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Abstract. The tremendous increase in the number of mobile devices
and the proliferation of all kinds of new types of sensors is creating new
value opportunities by analyzing, developing insights from, and actuating
upon large volumes of data streams generated at the edge of the network.
While general purpose processing required to unleash this value is abun-
dant in Cloud datacenters, bringing raw IoT data streams to the Cloud
poses critical challenges, including: (i) regulatory constraints related to
data sensitivity, (ii) significant bandwidth costs and (iii) latency barriers
inhibiting near-real-time applications. Edge Computing aspires to extend
the traditional cloud model to the “edge of the network”, to deliver low-
latency, bandwidth-efficiencies and controlled privacy. For all the com-
monalities between the two models, transitioning the provisioning and
orchestration of a distributed analytics platform from Cloud to Edge is
not trivial. The two models present totally different cost structures such
as price of bandwidth, data communication latency, power density and
availability. In this paper, we address the challenge associated with tran-
sitioning scalable provisioning from Cloud to distributed Edge platforms.
We identify current scalability challenges in Linux container provisioning
at the Edge; we propose a novel peer-to-peer model taking on them; we
present a prototype of this model designed for and tested on real Edge
testbeds, and we report a scalability evaluation on a scale-out virtual-
ized platform. Our results demonstrate significant savings in terms of
provisioning latency and bandwidth utilization.

1 Introduction

The number of devices connected to the Internet has registered a steady incre-
ment, and the 6 billion things connected today define an ecosystem of objects
called “Internet of Things” (IoT). An increasing number of industries is betting
on IoT as a way to boost efficiency and explore new business models through
better real-time insights on their processes. While various new paradigms are
emerging to support and make this vision a reality, Edge Computing, which
enables the placement of services directly at the edge of the network, is a very
promising one. Edge Computing augments the traditional cloud model, by allow-
ing to create new latency/privacy sensitive services and, at the same time, lowers
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D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 304–315, 2018.
https://doi.org/10.1007/978-3-319-75178-8_25



Scalable Linux Container Provisioning in Fog and Edge Computing 305

operational costs by reducing communication between devices and remote back-
ends. Following well consolidated industrial practices adopted in Cloud comput-
ing, virtualization approaches based, for example, on hypervisor-governed virtual
machines [11] and Linux containers [12], have been proposed as the execution
environment of choice for Edge computing answering the common requirements
of resource isolation and dependency management.

Still, the new paradigm does not come without new challenges, including
scalable distribution and update of applications across large Edge/IoT deploy-
ments. In this paper, we attempt to address this challenge in an Edge computing
environment employing Linux containers as application distribution and execu-
tion unit. In Sect. 2, we introduce a baseline (best-practice to date) method to
deploy Linux containers on the Edge and discuss its scalability challenges. To
overcome them, we present in this paper a distributed streamed deployment app-
roach. Our method leverages the inherent layered structure of container images
and filesystems to develop a peer-to-peer provisioning protocol that improves
latency at scale, while conserving on Edge-Cloud bandwidth costs.

We have implemented our approach on target edge devices (NVidia Tegra,
ARMv7 Raspberry Pi) as a proof of viability. To showcase the promise of the
approach at scale, we have used the device-based results to calibrate Virtual
Machines (VMs) executing Edge device operating system and applications. We
obtained results on up to 21 Edge nodes running on this virtual environment,
showing an up to 3 times improvement in container provisioning time within
each locality and up to 10 times reduction of Edge-Cloud bandwidth utilization,
when compared to provisioning a locality from a single centralized container
image registry.

2 Motivation: Naive Edge Container Provisioning

The Edge computing model we assume in this paper is the following. As shown
in Fig. 1, Edge devices are grouped in “localities”. Nodes within a locality are
horizontally interconnected at lower latency and cost of bandwidth, when com-
pared to the network link used for Edge-Cloud communication. We assume Edge
nodes to be executing on embedded/microserver devices, running a general pur-
pose operating system. Without loss of approach applicability to other operat-
ing systems and virtualization approaches - as long as a layered structuring of
deployment images can be inferred - we focus our presented work to devices
using Linux and Docker containers as the runtime for Edge applications.

Docker [1] defines a container as a runtime instance of a Docker image. An
image is an ordered collection of changes compared to the initial filesystem repre-
senting the base of the image. We can think of an image as a set of layers stacked
on top of each other to form the container filesystem. To facilitate image sharing
and streamlining of container provisioning, Docker provides a dedicated image
repository and server called Registry. The Registry is a stateless, highly scalable
server side application that stores Docker images and responds to requests for
deployment from remote nodes. This component of the architecture is usually
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running within a (Cloud) datacenter, receives pull requests and responds with
the requested image. As part of this deployment procedure, the layers compris-
ing an image are combined into a single archive binary file and then transmitted
to the host where the container image is instantiated.

Fig. 1. Edge computing model with nodes in each locality pulling container images
from a centralized Docker Registry

Applying the above baseline best practice approach (“näıve”) for container
provisioning at the Edge leads to multiple pull requests coming from different
nodes of the same locality. This is inefficient in terms of cost of bandwidth, as it
entails avoidable exchange of redundant data for the same location. Moreover,
this approach can lead to increased load at the Registry and thus decreased
service quality, to the extent that the Registry itself could rapidly become a
bottleneck. The latter effect can specifically occur when a large number of edge
nodes concurrently issue download requests for an image, for example, when
updated image versions become available. One solution that can limit the load
on the registry is clustering or geo-distribution, which though again clearly raises
the cost of the service.

The graph presented in Fig. 2 provides a visual representation of the prob-
lem, showing the time to deploy a container image of 500 MB on a varying
number of concurrently provisioned edge nodes. The concurrent scenario rep-
resents the worst-case in terms of provisioning overhead, for reasons outlined
above. The data represented in the graph is derived assumming 200 Mb/s band-
width between the Cloud Registry and the Edge locality and Edge nodes with
100 Mb/s network interfaces. Figure 2 shows that the time taken to deploy a new
container image in a locality increases linearly: while a single node requires only
40 s to pull the image, provisioning 10 nodes saturates the available Edge-Cloud
bandwidth. In case of 1000 nodes, provisioning takes more than 5 h.

Mirroring the remote Registry within each locality would help improving
the scalability of the solution and reduce provisioning latency; however, such an
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Fig. 2. Estimated time to fully provision a locality with a container image of 500 MB
as the number of Edge nodes in the locality increases.

approach would suffer from following shortcomings: (a) cost of bandwidth would
still be very high, due to continuous syncing between edge and cloud registries,
especially if there is a large set of discrete images deployed in a locality and (b)
the typically limited processing capability and storage capacity of Edge devices
would be an important limiting factor for them to act as local Registries, given
the average size of container images and the potential size in terms of devices
of a locality. Beyond the technical challenges, there are also business barriers in
following such an approach, since, in some deployments, the Edge premise may
not be under the control of the Registry/Cloud providers.

3 Streamed Container Deployment

To overcome the complexity of distributing the image within a locality without
creating bottlenecks, we propose a paradigm shift toward a novel peer-to-peer
provisioning approach where nodes in a locality co-operate to accelerate provi-
sioning. We call this approach “Streamed Deployment” (SD). Figure 3 shows the
block diagram of the components involved in our streamed deployment approach.
To provision an image within a locality, one of the Edge nodes is elected as entry
point to the Edge-Cloud network. This node (termed “Gateway”) interacts with
the remote Cloud infrastructure, pulls the image on behalf of the entire locality
and provides information regarding the status of the nodes within it. Within the
Gateway, the Gateway Manager (GM) dynamically manages the formation of a
peer-to-peer distribution graph within the locality. This includes the dynamic
repair of the distribution topology in the case of node timeouts (due to, e.g., fail-
ures or in case of mobile nodes exiting a locality). The coordination between the
various nodes within the locality occurs via a Message Broker (MB, in our case
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realized through a stock MQTT broker), a PUB/SUB broker capable of decou-
pling sender and receiver through asynchronous messaging. Last, each edge node
carries an implementation of a Stream Manager (SM), an agent that implements
the real-time container image streaming protocol on top of the formed peer-to-
peer distribution graph. Also, the SM interacts with the Docker daemon on each
node to import received image layers to the local image store that each Docker
Edge instance maintains.

Fig. 3. Architecture of our Streamed Deployment implementation.

Figure 4 provides a more comprehensive representation of the interactions
performed during the deployment. There are three actors involved in the depicted
workflow: the formerly described Gateway Manager of the locality, the Stream
Managers of each Edge node being provisioned (only one instance of the SM is
shown for brevity), and the client initiating the deployment. Typically, the client
would be situated in a remote location relative to Edge localities, e.g., within
an Edge orchestration entity running in the Cloud as part of an integrated IoT
platform solution. In this case, the client contacts the edge Gateway to request
the deployment of a new container image including ancillary information of the
image that needs to be deployed (image identifier and composing layers). The
SM on the Gateway responds with an ID that uniquely identifies the deployment
procedure and the list of layers to be pulled. If a subset of the requested layers is
already present within the locality, the SM requests to pull only the differences
between the received list of deployment layers and the ones that are already
stored in the locality. After this handshaking phase succeeds, the GM estab-
lishes the peer-to-peer distribution topology within the locality describing the
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communication chains among Edge nodes. Depending on different optimization
objectives, different algorithms can be used to build this tree. As this aspect is
not central to our method, and for reasons of space, we do not discuss it further
in this paper, but we refer the interested reader to the many existing solutions
described in the literature [7,8,10]. Finally, the differential container image is
streamed through the distribution topology to the edge nodes within the locality,
thus getting all nodes eventually provisioned.

Fig. 4. Workflow of a Streamed Deployment within an edge locality

We now elaborate on the streamed forwarding procedure that implements
our approach. The procedure is implemented within the Stream Manager, imple-
mented as an application server running on each Edge node and serving deploy-
ment requests coming from peers. The algorithm executed by the SM is summa-
rized in the pseudocode listing of Algorithm1. The algorithm is executed by the
Gateway in response to client deployment requests and, symmetrically, by Edge
nodes in response to subsequent requests by peer nodes.

Upon its submission, the deployment request is first handled by the Gateway.
After constructing a distribution topology (line 2), it extracts information about
the layered image to deploy from the request (line 3). This information is used
to compute the difference between the set of layers in the image to deploy and
the layers already available within the locality (lines 4–6); the result is sent back
to the client which will start streaming only missing layers.

The rest of the algorithm is executed simultaneously and identically by the
Gateway and all the other Edge peers in the locality. Following the distribution
topology computed (Gateway) or received (Edge device), each peer receives from
its “parent” in the topology the missing layers and concurrently streams them to
its “children” peers (lines 11–15). Our implementation is based on an in-memory
Pipe data structure to which image data can be streamed in and out concurrently.
The Pipe abstraction takes care of establishing and keeping connectivity with
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one peer’s children (we used TCP connections for that) and of asynchronously
saving the received image on secondary storage. Once the full content of the
image is received, the SM instruct the local Docker daemon to import the image
from disk (line 15).

Algorithm 1. Forwarding Mechanism
input: parent, deploymentRequest

1 if isNodeGateway() then
2 distrTopology ←computeTopology ();
3 layers ←getLayers (deploymentRequest);
4 installedLayers ←getInstalledLayers ();
5 commonLayers ←intersection (layers, installedLayers);
6 layersToDeploy ←difference (layers, commonLayers);
7 send (parent, layersToDeploy);
8 else
9 distrTopology ←getTopology (deploymentRequest);

10 end
11 children ←getReceivers (distrTopology);
12 pipe ← createPipe ();
13 startReader (parent, pipe);
14 startWriter (children, pipe);
15 importImage ();

4 Evaluation Results

To prove the feasibility of our approach, we developed a prototype implementa-
tion of the Streamed Deployment architecture and implementing logic, as shown
in Fig. 3 and outlined in the previous section. We deployed the prototype on
representative Edge/microserver boards, specifically on an NVidia Tegra TK1
development board (acting as locality Gateway) and a Raspberry-Pi 2 board
(acting as Edge node), and successfully tested the prototype, demonstrating
correct and efficient chained deployment from a centralized Docker registry.

To evaluate the proposed solution at higher, more realistic, scale, we created
a virtual Edge locality leveraging a set of virtual machines (VMs) running on
a fully dedicated Openstack [4] private Cloud hosted at IBM Research. Our
deployment consists of one VM acting as Gateway and a variable number of
VMs acting as Edge nodes. The resulting testbed features a cluster of 11 bare-
metal servers and up to 22 VMs running on these servers. We provisioned each
VM with 2 virtual CPUs, and 2 GiBytes of DRAM. We also limited the network
interface throughput of each VM to 100 Mbit/s, so as to emulate the nominal
bandwidth available on typical edge nodes. In order to make it easier to reason
about the collected the results, our Streamed Deployment experiments assume
a linear distribution tree, where each node has one parent and one child only.

To demonstrate the improvement in terms of deployment latency within a
locality, we executed a set of experiments where all nodes within the locality are
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concurrently deploying a specified container image. For that, we chose to deploy
a popular media server image, namely the Plex Media Server [5] - the back-end
media server component of Plex. This image was chosen because representative
(especially in size) of a large class of multimedia applications that might be
running on an Edge locality. In each experiment execution, we vary the number
of nodes in the locality from 1 up to 21 nodes. With this configuration, we
made two groups of experiments, using either the Streamed Deployment (SD)
approach or the baseline approach outlined in Sect. 2.
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Fig. 5. Time taken to deploy a Plex Docker container within a locality with an increas-
ing number of edge nodes

Figure 5 reports the results of the time taken to deploy a Docker container
within a locality using the two approaches, versus an increasing number of Edge
nodes. We observe that in a locality with less than five nodes, the baseline
approach (centralized Docker Registry) provides faster deployments compared
to the proposed solution, because of the co-ordination overhead in the Streamed
Deployment. However, as the locality size increases, our approach yields faster
deployments compared to the baseline. At the largest scale tested (21 nodes),
our approach is 3 times faster compared to the baseline. While continuing the
evaluation to larger locality sizes is part of our on-going work, we don’t have
a reason to expect that the shown trends will change: while the naive registry
baseline has a steep linear scaling pattern, our approach exhibits a much more
gradual linear increase pattern, fit for much larger scale localities.

In addition to provisioning latency, another important factor in Edge Com-
puting deployments is bandwidth utilization. Figure 6 reports the network
throughput time-series on the downstream direction of the Edge-Cloud link. The
Edge Gateway pulls the image from the registry only once for the entire locality.
Therefore, the amount of data that needs to be sent to the locality does not
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Fig. 6. Bandwidth utilization during container deployment on the Edge-Cloud link.
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Fig. 7. Bandwidth utilization on one edge node within the locality during container
deployment.

increase with the number of nodes, resulting in reduced bandwidth utilization in
both size and time. The same cannot be said for the baseline approach: as the
Docker Registry is the only image provider for the 21 nodes, there is a lengthy
and steady utilization of the Edge-Cloud link, until the separate deployment on
each locality node completes.

Although Edge-Cloud bandwidth is, in general, the most expensive network
resource, making efficient use of local bandwidth might also be critical, especially
in scenarios where local connectivity is also being used for application traffic
(e.g., real time data-communication among Edge nodes). We evaluated how the
Streamed Deployment uses this resource and we show the results in Fig. 7, which
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depicts the network utilization of an Edge node while receiving an image as a
time-series. The graph clearly highlights how, in the baseline approach, the local
link is underutilized during image deployment, due to the bottleneck effect of the
Edge-Cloud link being shared among all the local nodes (21 in our experiment).
On the contrary, Streamed Deployment makes full use of the 100 MBit/s local
link, leading to faster deployment and, in general, to better network utilization.

5 Related Work

While commercial and enterprise deployment of Internet of Things is a reality,
to date the vast majority of roll-outs has either employed very thin general
purpose computing on the edge (e.g. filtering/aggregation/sampling of sensor
time-series) or highly specialized - both software- and hardware-wise - processing
that is monolithically designed and usually tied to a specific solution (e.g. signal
processing for speech recognition [9]). There are several standardization efforts
aspiring to develop consensus on an edge/fog computing reference architecture
[3] and its constituent layers [2]; also, ample research efforts have experimented
with various challenges, among others node roles and node architecture [6,14,15],
end-user value exploration [13] and customized storage/data models [16].

As the field of general purpose distributed, potentially multi-tenant, com-
puting and analytics at the edge of the Internet of Things is only nascent, the
vast amount of prior art has focused on architectural exploration, with no spe-
cial focus on addressing provisioning and infrastructure/platfrom management
challenges, more so from the perspective of massive scalability. Pahl and Lee
[12] have discussed the fitness of Linux containers as the execution unit in edge
deployments versus hypervisor-based virtualization; major advantages of con-
tainers are typically their lightweight footprint, performance and native support
for microservices. Early results presented by the Superfluid Cloud [11] indicated
that customization of virtual machines resp. hypervisors (Xen) can yield pro-
visioning latency results at large scale that are comparable to those of LXC
containers. It must be noted though that these results have been obtained on
a mid-range datacenter-grade server (64-core x86-64 with 128 GB DRAM) and
it remains to be seen how the two technologies compare against each other
in terms of provisioning/footprint, when tested on low-power microservers and
embedded devices. The latter are typically much more highly candidate to host
edge/fog computing nodes in large-scale, distributed deployments. For the same
reason, it is impractical to put the findings of [11] in perspective to our find-
ings, as this paper has focused its value on addressing Xen virtualization opti-
mizations for edge computing purposes. Instead, we focus on provisioning tech-
niques of stock Linux containers, whereby we evaluate our approach in a full-
fledged distributed setting, incorporating edge-cloud bandwidth and latency,
compute/memory/storage capabilities that are representative of an edge gate-
way/node (microserver) and a remote centralized image repository.
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6 Conclusions

Container-based virtualization techniques are being commonly accepted as a
solution to support packaging, deployment and execution of applications on
Edge/Fog computing deployments. In this paper, we have discussed the chal-
lenges in provisioning containerized applications to large numbers of Edge nodes,
especially in terms of scalability of deployment latency and bandwidth utiliza-
tion. We have shown that baseline/standard methods for container provisioning
directly derived from Cloud best-practices are not suitable to be used unmodified
in Edge scenarios, where bandwidth can be limited and more expensive (e.g., if
based on cellular connectivity).

We have therefore presented the design and prototype implementation of
a novel approach that addresses these problems, called Streamed Deployment.
Based on a simple peer-to-peer data distribution model, our approach distributes
the cost of container image provisioning across all the interested nodes within an
Edge locality. Our evaluation on a scale-out testbed shows that Streamed Deploy-
ment provides up to a threefold deployment speed-up and a tenfold reduction
on the utilization of the expensive Edge-to-Cloud network link.

While our solution improves provisioning speed and cost, it also creates
new complexities and challenges if considering aspects like security and high-
availability. Future work will investigate solutions to guarantee secure authen-
tication and data exchange between all the involved actors, and protocols to
guarantee deployment success despite dynamic topology reconfigurations and
failures. Furthermore, we are extending our evaluation results to more realistic
environments where edge devices are distributed across multiple locations. We
also plan to evaluate the impact of different levels of Registry replication on
system performance and reliability. These additional experimental results will
provide a better understanding of the overall performance of the two approaches,
especially for scenarios featuring a large number of devices.
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