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Abstract. This paper presents NOA-AID a network architecture for
targeting highly distributed systems, composed of a large set of dis-
tributed stream processing devices, aimed at adaptive information index-
ing, aggregation and discovery in streams of data. The architecture is
organized on two layers. The upper layer is aimed at supporting the infor-
mation discovery process by providing a distributed index structure. The
lower layer is mainly devoted to resource aggregation based on epidemic
protocols targeting highly distributed and dynamic scenarios, well suited
to stream-oriented scenarios. We present a theoretical study on the costs
of information management operations, also giving an empirical valida-
tion of such findings. Finally, we presented an experimental evaluation
of the ability of our solution to be effective and efficient in retrieving
meaningful information in streams on a highly-dynamic and distributed
scenario.
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1 Introduction

In recent times we are witnessing the emergence of pervasive computational envi-
ronments in which a huge amount of distributed and heterogeneous devices pro-
duce, transmit and/or observe continuous streams of data. Such streams of data
needs to be processed to detect faults, issue alerts, and trigger management oper-
ations. To achieve an efficient analysis of such data, it is gaining momentum the
exploitation of high-performance solutions tailored on recent commodity parallel
hardware and accelerators typically available on modern IoT and Edge devices.
Even more recently, an increasing interest is coagulating around the methodolo-
gies enabling a fruitful cooperation of such devices, which are no longer limited
to be independent stream processing entities but pieces of a complex and dis-
tributed system. Efficient and effective communication supports for information
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gathering, exchange, indexing and querying are of paramount importance in this
context. As matter of facts, every information discovery process is strongly corre-
lated to its query formulation and resolution mechanism. The query formulation
process has to support an effective way to express needs, whereas the query reso-
lution mechanism must be able to leverage the query expressiveness to efficiently
find the information requested and to limit the overhead introduced by the pro-
cess itself. A common technique for finding data and information, in a highly
distributed and dynamic scenario is based on range queries over a set of different
attributes [1–5]. However, the heterogeneous nature of distributed devices and
the high dynamicity characterizing the information belonging to streams, often
makes the task of query formulation very complex. For instance when an infor-
mation is defined as the combination of many different attributes, it could not
be easy to identify the most relevant and discriminating features. An interesting
alternative consists in defining a simulacrum, representing the archetype of the
information sought. This provides to the search system a mean to identify the
desired set of information into data streams whilst relieving the requester from
specifying complex queries. To this end, the discovery system needs to be organ-
ised accordingly. First, there is a need for a search system supporting approxi-
mated searches on data streams, enabling the system to deliver the best match
against the provided simulacrum. Second, “information providers”, which in our
case are IoT or Edge devices devoted to stream processing, need an efficient dis-
covery infrastructure, i.e., characterised by a reduced cost of maintenance, while
ensuring that information can be easily found by requesters.

To date, several solutions, have been focusing on such approach. They try
to let nodes to self-organise to disseminate the information toward groups of
interested nodes [6] and/or they let each node to be in direct contact with the
ones having similar data [7–12]. However, the local knowledge maintained by
each device usually does not allow a proper identification of the features which
characterise an entire community of nodes sharing a common set of information.
Many existing approaches rely only on the information that each device owns,
without providing any explicit identification of groups of nodes that can be con-
sidered as a community. This work presents a distributed architecture organised
on two layers providing: (i) a flexible query-by-example (the aforementioned sim-
ulacrum) discovery mechanism and (ii) a solution for stream processing devices
easing the information advertisement process. The focus is on scenarios in which
IoT and Edge devices composing the discovery system consist in entities called
Advertising Nodes (AN). Each AN has an associated succinct description of the
information observed by such device: its profile. The proposed solution couples
the flexibility of unstructured overlays with the power of structured networks.
The former offer the advantage of a low maintenance cost, whereas the lat-
ter offer more guarantees on finding the requested resources but at the cost
of a more expansive maintenance. The rest of this paper is organised as fol-
lows. Section 2 presents a review of the relevant literature. Section 3 presents the
overall architecture of NOA-AID. Sections 4 and 5 describe the unstructured-
and structured-layer, respectively. Section 6 presents the conducted evaluation.
Finally, conclusions are given in Sect. 7.
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2 Background and Related Work

The challenge of searching for information in highly distributed environment is
very current and relevant. In spite of this, many work has been proposed so
far. In this section we report some of the most relevant approaches facing this
challenge. Multi-Attribute Addressable Network (MAAN) [1] consists in a struc-
tured system able to support multi-attribute range queries. In MAAN, items are
identified by a set of attribute-value pairs, and each attribute is mapped on a
bucket through a locality preserving function. The node target of such function
stores the full item description so that each item is stored as many times as
the number of its attributes. The resolution of a multi-attribute range query
consists in executing a single one-dimensional query on the dominant (i.e. most
selective) attribute, while the other attributes are checked using the replicated
data. Although MAAN provides a smart routing technique and it has the ability
to perform queries on subsets of the whole attributes domain, it requires large
amount of memory to store resource indices, and a high computational cost to
maintain them up-to-date. This class of solutions requires users to be aware of all
the indexed attributes and their respective domains. Making queries exploiting
only a small subset of them without specifying the other ones, or not defining
the attributes range properly, it may happen that too many results are returned
leading the user to iteratively refine her/his queries. More flexible queries can
be expressed in DHT-based systems. MCAN [13], exploits the CAN architec-
ture, where, in each dimension, coordinates are given by the distance from a
given pivot. Although such solutions allow users to exploit the query-by-example
paradigm, these proposals are other examples of ad-hoc solutions, though to be
used for searching multimedia objects, and thus are unsuitable for more generic
kinds of resources. Pirrò et al. [14] show an approach for a semantic-based service
discovery in P2P networks. It couples a DHT layer with a SON (Semantic Over-
lay Network) overlay. Differently from our solution, here a DHT-based network
allows peers to publish semantically annotated services. Then a SON is incre-
mentally build by using the interactions between peers within the structured
level during the service publication and searching processes. In our solution only
the community representatives are registered in the DHT level. To have only a
subset of the devices composing the network in the DHT layer leads to reduce
the number of messages routed through the DHT to solve a query. GosSkip [15]
is a self-organizing and fully distributed gossip overlay that provides a support to
data storage and retrieval in highly decentralized environments. It is built using
a epidemic protocol that organizes peers to form an ordered double-linked list.
In the overlay network each peer is connected in a skip list where connection are
similarity based. To this end, each node is associated with a single item of data
and it has a name that describes the semantics of the associated object. These
names follow a total and deterministic order. As a consequence, the position
of an element is fully determined by its name. For information dissemination,
its gossip protocol maintains O(log(N)) peer states, and has a message routing
cost of O(log(N)). The association of links to the published object can lead to a
very large number of connections. This is especially true in networks where the
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number of objects shared by each node is large. The main drawback of the above
solutions is the lack of a broader, more recognized measure of similarity. Each
peer only relies on its local view. Thus, it is not able to determine whether a peer
not included in its similarity-based neighbourhood could be regarded as simi-
lar with respect to the overall network organization. More effective information
dissemination cannot be implemented because peers are not able to determine
whether or not there exist between them more latent forms of similarity, even
when they do not consider each other as immediate neighbours. Another type
of unstructured networks organization is given by Semantic Overlay Networks
(SON). Crespo and Garcia-Molina [16] organize peers in clusters of semantically
correlated nodes, on the basis of the semantic content of the document they
share. Each cluster represent a semantic concept, i.e., peers belong to groups that
go beyond their simple neighbourhood. The assignment of peers (and queries) to
a given cluster is made using a hierarchical classifier organised as a tree, where
each node is a concept. Nodes encountered descending such a tree represent
semantic refinements of the concept of their father nodes. A SON is created for
each node of tree of concepts. The main disadvantages of this class of solutions
is the rigid predefined structure of the SON-based overlay network. Crespo and
Garcia-Molina [16] assume that the concept of tree is pre-defined and peers must
use the same classifier in order to join a group. We seek to create more dynamic,
spontaneous communities, dynamically made by the interactions between nodes
and without relying on a priori knowledge on how to classify the shared content.

3 Overall Architecture

The overall architecture of our proposed solution organized on two layers (struc-
tured and unstructured networks) and four different kinds of entities (adver-
tising node, community representative, node belonging to the structured layer
and requesters) realising the NOA-AID ecosystem. The unstructured layer is
based on an highly scalable epidemic protocol, whereas the structured network
is based on a properly defined Distributed Hash Table (DHT). The structured
layer indexes profiles of Community Representatives (CR). Each CR is elected
by a community of Advertising Nodes (AN). Each AN has an associated profile,
i.e., a set of information continuously extracted during the stream processing
phase. The unstructured layer is devoted to build communities by means of a
similarity function applied on the profiles describing the data passed through
of streaming processing devices. Each community elects its own representative,
which is in charge of registering itself on the structured layer, that is the layer to
query in order to search for the information sought. The query resolution process
is organised on two stages. Firstly, it is queried the structured layer providing it
a simulacrum of the information searched. This layer returns the CRs that are
the closer to the simulacrum. Then, the selected CRs, acting as entry points, per-
colate the queries inside their own communities to search for ANs that actually
satisfy the needs expressed by the query. Profiles are used to compare the infor-
mation associated to different devices. To build profiles of streaming processing
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devices, many different functions and profile organizations can be exploited. This
both depends on the ultimate aim of the system and on the type of information
to manage and index. In this work we assume that the streams are made of
textual data, thus the profiles represent collections of words. To measure the
similarity between two different profiles, we adopted a slightly modified version
of the Jaccard similarity coefficient [17], described in Sect. 5. It has proven to
be an effective measure in distributed environments [18]. It is computed as the
size of the intersection of two sets divided by the size of their union. However,
traditional DHTs, providing mechanisms for exact matches, are not efficient for
searching resources in highly heterogeneous and dynamic scenarios. To overcome
this limitation, we instrumented our structured network to perform approximate
matches between a user query and a community profile. To this end we leveraged
a Locality Sensitive Hash (LSH) method. An appropriate representation of pro-
files is important to tailor an information discovery mechanism to a specific aim
or application. However, such investigation is beyond the scope of this paper. In
our study we limit our investigation to two profile representation:

– Weighted Attribute Vector : a collection of words, weighted according to their
relevance with respect to a profile.

– Attribute Adjacency Matrix (hereafter Adjacency Matrix): a profile is repre-
sented with a weighted word of vector enriched with values estimating the
correlation between attributes.

Among the two, the Weighted Attribute Vector is the simplest. It contains
all the attributes describing the stream observed by a node along with their
relevance weight values. Since it is a composition of all the attributes, the rele-
vance weight value should be computed by taking into consideration all the single
attribute values extracted from the stream. The exploitation of the Adjacency
Matrix as profiles permits to represent a relational graph between attributes
by using the co-occurrences of them in the set of information represented by a
device. Each row of the resulting matrix is associated to an attribute Attri. Each
entry j of such a row contains the co-occurrences proportion of Attri with an
attribute Attrj . The i-th entry of the Attri’s row simply gives the relevance value
associated to Attri. Entries are zero-valued when there is no relation between
the referred pair of attributes.

4 The Unstructured Layer

The lower layer is aimed at the detection and the creation of self-emerging com-
munities made up of Advertising Nodes. This layer is based on the GROUP
protocol. GROUP is a protocol we conceived, designed and implemented for
building communities in a completely decentralised way. An in-depth presenta-
tion of GROUP is beyond the goals of this paper. We refer interested readers
to the original paper in which it has been presented and analyzed [19–21]. Here
we briefly present its behaviour and approach. Group carries out communities
of similar Advertising Nodes by achieving a logic partition PI = {P1, . . . , Ps}
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of nodes belonging to a network, such that every Pi includes a subset of nodes
characterised by similar profiles. Each distinct partition Pi represents a different
community. To identify the communities GROUP exploits a distributed voting
algorithm on the overlays built by other epidemic protocols. This process is
driven by the consensus that a certain AN gathers among the other ANs. Each
AN votes for the ANs it considers closer to itself, i.e. the ones with a profile
similar to its own. Each elected AN, together with the ANs that contributed
to its election, constitute a community, which is identified by the profile of the
elected node.

5 Structured Layer

GROUP enables the creation, in a self-emerging, distributed way, of communi-
ties made of devices characterized by similar profiles, namely “communities” of
similar data streams. However, the protocol does not provide any support for
indexing such communities. To overcome this limitation, we introduce a further
layer to our architecture. The idea is to provide a distributed index based on a
DHT specifically instrumented to perform approximate matches between a query
and a community profile. The approximate search is obtained by exploiting a
Locality Sensitive Hash (LSH) approach. This approach allows to find the com-
munity of data streams that is the closest one to that provided by means of a
simulacrum. In fact, traditional DHTs are very efficient to support the search for
exact uni-dimensional data, but they are not conceived for supporting approxi-
mate searches. The idea for achieving a support for approximated multi-attribute
searches on DHTs has been initially proposed by Zhu [18]. The approach con-
sists in applying the Locality-Sensitive Hashing (LSH) method [22], Specifically,
a family of hash functions H ∈ R

d is locality-sensitive if, given a random hash
function h ∈ H, for any pair of points a, b ∈ R

d and a distance threshold r, we
have:

– if ‖a − b‖ ≤ r then Pr[h(a) = h(b)] ≥ p1
– if ‖a − b‖ ≥ r then Pr[h(a) = h(b)] ≤ p2

In other words, fixed p1 > p2 the hash function allows to map with high prob-
ability a and b in the same bucket if they are very close (according to a given
threshold r) or in different buckets if they are quite different. A detailed descrip-
tion of LSH can be found in the paper of Antoni and Indyk [23]. In this paper we
exploit LSH as a mechanism for supporting efficient approximated searches in
DHTs. In particular, for each profile we create n different indices, which are used
to register a profile in a DHT. A submitted query is first indexed with the same
LSH method. Then the community representatives’ profiles registered under the
same indices are retrieved and compared against the query in order to carry
out the most similar representatives. Finally, such representatives forward the
query to the related community of devices that likely manipulated a data stream
close to the one represented by the simulacrum provided as a query. In order
to exploit the potentials of this indexing mechanism, we test this structured
layer with the two different types of profile representations described in Sect. 3.
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All of them are built starting from the attributes collections characterizing the
profile of a node. Clearly, to compare two profiles (and queries against profiles),
proper similarity functions must be used. For the Weighted Attribute Vectors
profile model we use the following function:

SIMV (P1, P2) =

∑

obj∈P1∩P2

min [W 1(obj), W2(obj)]

max(|P1|, |P2|) (1)

where P1 and P2 are the two profiles to compare, and W1(obj),W2(obj) are
the weights associated to obj within P1 and P2, respectively. Like the Jaccard
similarity measure, this similarity is computed only on the intersection of the
attributes shared by P1 and P2. For each of them the minimum weight is consid-
ered. The sum of all those values is weighted with the size of the largest profile.
This is done in order to avoid having a high similarity degree even in case of a
profile is completely or largely contained in the other, or even when it represents
only a small subset of other profiles. In order to compare matrix-based profiles,
i.e. when Adjacency Matrices is used, the previous formula is changed in:

SIMM (P1, P2) =

∑

obj∈P1∩P2

[min (W 1(obj), W2(obj)) · δRel(obj)]

max(|P1|, |P2|) (2)

where

δRel(obj) =

∑

obj′∈P1∩P2

min (Rel1(obj, obj
′), Rel2(obj, obj

′))

max
i=1,2

| {obj′ ∈ P1 ∩ P2|∃Reli(obj, obj′)} |
In such a case, in addition to the two profiles sizes and attribute weights,
we exploit the function δRel(·). It measures the degree of relationship of each
attribute of the Adjacency Matrices-based profile, with the other ones. More
precisely, given an object obj, we consider only the attributes that are in the P1

and P2 intersection. For each attribute we consider the sum over the minimum
relevance weights existing in the two profiles. The relevance with an object obj′

is given by the function Rel(·, ·). This sum is weighted with the maximum size
of the set of objects having a relation with obj. Note that using an adjacency
matrix, this set has the same size on both profiles, because all objects are con-
sidered to have a relation, even when they have a value equals to 0. In order
to analyse the advantages deriving by the usage of all profile models, we per-
formed a theoretical comparison between two different solutions, also comparing
the LSH approach against a naive solution that would work by indexing, storing
and retrieving every attribute of each profiles.

Theoretical Analysis. Table 1 shows the theoretical costs computed consider-
ing the LSH indexing approaches when applied to index node profiles expressed
according to Weighted Attribute Vector and Adjacency Matrix profiles. Such
costs are computed as function of the number of profiles’ attributes, namely a
cost O(n) means n times the amount of memory required to store (or transfer)
an attribute. In our analysis |P | indicates the number of attributes composing
a profile. X indicates the number of peers composing the DHT network, Com
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the total number of registered communities (i.e. groups of similar data streams).
k is the maximum number of profiles returned by a node of the DHT when it
resolves a query. R is the number of accesses performed to update the DHT
when a community profile changes. Each access removes a copy of a community
profile at a certain key (corresponding to a profile attribute) that is no longer
contained in the community profile. n indicates the number of LSH identifiers
associated with each profile.

Table 1. Complexity analysis for indexing profiles.

Operation Profile LSH cost Naive cost

Query A.M. O(n · |P2|
2

· log(X)) O( |P3|
2

· log(X))

T.V. O(n · |P | · log(X)) O(|P |2 · log(X))

Query resolution A.M. O(k · |P |2
2

· n) O(k · |P |3
2

)

T.V. O(k · |P | · n) O(k · |P 2|)
Community insertion A.M. O(n · |P |2

2
· log(X)) O( |P |3

2
· log(X))

T.V. O(n · |P | · log(X)) O(|P |2 · log(X))

Profile update A.M. O((n · |P |2
2

+ R) · log(X)) O(( |P |3
2

+ R) · log(X))

T.V. O(n · |P | + R) · log(X)) O((|P |2 + R) · log(X))

Descriptor removal A.M. O(n · log(X)) O(|P | · log(X))

T.V. O(n · log(X)) O(|P | · log(X))

Index size A.M. O(n · |P |2
2

· Com) O( |P |3
2

· Com)

T.V. O(n · |P | · Com) O(|P |2 · Com)

Weighted Attribute Vector model. Following the naive approach, searching for
a profile to requires to send to the DHT a request for each profile’s attribute.
Thus, the generation of O(|P |2 · log(X)) messages. This derives from the DHT
logarithmic routing approach: for each attribute a profile copy is transferred to
a logarithmic subset of the set of nodes realising the DHT. Each queried node
answers by sending a message of O(k · |P |) elements to the k communities with a
profile that is similar to the received query. As a consequence the total amount of
messages exchanged is O(k · |P 2|). The creation of the distributed index requires,
for each community, to store a copy of its profile, for each profile’s attribute.
This leads to O(|P |2 · Com) messages. When a community profile changes, the
index is updated, |P | copies of the new profile are sent, one for each profile’s
attribute. Moreover, R additional notifications are sent, one for each attribute
that is no longer part of the community profile, aimed at removing old commu-
nity’s profiles. As a consequence, the number of exchanged messages is equal to
O(|P |2 · log(X) + R · log(X)). Storing a new profile requires to sent |P | copies
of that profile, one for each profile’s attribute. Consequently, the total amount
of generated messages is equal to O(|P |2 · log(X)). Removing a community pro-
file requires to send |P | messages, which correspond to the number of profile’s
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attributes that equals to O(|P | · log(X)); Using the LSH model a community
search requires to generate a query for each one of the n LSH identifiers com-
puted for a peer profile. As a consequence the generated number of messages is
independent by the number of attributes within a community’s profile. Since any
message contains a community profile, the total number of generated messages
is equal to O(n · |P | · log(X)). Like the naive solution, to answer a query each
peer sends a message having a maximum size equal to (k · |P |), but only n nodes
of the DHT are involved. This leads to a total amount of generated messages of
O(n · k · |P |). The number of profile copies stored along the distributed index
is equal to the number of the n LSH identifiers associated to a community’s
profile. This implies that the total number of generated messages for storing the
whole distributed index is equal to O(n · |P | · Com). When a community profile
is updated, the DHT is requested to store n copies of the new profile, leading
to an equivalent number of profiles to transfer, and, in the worst case, other n
requests of profile removal are generated for deleting the old profile. However,
due to the LSH properties the number of identifiers exchanged between the old
and new profile is less than n on average. Then, the overall number of generated
messages for updating a community profile is O(n · |P | · log(X)+n · log(X)). The
removal of a community descriptor requires to send n messages that generate a
number of exchanged messages equal to O(n · log(X)).

Attribute Adjacency Matrix model. When a profiles is structured as an adja-
cency matrix, its behaviour in terms of complexity, for the various operations, is
pretty similar to the Weighted Attribute Term Vector model. The only notable
difference is on the amount of information required to represent the profile. In
this case it goes from |P | to |P |2

2 . As a consequence, almost all the complexities
are scaled of a factor |P |

2 , with the only exception on the removal of a descrip-
tor, that is not directly proportional to the profile size but on the number of
attributes.

6 Evaluation

The focus of our solution is on enabling approximate queries over textual data
(coming from data streams) in a distributed system based on IoT and Edge
devices. To this end, we firstly, we measured the ability of our system to main-
tain high-quality community representatives (representatives of a collection of
data streams) when the indexed data changes. Figure 1 shows the average sim-
ilarity of community members with the selected representatives, and with the
other members of the same community. This experiment has been conducted by
varying the actual composition of the information extracted by the stream pro-
cessing devices starting from the simulation cycle #50. Every cycle we changed
the 5% of the information content of a randomly selected set representing the
2% of the nodes. As can be observed, the similarity of nodes with their rep-
resentative is essentially not affected by the changes. Thus the system is able
to adaptively react to changes. Then, we analyse the ability of our system to
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Fig. 1. Dynamic behaviour: internal homogeneity of communities

efficiently resolve textual queries in a distributed fashion. This evaluation is
made in comparison against ERGOT [14]. ERGOT is a DHT-based Semantic
Overlay Network aimed at service discovery structured on two layers (struc-
tured and unstructured). The main difference with our solution relies on the
actual viewpoint. They use a DHT-based structured layer as lower-layer and a
semantic-based unstructured network as higher-layer. To conduct an effective
comparison we directly contacted the authors of ERGOT that provided us the
dataset they used in their evaluation, the source code of their proposed solu-
tion and the complete set of information about the configuration of their testing
environment. The dataset has been built by exploiting the WordNet ontology
and the WordNet domain [24]. It consists of 200 domains labels organized in a
hierarchical structure that categorizes WordNet synsets into domains. The con-
tent of this dataset has been used for generating textual descriptions, which has
been assigned to profiles according to a Zipf distribution. The evaluation has
been focused on the ability of retrieving relevant profiles given an input query.
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Fig. 2. Comparison against ERGOT

A result has been considered as relevant if its degree of similarity with the query
is greater than 0.5. For achieving a fair trial, in our evaluation we compared the
results obtained by ERGOT and NOA-AID, using the set of 20 queries presented
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in the original paper of ERGOT. Figure 2a shows the comparison between the
results achieved by ERGOT and the ones provided by NOA-AID in terms of
Recall. The Recall value for a given query has been computed as the ratio of
the number of relevant profiles obtained on the total number of relevant results
existing in the system. It can be noticed how our solution provides better results
in almost all the submitted queries. Figure 2b shows the results obtained for
the Precision metric by the two approaches. Precision has been computed as the
ratio of the number of relevant peer profiles retrieved on the total number of pro-
files returned. Also in this case using our solution provide a clear advantage with
respect to ERGOT in almost all cases. To validate the efficiency of our proposed
system in providing access to the information sought by a requester (simulacrum
describing the data stream), while minimizing the amount of data transferred
through the network, we measure the actual cost associated with the LSH-based
indexing and query resolution techniques. Their performance are strongly rele-
vant for resource-constrained devices, like the ones we are focusing in this paper.
Table 2 reports both the amount of data needed for storing the whole index of
the communities as well as the communication costs associated with the query
resolution process. Results are compared against the Naive solution. As can be
observed, the experimental results validate the expected theoretical behaviour,
following from the evaluation presented in Sect. 5.

Table 2. Comparison of the theoretical load with the actually measured one.

Parameters Naive NOA-AID Exp. Gain Meas. Gain

Index size

Term vector n= 15; P= 300 3064 148 20 20.6

n= 20; P= 300 3064 190 15 16.11

Adj. Matrix n= 15; P= 300 257557 12728 20 20.2

n= 20; P= 300 257557 16970 15 15.2

Query resolution

Term vector n= 15; P= 300 22165 1210 20 18.3

n= 20; P= 300 22165 1544 15 14.35

Adj. Matrix n= 15; P= 300 1572155 78684 20 19.98

n= 20; P= 300 1572155 104810 15 15

7 Conclusions

In this paper, we propose NOA-AID, a network architecture aimed at providing
a flexible query-by-example indexing and discovery mechanism targeting stream
processing devices belonging to a highly dynamic and distributed environments.
It is based on two overlay networks. At the lower level lies an unstructured,
epidemic-based, network able to autonomously adapt and self-organize, aimed
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at grouping stream processing devices, collecting an heterogeneous set of infor-
mation, into communities. The higher network layer indexes such communities
and provides a query-by-example solution easing their discovery. We provided
both a theoretical as well as a experimental evaluation of the approach showing
its effectiveness and efficiency.
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