
Cellular ANTomata: A Tool for Early
PDC Education

Arnold L. Rosenberg(B)

Computer and Information Science, Northeastern University,
Boston, MA 02115, USA
rsnbrg@cs.umass.edu

Abstract. The thesis of this essay is that the Cellular ANTomaton
(CAnt) computational model—obtained by deploying a team of mobile
finite-state machines (the model’s “Ants”) upon a cellular automaton
(CA)—can be a highly effective platform for introducing early under-
graduate students to a broad range of concepts relating to parallel and
distributed computing (PDC). CAnts permit many sophisticated PDC
concepts to be taught within a unified, perspicuous model and then exper-
imented with using the many easily accessed systems for simulating CAs
and CAnts. Space restrictions limit us to supporting the thesis via only
three important PDC concepts: synchronization, (algorithmic) scalability,
and leader election (symmetry breaking). Having a single versatile peda-
gogical platform facilitates the goal of endowing all undergraduate stu-
dents with a level of computational literacy adequate for success in an
era characterized increasingly by ubiquitous parallel and/or distributed
computing devices.

Keywords: Cellular automata and ANTomata
Teaching PDC to early undergrads

1 Introduction

1.1 Our Overall Goal

A. Computational literacy for all. The current era is characterized by ubiqui-
tous computational devices. As such devices proliferate, they also become more
sophisticated, containing multiple processors and/or cores. Indeed, we employ
parallel and distributed computing (PDC) when we drive cars, use household
appliances, go shopping, It is now widely recognized (cf. [15]) that all under-
graduate students—all the more so those who aspire to a career in a computation-
related field—must achieve a level of computational literacy adequate to succeed
in our computing-rich society—and such literacy must encompass PDC and its
enabling technologies. The thesis of this essay is that the Cellular ANTomaton
(CAnt) computation model [18]—obtained by deploying a team of mobile finite-
state machines (the model’s “Ants”) atop a cellular automaton (CA)—has traits
that recommend it as a conceptual platform for introducing early undergraduate
c© Springer International Publishing AG, part of Springer Nature 2018
D. B. Heras and L. Bougé (Eds.): Euro-Par 2017 Workshops, LNCS 10659, pp. 252–265, 2018.
https://doi.org/10.1007/978-3-319-75178-8_21

Cellular ANTomata: A Tool for Early PDC Education 253

students to a broad range of sophisticated notions relating to PDC. We support
this thesis by discussing three sophisticated PDC concepts that CAnts render
accessible to early students. With more space, we could easily expand this list.

Benefit #1 of CAnt-based Pedagogy. CAnts provide a single perspicuous
platform for many core PDC concepts. Thereby, students need not master a range
of platforms as they strive to master a variety of core concepts.

B. What is computational literacy? We define “computational literacy” via three
main features. For a core concept as defined in, e.g., [15], we expect a student to
provide a:

1. precise definition—to a degree of rigor commensurate with the student’s level;
2. rudimentary implementation—on a “reasonably simplified” computing plat-

form;
3. rudimentary analysis of an implementation on a “reasonably simplified” plat-

form.

“Reasonable simplifications” include, e.g., assuming that a key constant is a
power of 2 or a perfect square or assuming that CAnts’ constituent agents1

act (perfectly) synchronously, rather than only approximately synchronously
(cf. [5,22]).

1.2 Illustrating CAnt-Pedagogy via Some “Core” Concepts

A. The illustrative core concepts. We defend our pedagogical thesis by discussing
“reasonably simplified” versions of three core PDC concepts. We chose these con-
cepts because they invoke different strengths and features of the CAnt model.

1. Synchronization. The Firing Squad Synchronization Protocol (FSSP)—see
[8,13]—allows the agents of arbitrarily large CAnts to initiate a process at
the same step. A “reasonably simplified” FSSP should be accessible to early
students.
Enrichment opportunity #1. A more advanced discussion could also
address synchronicity—how to control clock skew [5,22] so that agents in neigh-
boring cells “hear” temporally proximate clock signals almost simultaneously.

2. Scalability. For many problems, one can craft a single algorithm that works
on CAnts having arbitrarily many agents.

3. Symmetry breaking (leader election). Initiating concurrent procedures is more
challenging for distributed agents than for parallel ones. CAnts admit a sim-
ple, efficient “leader-election” protocol for their (distributed) Ants.

With more space we could easily expand this list. As but two examples, the
mesh structure underlying CAs and CAnts provides access to the following
important topics. (a) The observation that many genres of computation can

1 “Agents” comprise the parallel FSMs within a CA C and the distributed Ants atop
C.

254 A. L. Rosenberg

be orchestrated as waves of data that pass though an array of identical com-
puting agents spawned the elegant notion of systolic array: a highly structured
form of data flow [11]. This topic has since advanced along several fronts [1,16].
(b) The advent of massively parallel computers via fragile VLSI-based tech-
nology heightened awareness of the importance of fault tolerance. Elegant and
effective schemes have been developed for tolerating both faults and failures in
mesh-based systems; cf. [7,10]. The details within the five just-cited sources are
too sophisticated for beginning students, but the underlying ideas are readily
accessible.

B. Our goal. We strive to help instructors appeal to a range of students, from
the nonspecialist to the aspiring professional, as they teach our illustrative PDC-
related concepts.

• Striving to serve the entire target range of students, we discuss synchroniza-
tion in Sect. 3 via a verbally described synchronization algorithm, together
with a small simulation of the algorithm and a simplified timing analysis.

• We discuss scalability in Sect. 4 via two examples. One is treated via an
elementary verbally described algorithm. The other accompanies a verbally
described algorithm with a program in pseudo-code and a proof of validity.

• We discuss symmetry breaking/leader election in Sect. 5 via a verbally described
algorithm accompanied by a proof of validity and timing analysis.

1.3 Platforms for Implementing PDC Concepts

Implementing concepts helps students assimilate often-subtle details. The fol-
lowing tools provide quite distinct “programming” styles for simulating CAnts.

– NETLOGO [14] employs a rather general agent-based approach.
– CARPET [21] specifies Agents via case-statement programs.
– MATLAB R© processes array-structured data using declarative programming.

Additionally, certain systolic computations can be specified perspicuously;
cf. [1,16].

Benefit #2 of CAnt-based Pedagogy. Several well-developed tools enable
students to craft implementations of core concepts and experiment with them.

1.4 A (Very) Brief History of CAs and CAnts

CAs have been studied since at least the 1960s [13] and continue to be of inter-
est to this day [6,8]. They provide an attractive alternative to other formal
models of computers [23], combining mathematical simplicity with levels of effi-
ciency that make them feasible candidates for many real computational tasks.
Indeed, CAs are remarkably efficient for a broad range of tasks that require
the tight coordination of many simple agents [2,3,8,13]. In [2], CAs imple-
ment an ant-inspired clustering algorithm; in [3], they support an ant-inspired

Cellular ANTomata: A Tool for Early PDC Education 255

algorithm for a genre of flow problem. In [12], a CA-like model greedily pre-
plans a route for a single robot to a single goal, by having the goal broadcast its
position. Several recent CA-based robotics-motivated studies appear in [20].
CAnts are introduced in [18], and algorithms are developed for some robotics-
inspired problems. In contrast to CAnts, the models in the preceding sources
support algorithms that are: • fully synchronous (there is a single clock that is
“heard” by all agents); • centrally controlled (there is a central planner); • not
scalable (the central planner knows and exploits the size of the system). Some
models are centrally programmable, using systems such as CARPET [21]; their
global name spaces preclude scalability. CAs have also been used for rather
general suites of parallel-computing applications in [21] and related sources.
Algorithms for (bio-inspired) pattern matching appear in [9] for one-dimensional
CAs and in [19] for (two-dimensional) CAnts.

2 A Technical Introduction to CAs and CAnts

2.1 Overview of the Models

A cellular automaton (CA) is obtained by placing a copy of a single finite-state
machine (FSM) at each cell of a square mesh. A Cellular ANTomaton (CAnt) is
obtained by deploying a team of mobile FSMs (Ants) atop a CA, at most one Ant
per cell. Each FSM communicates at each step with the FSMs within cells that
are adjacent along the eight compass directions (E,SE, S, SW,W,NW,N,NE);
it also communicates with an Ant that resides in its cell. Ants communicate
with their host FSM and with any Ants that reside in adjacent cells. FSMs
detect when the mesh-cell they reside in is on an edge or at a corner; thereby, a
CAnt can ensure that Ants never “fall off” the mesh. The preceding informal
definition will suffice for many styles of early introductory course. For other
styles, one could add detail and formalism, as found in, e.g., [17,18].

Enrichment Opportunity #2. One can distinguish Ants as physical devices
(say, robots) or as virtual algorithmic devices (which can simplify subprocess-
ing). In the former case, one could discuss inter-cellular message-transmission
speeds: the electronic propagation of signals vs. the electro-mechanical movement
of Ants.

2.2 Pedagogically Useful Details

A. (Orthant) Meshes. We enable teaching opportunities by building the world
of CAs and CAnts atop the (infinite) 2-dimensional orthant mesh2, whose cells
are labeled by all nonnegative integer-pairs, {〈i, j〉 | i, j ≥ 0}. Each mesh-cell
〈i, j〉 has ≤8 types of neighbors (or, adjacencies), corresponding to the 8 compass
directions; see Fig. 1(left).

2 Our 2-dimensional (orthant) mesh is easily restricted to one dimension or extended
to three.

256 A. L. Rosenberg

Fig. 1. A “prefix” of: (left) a mesh Mn; (center) a cellular automaton [CA] whose cells
contain copies of an FSM F; (right) a Cellular ANTomaton [CAnt] with three Ants.

B. Finite-State Machines. As their name suggests, finite-state machines (FSMs)
were historically viewed as abstract machines (such as, say, elevators) whose
behavior could be described and analyzed by characterizing “states” in which
all “interesting” actions occurred. Myriad texts (e.g., [17]) adopt this view of
FSMs. When teaching introductory computer science courses, though, students
may be more receptive to viewing (and experimenting with) FSMs specified as
programs of case statements, of the form indicated in Fig. 2.3 One can simulate
the operation of the FSM specified by such a program by iteratively cycling
through the specified conditions until one finds one that applies.

LABEL1: if INPUT1 then OUTPUT1,1 and goto LABEL1,1
...
if INPUTm then OUTPUT1,m and goto LABEL1,m

LABEL2: if INPUT1 then OUTPUT2,1 and goto LABEL2,1
...
if INPUTm then OUTPUT2,m and goto LABEL2,m

...
...

LABELs: if INPUT1 then OUTPUTs,1 and goto LABELs,1
...
if INPUTm then OUTPUTs,m and goto LABELs,m

Fig. 2. A finite-state machine (FSM) F specified via a program of case statements.

C. CAs and CAnts. One turns a mesh M into a CA C as follows.

– • Populate M’s cells with copies of a single FSM F, one per cell (Fig. 1
(center)); we refer to the FSM at cell 〈i, j〉 as F〈i,j〉.

• Endow FSMs with bidirectional communication channels to FSMs in
neighboring cells and to resident Ants (when they exist).

3 The CARPET programming environment [21] employs a similar programming style.

Cellular ANTomata: A Tool for Early PDC Education 257

– • Deploy c ≥ 0 Ants on M, at most one Ant per cell.
• Endow each Ant A with bidirectional communication channels to Ants in

neighboring cells and to the FSM in the cell that A is standing on.
– Endow FSMs and Ants with sensors: FSMs sense a resident Ant; FSMs and

Ants sense mesh-edges, obstacles, and goal-objects (when relevant).

At each step: each copy of F polls the states of FSMs in neighboring cells and
of any Ant that resides on F’s cell; each Ant A polls the state of the FSM in its
current cell plus the states of Ants on neighboring cells. Based on these polls,
FSMs and Ants performs actions such as sending signals (an FSM may, e.g.,
tell its resident Ant to move). FSMs and Ants then change state—and the cycle
repeats.

3 Synchronization

Synchronization in parallel/distributed systems seems at first blush to be an
advanced topic that requires substantial background. In fact, for CAs and
CAnts, the topic can be taught with varying levels of rigor to students hav-
ing varying levels of preparation.

3.1 FSSP: The Firing Squad Synchronization Problem

We describe an algorithm for synchronizing Agents within CAnts, in a way
that can “unfold” through a series of courses in the CS/CE curriculum, from
a CS0-type course (e.g., “Computer Literacy”) through a course in algorithm
design/analysis.

– The motivation for and definition of the colorfully named Firing Squad Syn-
chronization Problem (FSSP, for short) should be accessible to students even
in a CS0-level course. This can whet students’ appetites for more advanced
courses by exposing them to a problem that is both interesting and non-
“programmy.”

– The solution to the FSSP sketched here should be accessible to students in
any course that introduces recursion (as an algorithmic control structure).
Students can observe a sophisticated recursion within a “reasonably simpli-
fied” framework, solving a problem that some students will initially doubt
can even be solved.

– Our “simplified” analysis of the FSSP should be accessible to students
whose algorithmic preparation includes the Master Theorem for Linear
Recurrences [4].

The FSSP can be specified informally as follows. Start with n identical
autonomous Agents standing (physically or logically) contiguously along row 0 of
a mesh. Each Agent can communicate only with its immediate neighbors. (The
two end Agents have one neighbor each; all others have two neighbors, one on
each side.) The initially dormant Agents must enter an active state at the exact

258 A. L. Rosenberg

same step when told to do so by the leftmost (“leader”) Agent. The Agents’ only
tool for accomplishing the task is their limited ability to intercommunicate.

Solutions to the one-dimensional FSSP (the version just described) have been
known since at least 1962 [13]. Easily, any solution requires at least 2n−2 steps,
just so a message can reach the farthest Agent and this Agent can respond to
the leader. There exist solutions that use only this number of steps—in fact,
using only 1-bit inter-Agent messages [8]. Surprisingly, any solution to the one-
dimensional FSSP can be converted to a solution for any k-dimensional FSSP
that operates in exactly the same number of steps. (Note: This is actually a
readily accessible exercise for even early students.)

3.2 A Simplified Solution to the FSSP

We sketch a recursive algorithm for the FSSP that operates in roughly 3n steps
instead of the optimal 2n−2 steps. We then provide a “simplified” analysis that
avoids floors and ceilings. This algorithm and analysis should be accessible to
students at many levels. Beginning students should “get the basic idea”; students
who have the basics of recursion and linear recurrences should understand the
“simplified” details; really clever students should be able to build on this setting
to obtain an improved solution.

A. A simple recursive solution. The solution has each Agent send messages of two
types to its neighbors. These messages do not individually instigate actions; it is
the co-arrival of messages of distinct types that triggers actions, as will become
clear. Our verbal sketch ignores certain details that complicate the “end game”
of the FSSP; these details do appear (beginning at step 15) in our illustration
of the process in Fig. 3.

1. The initial stage. The leader Agent, (in the figure) initiates the process
by sending two messages, m1 (• in the figure) and m2 (◦ in the figure), to its
eastward neighbor. Message m1 is sent immediately; message m2 is sent at
step 3.

– Message m1 travels at the rate of one Agent per step. It is relayed from each
receiving Agent to its eastward neighbor until it reaches the end of the line
of Agents, at which point it begins to travel westward at the same rate. (On
this return trip, each receiving Agent relays m1 to its westward neighbor.)

– Message m2 travels at the rate of one Agent every third step. It also is relayed
from each receiving Agent to its eastward neighbor.

At some point, messages m1 and m2 meet, i.e., arrive simultaneously, at some
Agent Ai. At this point, Ai becomes a subleader (in the figure).

2. The inductive stage. Every newly anointed subleader recursively initiates
the described process simultaneously and independently into the half-line of
Agents to its left and into the half-line of Agents to its right. During these
recursive invocations: (a) references to “left” and “right” are adjusted in the
obvious way; (b) a (sub)leader encountered by a message in transit plays the
same role as an end of the line.

Cellular ANTomata: A Tool for Early PDC Education 259

Simplified
7-Agent FSSP

= LEADER

= SUBLEADER

̂ = SUBSUBLEADER

• = m1; ◦ = m2

Step A0 A1 A2 A3 A4 A5 A6

0. •, ◦

1. ◦ •
2. ◦ •
3. ◦ •
4. ◦ •
5. ◦ •
6. ◦ •
7. ◦ •
8. ◦ •
9. •, ◦

10. • ◦ •
11. • ◦ •
12. • ◦ ◦ •
13. • ◦ ◦ •
14. •, ◦ •, ◦
15. ̂•, ◦ ̂•, ◦
16. • ̂◦ ̂◦ •
17. • ̂◦ ̂◦ •
18. •, ◦ ̂ ̂ •, ◦
19.

Fig. 3. The FSP synchronization protocol illustrated for seven Agents

3. Terminating the process. The process terminates when an Agent learns that
both of its neighbors are subleaders—which will occur at the same step for
all Agents. Figure 3 illustrates the sketched procedure for seven Agents. Note
in Fig. 3 that the detailed algorithm suffers additional complication during
the “end game” of a synchronization, to accommodate the (unknown) num-
ber n. To wit, from step 15 in the figure onward, we employ sub-subleaders
(̂ in the figure) to prevent a subleader from activating too soon. Note
also that the rightmost Agent (A6 in the figure) acts differently from other
Agents. This does not mean that A6 differs structurally, only that the absence
of a righthand neighbor modifies its behavior—specifically, with respect to
termination.

B. Analyzing the recursion. We verify that the process terminates for all Agents
at the same step by showing that messages m1 and m2 meet during the initial

260 A. L. Rosenberg

stage at the midpoint of the line of Agents. (The analysis then recurses down to
quarter-points, eighth-points, etc.) To see this: Say that m1 and m2 meet when t
steps have passed since the initiation of the process. Ignoring floors and ceilings,
during this time:

(a) message m2 travels t/3 steps eastward;
(b) message m1 travels n steps eastward then x = t − n steps westward.

Clearly, m2 has traveled from the leader to At/3, while m1 has traveled from
the leader to An−x, where n − x = 2n − t. But m1 and m2 meet at this time,
so t/3 = 2n − t or, equivalently, t = 3

2n. This analysis verifies the algorithm’s
validity and also allows us to estimate the number of steps, T (n) needed to
synchronize n Agents:

T (n) =
3
2
n + T

(

1
2
n

)

=
3
2

(

1 +
1
2

+
1
4

+ · · ·
)

n = 3n − 3
2
.

Our recursive procedure thus allows the n Agents to synchronize within 3n steps.

4 (Algorithmic) Scalability in CAnts

Our algorithm for the FSSP never refers to the number of Agents being synchro-
nized; instead it uses the positions of the “leader” and the rightmost Agent as the
delimiters of the messages that enable the synchronization. It is this feature—
the fact that a single algorithm works for CAnts of arbitrary sizes—that we
identify as (algorithmic) scalability. Of course, there are other valuable notions
of scalability in PDC, but ours has advantages: (a) It requires no background
beyond basic definitions. (b) It can be accessible to beginning students. (c) It
can engage the students by requiring some thought to achieve. We present two
computational problems that illustrate these advantages.

4.1 Example #1: Scalably Creating Square Meshes from
Orthant Meshes

“Natural” computational problems for a CAnt C usually operate within a
(finite) square mesh, rather than the semi-infinite orthant mesh. For many such
problems—specifically those that supply an input to C in the form of a length-n
pattern σ0 · · · σn−1 left-justified along mesh-row 0—the following simple—and
scalable—process converts the orthant mesh to a square mesh that is “natural”
for the problem. See Fig. 4.

1. Simultaneously (via an FSP-synch, i.e., a synchronization using the FSSP):

(a) A〈0,0〉 sends a southeasterly signal, which is propagated toward the south-
east, i.e., toward cell 〈n − 1, n − 1〉;

(b) A〈0,n−1〉—which knows its identity because its easterly neighbor contains
no σ-symbol—sends a signal that is propagated southward (toward 〈n −
1, n − 1〉).

Cellular ANTomata: A Tool for Early PDC Education 261

0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7σ

Fig. 4. Using an input pattern to delimit a square mesh from an orthant mesh: (left)
measuring the square; (right) establishing the square mesh’s eastern and southern
boundaries.

Because CAnts operate synchronously (one of our “reasonable simplifi-
cations”), the signals from A〈0,0〉 and A〈0,n−1〉 arrive simultaneously at
〈n − 1, n − 1〉.

2. When A〈n−1,n−1〉 receives the signals from A〈0,0〉 and A〈0,n−1〉, it simultane-
ously:

(a) sends a message you are a bottom cell westward;
(b) sends a message you are a right-edge cell northward;
(c) initiates an FSP-synch among all cells to its northwest.

After this O(n)-step process:

– the cells {〈i, j〉 | 0 ≤ i, j ≤ n − 1}, the copies of A within these cells, and
the Ants residing on these cells can function as an n × n CAnt Cn;

– the cells {〈i, j〉 | [0 ≤ i ≤ n − 1], [j = n − 1]} function as the “right edge”
of Cn;

– the cells {〈i, j〉 | [i = n − 1], [0 ≤ j ≤ n − 1]} function as the “bottom row”
of Cn.

4.2 A Scalable Pattern-Reversing CAnt

The Pattern-Reversal Problem on an n × n mesh begins with an n-symbol input
pattern Π = σ0 · · · σn−1 along row 0. The challenge is to design a CAnt C that
copies Π along row n − 1 in reversed order. Our CAnt C employs n identical
virtual Ants, A0, . . . ,An−1, with each Ak deployed initially on cell 〈0, k〉. Figure 5
sketches a program that is shared by all Ants A. The sketch is easily expanded to
a formal program as in Fig. 2—that nowhere mentions the length n of pattern Π.

Figure 6 depicts the n-step (not counting the initiating FSP-synch) “multi-
trajectory” for C mandated by the program of Fig. 5. To validate C’s solution,
focus on an Ant Ar that begins at a cell 〈0, r〉. When Ar takes a southwesterly
(resp., southeasterly) step, this adds 〈+1,−1〉 (resp., 〈+1,+1〉) to Ar’s current
cell’s coordinates. It follows that, under the dogleg patterns of Fig. 6, Ar’s tra-
jectory consists of:

262 A. L. Rosenberg

Fig. 5. A sketch of a program for one of C’s (identical) pattern-reversing AntsA, as it: (1)
picks up the symbol in its initial cell c; (2) conveys the symbol, via a SW-then-SE path,
to c’s “mirror” bottom-edge cell c; (3) deposits the conveyed symbol in cell c; (4) halts.

0 σ1 σ2 σ3 σ4 σ5 σ6 σ7

σ0σ1σ2σ3σ4σ5σ6σ7

σ

Fig. 6. CAnt C’s trajectory as it copies the pattern along row 0 in reversed order along
row n− 1.

1. an r-step southwesterly walk from cell 〈0, r〉 to cell 〈r, 0〉;
2. an (n− r − 1)-step southeasterly walk from cell 〈r, 0〉 to cell 〈n− 1, n− r − 1〉.
The fact that cell 〈n − 1, n − r − 1〉 is the “mirror image” along row n − 1 of cell
〈0, r〉 completes the validation.

5 Leader Election/Symmetry Breaking

A central challenge in distributed computing is coordinating the actions of iden-
tical autonomous agents. An important approach to meeting this challenge is
to “elect” one of the agents as a “leader,” thereby “breaking” the “symmetry”
caused by agents’ being indistinguishable. Many leader-election protocols have
been invented, all requiring algorithmic sophistication. When the distributed
agents are Ants within a CAnt C, the underlying CA affords us a rather sim-
ple, efficient leader-election protocol. In particular, C selects as the “leader” the
unique Ant (if any exist!) that is “closest” to the origin Agent, A〈0,0〉, in the fol-
lowing sense. For each Ant A, we count the number of cells A needs to traverse
in order to reach A〈0,0〉 via a path of northward moves (toward row 0) followed
by a path of westward moves (toward column 0), under a regimen that gives a
westward moving Ant priority over northward moving one. (The latter clause
resolves ties when two Ants compete to enter the same row-0 cell.)

Cellular ANTomata: A Tool for Early PDC Education 263

5.1 The Leader-Election Process

(a) A〈0,0〉 initiates the process by simultaneously sending two messages:

1. an FSP-synch to start the process for any Ants that exist within Mn;
2. an eastward-bound message, no Ant yet.

– This message is relayed along row 0 up to Mn’s eastern edge, whence it
is bounced back toward A〈0,0〉.

– If the message reaches an Agent A that knows of an Ant—from receiving
Ant-related messages—then A “swallows” this message by not relaying it.

Note that if A〈0,0〉 receives the bounced-back message, and it has not received
an Ant-related message, then it knows that no Ant resides on Mn.

(b) When “activated” (via the FSP-synch), each cell that contains an Ant sends
the message i have an Ant northward, toward row 0.
(c) While a row-0 Agent A〈0,k〉 is active:

– The first time it receives the message i have an ant from its southern
neighbor, A〈1,k〉, it sends the message Ant in my column westward, toward
cell 〈0, 0〉.

– If it receives the message Ant in my column from its eastern neighbor,
A〈0,k+1〉, then it relays that message westward, toward cell 〈0, 0〉.

In both cases, A〈0,k〉 then becomes inactive.
(d) While a row-0 Agent A〈0,k〉 is inactive, it ignores all messages from its eastern
and southern neighbors.
(e) A〈0,0〉 learns about the presence or absence of Ants in one of three ways.

– If A〈0,0〉 receives the message no Ant yet from its eastern neighbor, A〈0,1〉,
then it knows that no Ant resides on Mn.
In response, A〈0,0〉 broadcasts no Ants found eastward and southward.

– • If the first message that A〈0,0〉 receives is i have an Ant from its southern
neighbor, A〈1,0〉, then a leader-Ant has been discovered.

• The first time A〈0,0〉 receives Ant in my column from its eastern neighbor,
A〈0,1〉, it knows that a leader-Ant has been discovered.

When either occurs, A〈0,0〉 broadcasts leader Ant found eastward and south-
ward. It also transmits you are the leader in the direction from which it
received the Ant-related message. This “congratulatory message” is relayed back
to the originating Ant by intermediate Agents.

In parallel with its broadcast, A〈0,0〉 initiates an FSP-synch to terminate the
procedure.
(f) When row-0 Agent A〈0,k〉 receives leader Ant found from its western
neighbor, A〈0,k−1〉, it relays the message eastward to A〈0,k+1〉 and southward to
A〈1,k〉.

264 A. L. Rosenberg

5.2 Analyzing the Leader-Election Process

A. Validation. The correctness of the process follows from the observations that:
(a) If there is an Ant upon Mn, then A〈0,0〉 receives precisely one message
i have an ant—and that comes from an Ant that is closest to A〈0,0〉. Competing
messages are swallowed by intervening Agents. The message no Ant yet tells
A〈0,0〉 there is no resident Ant. Thus, the leader-election process always halts,
with a closest leader Ant if one exists.

B. Timing. The leader-election process completes within 4n steps on an n × n
CAnt:

• ∃ Ant on Mn. Then A〈0,0〉 receives the message i have an ant within 2n
steps.

• � ∃ Ant on Mn. Then A〈0,0〉 receives the message no Ant yet within 2n
steps.

Within an additional 2n steps, A〈0,0〉 initiates an FSP-synch that both termi-
nates the process and announces either the election of a leader or the absence of
an Ant. In parallel, A〈0,0〉 sends a “congratulatory message” to the new leader.

6 Conclusion

Many PDC-related concepts that are quite sophisticated in general settings
have rather simple versions within the Cellular ANTomaton (CAnt) model.
An instructor can use CAnts to gently introduce such problems to students
who have only basic knowledge about topics such as linear recurrences, asymp-
totics, and Agents. When a student encounters the sophisticated versions of the
problems later, s/he has intuitions from the CAnt-based simplifications. Addi-
tionally, these intuitions can be strengthened using the many convenient tools
such as NETLOGO [14], CARPET [21] and MATLAB R©. It would be exciting
to try this approach with a range of classes, beginning even with CS0.

References

1. Avis, D., Bremmer, D., Deza, A. (eds.): Polyhedral computation. In: CRM Pro-
ceedings and Lecture Notes, vol. 48. American Mathematical Society (2009)

2. Chen, L., Xu, X., Chen, Y., He, P.: A novel ant clustering algorithm based on cel-
lular automata. In: IEEE/WIC/ACM International Conference, Intelligent Agent
Technology (2004)

3. Chowdhury, D., Guttal, V., Nishinari, K., Schadschneider, A.: A cellular-automata
model of flow in ant trails: non-monotonic variation of speed with density. J. Phys.
A: Math. Gen. 35, L573–L577 (2002)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (1999)

5. Fisher, A.L., Kung, H.T.: Synchronizing large VLSI processor arrays. IEEE Trans.
Comput. C-34, 734–740 (1985)

Cellular ANTomata: A Tool for Early PDC Education 265

6. Goles, E., Martinez, S. (eds.): Cellular Automata and Complex Systems. Kluwer,
Norwell (1999)

7. Greene, J.W., El Gamal, A.: Configuration of VLSI arrays in the presence of
defects. J. ACM 31, 694–717 (1984)

8. Gruska, J., La Torre, S., Parente, M.: Optimal time and communication solutions
of firing squad synchronization problems on square arrays, toruses and rings. In:
Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp.
200–211. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30550-
7 17

9. Laurio, K., Linaker, F., Narayanan, A.: Regular biosequence pattern matching with
cellular automata. Inf. Sci. 146(1–4), 89–101 (2002)

10. Leighton, F.T., Leiserson, C.E.: Wafer-scale integration of systolic arrays. IEEE
Trans. Comput. C-34, 448–461 (1985)

11. Leiserson, C.E.: Systolic and semisystolic design. In: IEEE International Confer-
ence on Computer Design, pp. 627–630 (1983)

12. Marchese, F.: Cellular automata in robot path planning. In: EUROBOT, pp. 116–
125 (1996)

13. Moore, E.F: The firing squad synchronization problem. In: Moore, E.F. (ed.)
Sequential Machines, Selected Papers, pp. 213–214. Addison-Wesley, Boston (1962)

14. https://ccl.northwestern.edu/netlogo/
15. Prasad, S.K., Gupta, A., Kant, K., Lumsdaine, A., Padua, D., Robert, Y., Rosen-

berg, A.L., Sussman, A., Weems, C.: Literacy for all in parallel and distributed
computing: guidelines for an undergraduate core curriculum. CSI J. Comput. 1(2),
10:81–10:95 (2012)

16. Quinton, P.: Automatic synthesis of systolic arrays from uniform recurrence equa-
tions. In: 11th IEEE International Symposium on Computer Architecture, pp.
208–214 (1984)

17. Rosenberg, A.L.: The Pillars of Computation Theory: State, Encoding Nondeter-
minism. Universitext Series. Springer, New York (2009). https://doi.org/10.1007/
978-0-387-09639-1

18. Rosenberg, A.L.: Cellular ANTomata. Adv. Complex Syst. 15(6) (2012)
19. Rosenberg, A.L.: Bio-inspired pattern processing by cellular ANTomata. J. Cell.

Automata 13(1–2), 53–80 (2018)
20. Sirakoulis, G.C., Adamatzky, A. (eds.): Robots and Lattice Automata. ECC, vol.

13. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-10924-4
21. Spezzano, G., Talia, D.: The CARPET programming environment for solving scien-

tific problems on parallel computers. Parallel Distrib. Comput. Practices 1, 49–61
(1998)

22. Williams, T.: Clock skew and other myths. In: IEEE International Symposium on
Asynchronous Circuits and Systems (2003)

23. Wolfram, S. (ed.): Theory and Application of Cellular Automata. Addison-Wesley,
Boston (1986)

https://doi.org/10.1007/978-3-540-30550-7_17
https://doi.org/10.1007/978-3-540-30550-7_17
https://ccl.northwestern.edu/netlogo/
https://doi.org/10.1007/978-0-387-09639-1
https://doi.org/10.1007/978-0-387-09639-1
https://doi.org/10.1007/978-3-319-10924-4

	Cellular ANTomata: A Tool for Early PDC Education
	1 Introduction
	1.1 Our Overall Goal
	1.2 Illustrating CAnt-Pedagogy via Some ``Core'' Concepts
	1.3 Platforms for Implementing PDC Concepts
	1.4 A (Very) Brief History of CAs and CAnts

	2 A Technical Introduction to CAs and CAnts
	2.1 Overview of the Models
	2.2 Pedagogically Useful Details

	3 Synchronization
	3.1 FSSP: The Firing Squad Synchronization Problem
	3.2 A Simplified Solution to the FSSP

	4 (Algorithmic) Scalability in CAnts
	4.1 Example #1: Scalably Creating Square Meshes from Orthant Meshes
	4.2 A Scalable Pattern-Reversing CAnt

	5 Leader Election/Symmetry Breaking
	5.1 The Leader-Election Process
	5.2 Analyzing the Leader-Election Process

	6 Conclusion
	References

