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Abstract. Parallel and distributed computing (PDC) has become ubiquitous to
the extent that even common users depend on parallel programming. This points
to the need for every programmer to understand how parallelism and distributed
programming affect problem solving, teaching only traditional sequential pro-
gramming is no longer sufficient. To address the rapidly widening gap between
emerging highly-parallel computer architectures and the sequential program-
ming approach taught in traditional CS/CE courses, the Computer Science
Department at Tennessee Technological University has integrated PDC into
their introductory programming course sequence. This paper presents our
implementation efforts, experience and lessons learned, as well as preliminary
evaluation results.

Keywords: Parallel and distributed computing * Introductory programming
Undergraduate education

1 Introduction

The widespread deployments of multicore and GPU based computing systems in recent
years have changed the computing landscape. Parallel and Distributed Computing
(PDC) now permeates almost all computing activities. The pervasiveness of multicore
computing devices is making even common users dependent on PDC techniques. The
ever-increasing use of web-based services and emerging applications, such as mobile
applications, cloud computing, big data analytics, and the Internet of Things (IoT), has
made high performance computing common. Therefore, the most effective program-
mers understand how parallelism and distributed programming affect problem solving.
Acquiring only traditional sequential programming skills is no longer sufficient, even
for basic programmers. These changes emphasize the need for providing a broad-based
skill set in PDC technology at various levels in Computer Science (CS) and Computer
Engineering (CE) programs, as well as related computational disciplines. However, the
rapid changes in hardware platforms, devices, languages and supporting programming
environments continue to challenge educators in ascertaining appropriate content for
curriculum and how to effectively teach that material.

The computer science education community now recognizes that integrating PDC
concepts in undergraduate curriculums is vital to comprehensive CS/CE education.
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The TCPP curriculum report [1] has identified core and elective PDC topics that a
student graduating with a Bachelor’s degree in CS or CE is expected to have covered.
Furthermore, PDC has been designated as a new ‘required knowledge’ unit in the
ACM/IEEE-CS Curricula 2013 [2]. However, most undergraduate CS/CE/Engineering
programs still do not teach PDC concepts, and such programs typically train students to
think and program exclusively in a sequential manner. Although some CS/CE pro-
grams offer PDC courses as an upper division elective, very few introduce PDC early,
in the introductory programming classes (CS1 and CS2). The gap is rapidly widening
between the emerging parallel computing architectures and the sequential computing
approach taught in traditional undergraduate curriculums. There are currently three
thousand and eleven (3011) 4-year universities in the United States [3] and most of
them offer an undergraduate degree program in CS and/or CE. In addition, one thou-
sand, eight hundred and ninety one (1891) two year community colleges offer CS/CE
pre-university coursework [3]. However, while no statistics are available on how many
institutions are teaching PDC concepts at the undergraduate level, the authors con-
servatively estimate this number at no more than 300. This estimation is based on
grants sponsored by the National Science Foundation, “early adaptor” mini-grants
awarded by the CDER Center [4], and faculty development workshops conducted by
CS in Parallel [1].

This paper presents the PDC topics and related hands on exercises that have been
integrated in traditional CSO, CS1 and CS2 classes taught in the Computer Science
Department at Tennessee Technological University (TTU). The paper further describes
our experiences and lessons learned from this PDC integration effort.

2 Related Works

Researchers are actively seeking methodologies and tools for introducing PDC into
introductory CS courses. In [5], the authors present their effort to implement parallelism
in first and second year CS courses. The authors found that students can learn the
material and enjoyed the experience. However, in [6], the author suggests that CS2 is
the natural place to introduce parallelism, and the author uses minimalistic parallel
programming patterns, called patternlets, to teach the student in CS2.

Some researchers have focused on teaching PDC topics to students in upper
division courses. For example, Geist et al. [7] describes a course for seniors and first
year graduates that covers a real-world problem. Similarly, Lupo et al. [8] focusses on
real world experiences with students working in teams. The authors state that eight of
the ten learning objectives were met, and that the students enjoyed the real-world
experience.

Researchers have also attempted to integrate PDC throughout the curriculum.
Burtscher et al. [9] taught PDC in several lower division courses and a senior capstone
course. The authors show encouraging empirical results that they achieve their goals in
terms of student outcomes, engagement, and interest. Graham [10] used various soft-
ware models and programming options to teach PDC at various levels of the cur-
riculum. The author also states the students show interest in the topics, but that PDC
must be introduced early for the concepts to take root. Neelima and Li [11] present their
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experiences in introducing PDC topics over 6 academic years. The authors state that the
PDC topics were well received by the students. Many students implemented successful
projects, and some participated in conferences. Brown, Shoop [12, 13] and Adams [14]
argue that PDC concepts should be taught at all undergraduate levels. They have
developed a community of PDC educators available at CSinParallel.org [1].

Foley and Hursey [15] state that complex and unfamiliar parallel computing
environments, or PCEs, present a barrier to students. The authors present a web portal,
called OnRamp, which allows students to interactively explore PDC concepts.

The CDER Center [4] is an NSF supported center for PDC Curriculum and edu-
cational resources development. Project personnel chair PDC educational conferences
such as EduPar and EduHPC, as well as workshops. Additionally, the CDER Center
provides competitive grants for early adopters of PDC in CS courses. The center also
provides a book [16] for introducing concurrency in undergraduate courses and pro-
vides downloadable and searchable courseware.

3 PDC Implementation

3.1 CS Curriculum at TTU

TTU is a medium sized, accredited public university with an enrollment of approxi-
mately twelve thousand students. The Computer Science department has approximately
four hundred undergraduate majors and offers BS, MS, and Ph.D. degrees in Computer
Science. The introductory courses offered as part of this degree are Introduction to
Problem Solving and Computer Programming (CS1), Data Structures and Algorithms
(CS2), and Object Oriented Programming and Design (CS3). Multiple sections of these
introductory courses are offered each semester; usually the different sections of these
courses are taught independently by different instructors. To address the high DFW
rates in the 1** and 2" programming classes, a required Principles of Computing (CS0)
class was added to the curriculum in fall 2013. The students in these courses are usually
first or second semester freshmen and are placed in CSO/CS1 according to their math
aptitude scores. If the students are able to enroll in calculus, they are allowed to take
CS0 and CS1 concurrently. In addition, CE students are required to take CS1 and CS2
but are exempted from CSO. For the majority of students involved, these courses
represent their first real exposure to programming.

In addition to the introductory level coursework, required upper division courses
are typically offered once each school year. Our required upper division courses for the
traditional CS degree include Assembly Language Programming, Operating Systems,
Computer Networks, Computer Architecture, Database Systems, and a two-semester
capstone Software Engineering series.

Beginning in fall 2015, we began introducing parallel concepts into some sections
of our CS0O, CS1 and CS2 curriculum. One to two days of lecture per semester have
been dedicated to introducing why PDC programming is necessary, parallel architec-
ture, basic concepts and how PDC programming differs from sequential coding.
Examples are provided to the student outlining parallelism, distributed computing, race
conditions and concurrency. In the weeks following these lectures, hands on PDC
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exercises are introduced into the attached lab portion of the class, or as homework, that
highlight a particular attribute of PDC development.

Following the idea of exposing the students “early and often” to the concepts of
PDC, each class introduces topics that build upon previous coursework. To accomplish
this, we introduce similar concepts in CS0, CS1 and CS2 but at different levels of
depth. This model allows the students to practice one facet of PDC in a manner that
does not lead to confusion over the complex details of any advanced techniques. Each
lab exercise or homework assignment takes as part of the study is worth 8-10% of the
final grade in the lab course. The following sections briefly describe the implementa-
tion in each class with concise descriptions of the hands on exercises. One of the
exercises is described in greater detail for the better understanding of our reader.

3.1.1 Principles of Computing (CS0)

The concepts introduced in the CSO lecture include serial computing, parallel com-
puting, concurrency, race condition and speed-up, and the need for parallel computing.
We used SNAP [17] to implement the in class examples highlighting these topics.
Using animated sprites, provided in SNAP, to represent which components of the
application are computing and which ones are not. To highlight the benefits of par-
allelism, the students are shows two lists of random numbers and the instructor will
work them through a sort done in parallel. The instructor can spawn the final merge
step for this application in parallel or sequentially after the parallel sort to show that
synchronization is needed to overcome the race condition. The module focuses on
visualization and examples of parallelism, and does not include coding parallel algo-
rithms. Once the students have been exposed to the concepts, a hands on exercise
allows the students to run the sort over data collections and time their results to
demonstrate speed-up.

3.1.2 Introduction to Problem Solving and Computer Programming (CS1)

The objective in the CS1 parallel introduction is to introduce the students to basic
OpenMP coding, the fork-join model of parallel processing, as well as have the student
become more familiar with the ideas of shared v. distributed memory, designing
parallel programs and the differences between concurrency and parallelism. In addi-
tion, the topics covered in CSO are restated since that course is not a requirement for all
students.

Two modules have been created for use in the CS1 laboratory course. The first is a
simple demonstration of fork-join summation and allows the students to create a basic
parallel program and observe the speed-up PDC allows. The second more complex
module walks the students through the manipulation in parallel of arrays for the means
of image manipulation. Both modules help reinforce the concepts covered in the main
lecture.

Parallel Sum for CS1: The parallel sum lab is designed to introduce students to the
fork-join model of parallel programming. The lab begins by introducing the concepts
and reasoning behind PDC programming and explaining the expected results of the
experiment. The students are instructed to create a program which will create a large
array, at least 1 million elements, of randomly generated integers. A function is created
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to process the array, adding all the elements in a standard sequential manner. A separate
function is created to perform the same process but utilize fork — join through
OpenMP. A timer function placed in the program allows the users to accurately
determine how long each function took to arrive at the answer. The students run the
program multiple times using each of the two functions and are able to see the time
savings adding simple parallel code can have on their programs performance.

Parallel Image Processing for CS1: The lab describes image flipping and gray-
scaling with an example, shown in Fig. 1. In particular, images are represented as
colored dots, known as pixels, on the monitor screen. The color of the pixel is rep-
resented as a mixture of intensities of the colors red, green and blue. Each intensity is
characterized by an 8-bit number in the range from 0 to 255. For example, the value (0,
0, 0) represents the color black, the values (255, 0, 0) represents red, and the values
(255, 255, 0) represent yellow. We call these intensities, the colors RGB (or red, green,
blue) values.

a) Color original image b) Gray-scaled and flipped image

Fig. 1. Flipping and gray-scaling an image (Color figure online)

Gray-scaling an image represented as a series of RGB values is easy. Different
methods exist, but an effective method is called the luminosity method. In this method,
if you are given the ith pixel, you gray-scale that pixel with the following formula:

gray_valueli] = 0.21 * pixel[i].red + 0.72 x pixel[i].green + 0.07  pixel[i].blue (1)

Then, for each i, set the red, green and blue component of pixel[i] to gray_value
[i] to gray-scale the image. Flipping an image is accomplished by flipping the first pixel
with the last pixel, the second pixel with the second-to-last pixel, and so on. The lab
then describes how an image can be flipped and gray-scaled in parallel. An image has
both a height and a width. The array of color values represents rows of pixels, where
each row is a line of pixels that would appear across the screen. The size of each line of
pixels is equal to the image’s width, and the number of lines is equal to the images
height. When writing a parallel application, the programmer must first determine how
to divide the problem among the available processors. Dividing the problem requires
determining (1) how much of the problem each processor should compute, and
(2) determining where, in the input data, the processor should begin and end its
computations. In general, when dividing the rows among processors, the programmer
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should divide the work equally. So, if the image consists of n rows, and there are
p processors available, then each processor should get roughly n/p rows.

A natural division for an image is to divide the image into chunks, where each
chunk consists of a number of rows of pixels. Then, each processor computes its
assigned chunk. So, if the given machine has four processors and the image file is eight
pixels square, each processor would compute two rows. Processor 1 would compute the
first two rows, starting at index O and finishing with index 15, processor 2 would start at
index 16 and process through index 31, and so on.

Next, the lab describes the tools needed to edit and compile a parallel program, and
includes a link to download code for loading and saving images in the simple PMM
format, as well as a description of the PPM libraries API. The lab also describes
pseudocode gray-scaling and flipping before finally explaining how OpenMP can make
writing parallel programs easier. In fact, when using OpenMP, writing code to paral-
lelize simple loops, such as the ones in this lab, becomes trivial.

3.1.3 Data Structures and Algorithms (CS2)

The objective in the CS2 parallel introduction is to reinforce the material the students
had covered in CS1 while expanding their ability to learn and think in parallel, as well
as how to design programs to effectively take advantage of the speed increases PDC
provides. As with CS1, multiple modules exist to reinforce the instruction provided in
the course lecture sections. The first allows the students to again observe speed-up of
parallel programming by implementing a parallelized bubble sort. The second works
with image modification, but this time utilizing pipelining and the producer-consumer
model of parallelization.

Simple Bubble Sort with Merge for CS2: Even though the student should have
covered sorting before attempting this lab, the module gives a brief description of
Bubble Sort with examples for review. The lab exercise then describes a simple method
for parallelizing the sort using domain decomposition. The computation occurs in two
phases, the first of which divides the work equally among the available processors.
A second phase occurs after all of the processors are finished with the initial sort,
because sorting the pieces of the array does not result in a completely sorted array. In
this step, the master must merge sorted pieces to produce a completely sorted result.
However, the second phase must be done in serial using a single processor.

Parallel Image Processing for CS2: The CS2 image processing lab is similar to the
CS1 image processing lab but follows the producer-consumer paradigm. This module
does not apply gray-scaling in parallel followed by flipping in parallel, but instead the
lab describes the image processing concept of pipelining filters as shown in. By uti-
lizing a pipeline and the producer-consumer model, the students are able to gray-scale
the image and flip the pixels in the same loop. In other words, once the gray-scale filter
has been applied to a single row, that row can be enqueued to the flip filter while the
gray-scale filter moves to the next row (Fig. 2).
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Fig. 2. Implementing a pipeline with a queue

4 Evaluation

We assessed how our integration efforts affected our students’ ability to think effec-
tively using parallel concepts and the knowledge gained in PDC topics. As part of this
assessment, we have conducted subjective and objective evaluations of the knowledge
transfer. The objective evaluations were accomplished through quizzes, lab assign-
ments, and homework, which is reflected in the course grade. The subjective evaluation
was achieved through pre and post surveys designed to gather the students’ self-
evaluation of their understanding of PDC concepts. We assessed the self-evaluations on
a five point Likert scale to subjectively gauge their understanding of the concepts
taught during the coursework.

Results for this study were gathered from students in multiple sections of CS0O, CS1
and CS2 courses over three semesters; fall 2015, spring 2016 and spring 2017. Due to
time constraints with the existing curriculum and faculty capabilities this was a very
sporadically applied implementation, which is something that we hope to address in the
future. The class sizes for the courses under study have varied during the implemen-
tation of this study, see Table 1, but while the lecture size has fluctuated greatly, the
associated lab sections have stayed around a 40 student enrollment on average.

Table 1. Enrollment in courses

Course/semester | Section | Lecture size | Laboratory size
CSO0 FA15 001 44 N/A
002 43 N/A
CS1 SP16 002 60 51
CS2 SP16 001 37 39
002 54 49
CS1 SP17 001 103 36
002 103 34
003 103 36
004 91 25

Grades for the PDC module assignments followed the general template for labo-
ratory work in the CS1/CS2 computer classes at TTU. If the assignment is complete
and on time, the user is given full credit, work with errors are reduced in score either by
25% or 50% depending on the severity of the errors present. Regardless of errors, as
long as work is submitted the student scores a 25%. Based on this scale, the classes we
observed have performed below average on the PDC lab. The 2016 CS1 averaged a
67.9% on the PDC lab and those same students finished the semester with an average
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lab grade of 78.4%. Meanwhile, the 2017 students averaged a 72.6% on the PDC lab
and finished the semester with an 80.9% average in the course. This is to be expected
considering the overall lack of experience and limited time the professors were able to
spend covering the PDC material prior to the work being accomplished.

Figures 3 through 5 show the results of the students’ self-evaluation of their
understanding of PDC concepts. These evaluations were done using a 5-point Likert
scale (1 — none to 5 — a great deal). From these evaluations we can see that race
conditions appear to be one of the hardest PDC topics to understand for CSO and CS1.
We can also see that the number of responses of ‘None at All” and ‘Little’ decrease
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from CSO to CS1, we can also see the responses for ‘A Lot’ and ‘A Great Deal’
increase between CS1 and CS2 (Fig. 4). While our implementation was sporadic, these
changes are to be expected as the students’ aptitude and exposure to programming has
increased (Fig. 5).
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Fig. 5. Learning outcomes for CS2

5 Conclusion

Over the past two years, we have attempted to introduce PDC concepts into multiple
sections of the CS0, CS1 and CS2 coursework at TTU. These implementations, limited
though they may be, have been somewhat successful and point to several promising
outcomes moving forward. The biggest challenge we faced was the time constraints
that were placed upon us due to the nature of these courses and the amount of material
already present in their curriculum. This challenge made implementation of the nec-
essary PDC material very difficult. Despite this, the subjective analysis of the results
from the implementation show that the students can learn this material at this point in
their academic careers and it is feasible to introduce these concepts in early classes.

A second lesson we learned is that students tended to learn more from doing the
PDC labs and homework rather than just listening to the lectures. Part of this is the trial
and error learning that occurred as the users attempted to solve the problems presented,
but also that we waited too long into the semester to begin talking about the concepts.
In CS1, the PDC lab was the 10th out of 13 labs, and we feel that if we could introduce
the concepts sooner in the semester before the students had started tuning out the
lectures, we would be more successful in imparting the necessary skills.

A third lesson is we need to formalize the introduction. The work we accomplished
was only possible in a rather scattershot manner and instead we will work with the
entire faculty teaching the CSO, CS1 and CS2 courses to develop lesson plans that will
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fit into their existing coursework and allow us to test the early and often paradigm over
the course of several semesters to ensure the knowledge retention. For this to work will
require coordination between all members of faculty responsible for teaching these
courses and buy in to support the introduction of these topics.

Though we have not tested the theory yet, we believe including unplugged activ-
ities that demonstrate parallel concepts away from the computer will be beneficial and
should be included in future implementations. We would also like to include concepts
of distributed computing in future research, possibly adding them to web based
activities in CSO or coding assignments in CS2. Regardless, we still believe the topics
introduced should be presented in small, bite size doses because of variations in student
preparedness at this early point in their careers.
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