
Teaching Software Transactional Memory
in Concurrency Courses with Clojure and Java

Antonio J. Tomeu1(B), Alberto G. Salguero1(B), and Manuel I. Capel2
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Abstract. In the field of concurrency and parallelism, it is known that
the use of lock-based synchronization mechanisms limits the program-
ming efficiency of concurrent applications and reveals problems in thread
synchronization. Software Transactional Memory (STM) is a consoli-
dated concurrency control mechanism that may be considered as an
alternative to lock-based constructs for programming critical software,
although STM is still not fully accepted as a programming model for the
industry. It is our opinion that STM programming must be more empha-
sized in undergraduate courses on concurrency and parallelism. In this
paper we propose an academic experience regarding the introduction of
STM programming in concurrency courses by using the Clojure language
as the common vehicle for teaching Concurrent Programming. Java, the
most popular and extended programming language for teaching concur-
rency, becomes a second language in our course, and thus our students
can take advantage of Clojure API which is defined in Java in order to
simplify the development of programming, lectures and assignments.

Keywords: Clojure · Concurrency · Java · Locks · Mutual exclusion
Threads · Transactions · Software Transactional Memory · Performance

1 Introduction

At moment, programming with locks at different abstraction levels is the dom-
inant programming paradigm to teach how to program thread synchroniza-
tion in concurrency courses. There is an ample range of concurrent constructs
for programming concurrent applications; from the simple, standard locks or
semaphores to the most sophisticated syntactical constructs such as monitors,
they all offer good performance and a relative ease of use when it comes to pro-
gram concurrent applications. However, all these syntactical mechanisms suffer
from the lack of verifiability and reliability. Therefore, sometimes is difficult to
obtain solutions applicable to concurrent programs that guarantee safety and
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liveness properties even when using formal techniques. The probability of a pro-
gram code produced with non-verified synchronization mechanisms to crash or
yield a deadlock situation is not negligible. However, if we analyze popular con-
current/parallel programming languages such as Java or C ++, we find that
any specific API for managing concurrent tasks usually offer a wide variety of
lock-based synchronization tools, being only a few of them based on STM. In
particular, the last revision of Java [9] does not include native STM, whereas
the C++14 [11] revision does as an “experimental feature”. If we analyze the
situation in concurrency courses, the situation is very similar. Information about
STM programming model is mentioned superficially in concurrency courses. It
is pointed out that, although STM programming is a mature model commonly
used in research, it is still not used for commercial exploitation of parallel/-
concurrent software development [3,16]. Moreover, recent curriculum guides [5],
[17] that outline courses on concurrency do not pay special attention to that
topic or include STM contents in course programs. This paper shows the results
obtained from a study of teaching improvement in Concurrent and Real Time
Programming course, which was carried out at the University of Cadiz (Spain)
during one semester. The main objectives of the study have been:

(a) To introduce the STM model to students, as a viable alternative to the
blocking thread model (thread synchronization based on locks) along with
the model advantages and disadvantages.

(b) To provide the students with the necessary skills to allow the development
of concurrent programs that include transactions for shared data access by
Clojure’s concurrent threads.

(c) To use Clojure as a programming language on top of Java for transactional
programming in a multi-core environment, and thus to allow the students to
develop programming solutions by programming Clojure’s transactions.

(d) To show the students that both paradigms are not mutually exclusive but
complementary.

The paper is organized as follows: Sect. 2 briefly describes the academic con-
text of the study. Section 3 introduces the STM programming “paradigm” and
how is presented to the students. Section 4 shows the way STM that uses Clojure
is taught and Sect. 5 does the same with Java on Clojure. Section 6 gives further
details on how the experiment was developed by the students and evaluated to
check the performance of STM-based w.r.t. the solutions based on the classic
blocking thread model. Section 7 outlines the conclusions reached and the future
work to be developed.

2 Academic Context

The reported study was developed in the third semester of the CSE curriculum
at the University of Cádiz (UCA), Spain, in an undergraduate course. A total
amount of n = 199 students were enrolled in the course “Concurrent and Real
Time Programming”, which was divided into two groups for theoretical lectures
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and eight groups for practical work in the labs in this study. The semester lasted
fifteen weeks (60 h per student with 4 h of teaching per week: 2 h of lectures and
2 of practical work. The course structure and contents, according to the current
recommendation guides [5,17], were the next ones:

1. Fundamental concepts of concurrent programming: race conditions, mutual
exclusion, synchronization, and properties of concurrent systems (15%).

2. Mutual exclusion: algorithms for shared memory multiprocessors, semaphores
and software transactional memory1. (20%).

3. Monitors: Hoare’s monitor model, signaling semantics, verification of concur-
rency properties (security and liveness) (20%).

4. Message passing and distributed programs: RPC and RMI models, MPI,
rendez-vous (15%).

5. Real-time systems: periodic tasks scheduling based on static priority assign-
ment, scheduling tests, priority inversion anomaly and sporadic task schedul-
ing (30%).

The distribution of course topics within the 60 h of teaching (lectures + lab)
was the following one: fundamentals (4.5+6), mutual exclusion (6+8), monitors
(6+8), message passing (4.5+6) and real-time systems (9+2). 30 h of lab work
were spent to teach theoretical contents with the help of Java code-snippets,
which were taught according to a weekly schedule proposed by teachers. A total
of 3 h were spent to carry out the experiment regarding learning mutual exclusion
conditions and solutions, which were distributed following the next format: one
hour for a theoretical seminar on STM fundamental concepts and two hours
for practical work at the laboratory, where the students can experiment with
the STM Clojure and Java code-templates provided by teachers. The course
development has been supported by a Moodle virtual platform, which provided
students: previous readings to each lecture, the slides shown in classroom, and
all the code samples used in the exercises proposed to the students during the
semester.

3 Software Transactional Memory

It is well known that common synchronization techniques in concurrent pro-
gramming suffer from several drawbacks, i.e., if these techniques are not used
properly, or we forget to do a good lock release check control, the changes per-
formed by one thread in the program may not be visible to the other threads.
In spite of all that have been written about how to avoid these problems [12],
[7], and the numerous formal techniques that have been proposed recently, con-
currency control remains a complex issue in general. Not all people are able to
produce valid code (free from race conditions, threads starvation and livelock).

1 The transactional memory was introduced by us in this section during the academic
year 2016–2017 to carry out the study.
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The STM paradigm can change now the previous situation, i.e., it becomes
feasible to program safe and fair concurrent code by everybody, by introducing
the concept of transaction, which can be defined as a region of code that is
executed atomically, consistently and in isolation with respect to other program
regions. When two threads try to access the same data, the transaction manager
is activated to resolve the conflict, without resorting to explicitly use blocks in
the code. When a transaction is in progress, the transaction is completed and the
changes are written into memory if there is no conflict with other threads/trans-
actions. However, as soon as the transaction handler finds that one transaction
has progressed beyond a certain point that makes the current transaction unsafe
by compromising the data consistency, it undoes the changes and tries again.

When STM is used, the concurrent readings are done without any prob-
lems, and without the presence of contention. With the STM model, conflicts
only occur when a thread is writing to shared data; in that case, the trans-
action manager records the program state, so that all previous work done by
the thread can be rolled-back and then the thread retries until the transaction
can be successfully completed; this occurs when the threads that are modifying
data finish to do so and validate those changes in memory (commit). The STM
model is very suitable when considering critical sections with many readings and
occasional writings, where we can expect little containment [13]. By contrast,
the blocking model degrades the performance in this case, since it implements
a pessimistic control of the concurrency, eliminating the parallelism within the
critical sections. At this point, we consider the need to choose an implementation
of STM to work with our students. Compatibility with the Java language was
fundamental, as the students had developed all their practical assignments in
Java in other courses of the curriculum. There are multiple STM implementa-
tions for Java [1,7,10,14,15,20]. We did not choose any of them, because they
are too complex for the objectives we set for the teaching of STM. Instead, we
chose to use Clojure functional language, which is interpreted by the JVM, and
yields compatibility between both languages/APIs, which was very useful for us.

4 Teaching STM with Clojure

In Clojure, the STM separates the identity of an object from its state [18].
Clojure is a functional language where the states never change, as they are
immutable by definition. The changes are produced in identity of the object,
which is actually the visible information for the threads. Values are only
immutable within the scope of a Clojure transaction. By design, the identities
are the mutable part, and therefore it is not possible to inconsistently change the
states. Any attempt to change the identity of an object outside of a transaction
is considered illegal in Clojure, and thus an exception is thrown if that situation
arises.

Since there are no locks, concurrency is improved in comparison to the thread
blocking model [2,6]. Correct understanding of this separation between identity
and state is crucial for the students to internalize the operation of the STM in
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Clojure. It is also explained to the students that the STM model works as long
as its implementation can guarantee that threads always get a consistent view
of the world during the program execution. This is true with Clojure, so we do
not have to worry about checking it, which is an advantage for newcomers to
the STM world. The transaction manager, which supports STM, is responsible
for doing it for us. Teaching the Clojure transactional control to our students
was not an issue, since we used a set of Clojure code patterns, as the one shown
below. In that code our students can visualize how to perform the identity change
that we want to achieve by wrapping it in a transaction ((dosync...)). Clojure
implementation of STM guarantees that any transaction execution is atomic,
isolated and consistent. We also specially insisted on the similarities and dif-
ferences that the pattern presents with respect to the classic blocking thread
synchronization pattern with locks.

1 ; ; how to use t r an s a c t i on s in Clo jure
2 ; ; now , the shared data . . .
3 ( de f n ( r e f 0) )
4 ( p r i n t l n ”n i s : ” @value )
5 ; ; doing the t r an sa c t i on . . .
6 ( dosync
7 ( r e f−s e t n 1) )
8 ( p r i n t l n ”n i s : ” @value )

A thread’s transaction is only completed if there is no conflict with another
running threads/transactions at the moment, and the changes are written to
memory (commit). If some conflict is detected by the transaction handler, as
result of multiple threads concurrently accessing2 to the shared data, the trans-
action handler pauses the contending threads, undoes the transaction (roll-back)
and starts them again. Therefore, blocking situations among threads cannot arise
with Clojure transactions, though there is obviously a price to pay for that, i.e.,
transactions require an extra processing time [4] compared with thread synchro-
nization based on locks. As one part of the correct understanding and basic use of
Clojure transactions, there were foreseen practical work assignments at the lab-
oratory that included the following actions: the elaboration of a multi-threaded
application for the concurrent access to the variable n as in the previous code,
and the elaboration and analysis of a number of critical sections following the
previous model.

5 Teaching STM with Java over Clojure

Once the theoretical and practical concepts to develop secure transactions with
Clojure have been presented to students, we have extended our experience to
the field of Java language, which was used during all the practical lessons con-
ducted at the laboratory during the semester. To develop the analysis of the
STM behavior in the Java language, we began to familiarize the students with
the transactional pattern that had to be used, which is shown below,
2 Students were asked, within the corresponding assignment, to do just that.
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1 myThread h = (myThread) Thread . currentThread ( ) ;
2 whi le ( t rue ) {
3 t . beg inTransact ion ( ) ;
4 . . . // do c r i t i c a l s e c t i o n
5 i f ( t . commitTransaction ( ) ) {
6 break ;
7 }
8 }

The code illustrates how the general transaction pattern in Java surrounds
and protects the access to the shared data in a transaction, within which the
threads remains until the transaction ends up and the writing of data in mem-
ory is successfully validated. The pattern shows to the students the transaction
execution continuity, by following a continuous iterative form while the trans-
action needs to perform, and without the presence of locks. When this pattern
was correctly understood by our students, we went on to develop two Java STM
experiments in Clojure with the students, (1) concurrent multi-thread access to
a shared variable using a standard race condition, and (2) concurrent access to
a bank account abstraction3. Below we show the control of a race condition with
transactions. The control of the bank account is very similar, and is not shown
for reasons of space. The code provided to our students for solving a standard
race condition was as it follows,

1 import c l o j u r e . lang . Ref ;

2 import c l o j u r e . lang . LockingTransact ion ;

3 import java . u t i l . concurrent . Ca l l ab l e ;

4

5 pub l i c c l a s s Counter {
6 f i n a l p r i va t e Ref count ;

7

8 pub l i c Counter ( f i n a l i n t v a l I n i c ) throws Exception {
9 count = new Ref ( v a l I n i c ) ;

10 }
11

12 pub l i c i n t getCount ( ) { r e turn ( In t eg e r ) count . d e r e f ( ) ; }
13

14 pub l i c void inc ( ) throws Exception {
15 LockingTransact ion . runInTransact ion (new Cal lab le<Integer >() {
16 pub l i c In t eg e r c a l l ( ) {
17 i n t countNow = ( In t eg e r ) count . d e r e f ( ) ;

18 count . s e t ( countNow+1) ;

19 r e turn ( In t eg e r ) count . d e r e f ( ) ;

20

21 }
22 }) ;
23 }
24

3 All code shown in the rest of the document is available at the following URL: https://
antoniotomeu.wixsite.com/atomeu/stmjavaonclojure.

https://antoniotomeu.wixsite.com/atomeu/stmjavaonclojure
https://antoniotomeu.wixsite.com/atomeu/stmjavaonclojure
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25 pub l i c void dec ( ) throws Exception {
26 LockingTransact ion . runInTransact ion (new Cal lab le<Integer >() {
27 pub l i c In t eg e r c a l l ( ) {
28

29 i n t countNow = ( In t eg e r ) count . d e r e f ( ) ;

30 count . s e t ( countNow−1) ;

31 r e turn ( In t eg e r ) count . d e r e f ( ) ;

32

33 }
34 }) ;
35 }
36

37 }

The support for STM programming that Clojure offers to its users is imported
in lines 1 and 2 into the Java code. Line 6 declares the shared resource with the
implicit separation of the identity and the state that Clojure offers. The Counter
class shows an API with three methods. The first one is an observer that allows
the client to obtain the value of count. The other two methods are modifiers
that increase or decrease the value of count. Please, notice that count is a
counter with the initial value 0 set by the class constructor. The inc () method
increments the value of count, which is value referenced, and thus it is firstly
necessary to dereference it, i.e., we have to follow the reference to obtain its value
(line 17). Line 18 increments the counter value by means of an auxiliary variable,
and sets the reference to that new value by using count.set(CountNow + 1).
Since the program uses Clojure to support transactions the code that is executed
inside the transaction must implement the interface Callable, which models
the asynchronous execution in Java. This is not a problem, since the students
acquired familiarity with this interface from previous practical assignments. The
entire code of the method is programmed within only one transaction defined
in line number 15 and supported by Clojure. The referred transaction includes
the entire code of the method with the appropriate syntax delimiter, which is
written as:

1 LockingTransact ion . runInTransact ion {
2 // c r i t i c a l s e c t i o n
3 }

It was crucial for our students to understand that this delimiter encompasses
the persistent looping behavior shown above and that the transaction is continu-
ously running until it is capable of validating data writing into memory. If several
threads make a call to the inc () or dec () methods, the Clojure transaction
handler makes sure that the modification process is performed properly so that
the final value of count is consistent. Within the practical assignment that the
students had to develop, an exercise was included to develop a Java program
that activates multiple threads against an object of the class Counter. Half of
the threads must invoke the inc() method in a for loop and the remainder must
invoke the dec() method. To finish this experiment, students must check that
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the resulting final value was 0. An example of that program, which we developed,
is contained in userCounter.java and can be downloaded and tested from the
given url.

6 Performance Analysis

We also wanted to offer to our students a benchmark for the comparison of the
performance between the transactional and the standard thread blocking model.
To do this, we developed an experiment, during practical work on transactional
memory in the lab, consisting on defining a fine-grain standard critical section
code region (n++), and to write code for threads that concurrently accessed to it.
We have used different control techniques with locks [8] to achieve secure access
to the critical section region. More specifically, the access to the region was
controlled using synchronized methods; versions using the standard API for
concurrency, i.e., the AtomicInteger, ReentrantLock and Semaphore classes,
included in the high-level API for concurrency control, were also developed; all
of those primitives were already known by the students. Finally, we have written
a version that wraps the critical region within a transaction written in Java by
means of the Clojure API. In addition, we have written an alternative version in
Clojure without the Java API, which supports access to the critical data section
through its native STM.

Using this code, and the Java previously described models, we proposed two
additional experiments to our students for conducting performance measure-
ment:

(a) Basic load experiment: in this experiment the students had to measure the
time required to execute a protected critical region that was defined either by
using the standard synchronization control techniques of the Java language,
or by using STM in Java by means the Clojure language.

(b) High load experiment: in this experiment the students must perform a tem-
poral analysis by using multiple threads which contend to access to a shared
resource during a high number of iterations (2 × 106).

Below we describe with more detail the experiments that our students devel-
oped under our direction.

6.1 Basic Load Experiment

An elementary critical section with a single write operation was used, and the
time required to execute that operation under all typologies of the blocking model
and under the STM in Java through Clojure were measured4. The students were
4 Time were measured using the nanoTime() method of Java System class. This implies

that it is a time that only and exclusively makes sense in the realm of the virtual
machine, and has no relation whatsoever was the time provided by the system clock.
However, Clojure, like Java itself, executes bytecodes on the JVM, which gives con-
sistency to the results.
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required to complete a tabular questionnaire with these times as part of their
practical assignment in order to make them aware of the actual time cost of each
control technique.

The table, once completed, should show to students how executing a single
transaction to provide a safe access to a shared resource nearly doubles the
execution time needed by a slower lock-based access in regular Java code. This
can happen even in a scenario without multiple threads in execution. Of course,
students checked through this exercise that the use of transactions of Clojure
was a good election in a situation that requires few accesses to shared resources.
However, when the number of accesses to shared resources is high, it is necessary
to evaluate the performance of using STM with Clojure in Java.

Fig. 1. Java synchronization vs. Java-STM

6.2 High Load Experiment

In this scenario, students were required to run each test program with an increas-
ing number of threads, from 2 to 32. Half of the threads had to increase the
counter, and the rest had to decrease it. In all cases the threads had to be
launched using a fixed-size executor. A condition had to be entered in all pro-
grams for waiting the executor to run all threads, followed by a control printout
of the value of the shared variable, which should always be 0 in our case. Each
thread made a total of 2 × 106 iterations. The students were then required to
develop the measurements for the scenario described, and to draw the curves
Time = F (threads). To do this, we made available the required GnuPlot scripts
to the students through the virtual platform of the course. We also provided
our own curves as a working guide, indicating the parameters that supported
our own experiment: Intel (R) Core i5-4440 CPU @ 3.10 GHz processor, with 4
physical cores without hyper-threading, using Fedora 22 as the Linux platform.
The version used for the JDK was 1.8.0 54, and version 1.8.0 was used for Clo-
jure. The results of our test, were given as a guide to the students, are shown in
Figs. 1 and 2.

The Fig. 1 (left) illustrates the behavior of standard synchronization tech-
niques in Java, and has no further interest. The Fig. 1 (right) shows the compar-
ative performance of standard Java synchronization techniques compared with
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Fig. 2. Java-STM vs. Clojure-STM

STM with Clojure in Java. We can appreciate that the performance of this par-
ticular implementation of the STM is bad for tasks that try to frequently access
the shared resource, since the necessary roll-backs are very expensive overhead
[10]. Finally, the Fig. 2 compares the usage of STM in both languages (Clojure
and plain Java). Even in this case, in which we compare a native Clojure imple-
mentation of STM with the Java implementation of the STM, we see how Java
always behaves better in the range of tasks analyzed, which cannot be considered
as a surprise, because Clojure is a pure interpreted functional language.

It is necessary to clarify, however, that the behavior we have shown here
corresponds to the analysis of really extreme scenarios, where the typology of
the developed threads is very specific, and always use the critical section to
perform data writing. It is important to persuade the students to analyze and
decide on these aspects by their own [19].

7 Experience Results and Conclusions

To measure the results of the experiment, we asked our students to respond a
survey (n = 124), where the answers range from 1 (completely disagree) to 5
(fully agree). The value 0 was used when the student did not respond to an item.
The items selected were:

(a) I have understood the concept of transaction as an alternative to the use of
blocking techniques based on locks.

(b) I have learned how to use transactions with Clojure to protect concurrent
access to shared data.

(c) I have learned how to use transactions with Java to protect concurrent access
to shared data.

(d) I have understood the advantages and disadvantages of using STM.

The results of the survey are shown in Fig. 3, which shows that the results
of the experiment were satisfactory, and that students finally reach an adequate
level of understanding of the concept of transactional memory presented, both
theoretical and practical.
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Fig. 3. Valuation survey

From the experiment results evaluation, we decided to keep on teaching the
STM as part of the concurrent programming education programme in future
editions of the course, and perhaps to slightly extend the time planned for this
topic within the course schedule. We also believe that it could be of great interest
for other courses on concurrency the development of a similar experience with
other programming languages such as Akka, Scala or perhaps C++ if it finally
includes transactional memory in the corresponding API.
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