEC4Growth project,
“NORTE-01-0145-FEDER-000020”, financed by the North Portugal Regional Opera-
tional Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agree-
ment, and through the European Regional Development Fund (ERDF). Reis acknowl-
edges the support by FCT through PD/BD/105804/2014.

References

1. Khronos OpenCL Working Group. The OpenCL C Specification, Version 2.0 (2015)
2. Nickolls, J., et al.: Scalable parallel programming with CUDA. Queue 6(2), 40–53

(2008)
3. Betkaoui, B., Thomas, D.B., Luk, W.: Comparing performance and energy effi-

ciency of FPGAs and GPUs for high productivity computing. In: 2010 Interna-
tional Conference on Field-Programmable Technology, Beijing, pp. 94–101 (2010)

4. Kulkarni, S., Cavazos, J.: Mitigating the compiler optimization phase-ordering
problem using machine learning. In: Proceedings of ACM International Conference
on Object Oriented Programming Systems Languages and Applications, OOPSLA
2012, pp. 147–162. ACM, New York (2012)

5. Purini, S., Jain, L.: Finding good optimization sequences covering program space.
ACM Trans. Archit. Code Optim. (TACO) 9(4), 56:1–56:23 (2013)

6. Martins, L.G.A., et al.: Clustering-based selection for the exploration of compiler
optimization sequences. ACM Trans. Archit. Code Optim. (TACO) 13(1), 8:1–8:28
(2016)

7. Nobre, R., Martins, L.G.A., Cardoso, J.M.P.: Use of previously acquired posi-
tioning of optimizations for phase ordering exploration. In: Proceedings of the
18th International Workshop on Software and Compilers for Embedded Systems
(SCOPES 2015), pp. 58–67. ACM, New York (2015)

8. Nobre, R., Martins, L.G.A., Cardoso, J.M.P.: A graph-based iterative compiler pass
selection and phase ordering approach. In: Proceedings of 17th ACM Conference
on Languages, Compilers, Tools, and Theory for Embedded Systems, LCTES 2016,
pp. 21–30. ACM, New York (2016)

9. Nobre, R., Reis, L., Cardoso, J.M.P.: Compiler phase ordering as an orthogonal
approach for reducing energy consumption. In: Proceedings of the 19th Workshop
on Compilers for Parallel Computing, CPC 2016 (2016)

10. Grauer-Gray, S., et al.: Auto-tuning a high-level language targeted to GPU codes.
In: Proceedings of Innovative Parallel Computing (InPar 2012) (2012)

11. Purini, S., Jain, L.: Finding good optimization sequences covering program space.
ACM Trans. Archit. Code Optim. 9(4), 23 (2013). Article 56

12. Parallel Thread Execution ISA Version 5.0. CUDA toolkit documentation. http://
docs.nvidia.com/cuda/parallel-thread-execution/index.html

http://docs.nvidia.com/cuda/parallel-thread-execution/index.html
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html

	Impact of Compiler Phase Ordering When Targeting GPUs
	1 Introduction
	2 Experimental Setup
	2.1 Kernels and Objective Metric
	2.2 Compilation and Execution Flow with Specialized Phase Ordering
	2.3 Validation of the Code Generated After Phase Ordering

	3 Results
	3.1 Performance Evaluation
	3.2 Analysis of the Results

	4 Conclusion
	References




