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Abstract. Emerging Big Data streaming applications are facing
unbounded (infinite) data sets at a scale of millions of events per sec-
ond. The information captured in a single event, e.g., GPS position
information of mobile phone users, loses value (perishes) over time and
requires sub-second latency responses. Conventional Cloud-based batch-
processing platforms are inadequate to meet these constraints.

Existing streaming engines exhibit low throughput and are thus
equally ill-suited for emerging Big Data streaming applications. To val-
idate this claim, we evaluated the Yahoo streaming benchmark and our
own real-time trend detector on three state-of-the-art streaming engines:
Apache Storm, Apache Flink and Spark Streaming. We adapted the
Kieker dynamic profiling framework to gather accurate profiling infor-
mation on the throughput and CPU utilization exhibited by the two
benchmarks on the Google Compute Engine.

To estimate the performance overhead incurred by current streaming
engines, we re-implemented our Java-based trend detector as a multi-
threaded, shared-memory application in C++. The achieved throughput
of 3.2 million events per second on a stand-alone 2 CPU (44 cores) Intel
Xeon E5-2699 v4 server is 44 times higher than the maximum throughput
achieved with the Apache Storm version of the trend detector deployed
on 30 virtual machines (nodes) in the Cloud. Our experiment suggests
vertical scaling as a viable alternative to horizontal scaling, especially
if shared state has to be maintained in a streaming application. For
reproducibility, we have open-sourced our framework configurations on
GitHub [1].

1 Introduction

The increasing demand for Big Data streaming has become prevalent in Cloud-
based applications where data streams are characterized by sub-second latency,
high density at high velocity, statefulness and near real-time response require-
ments. Social interactions from existing services such as Twitter and Face-
book, real-time click-streams from e-commerce Cloud platforms and GPS posi-
tion information from mobile applications qualify as such data. Traditionally,
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MapReduce-based batch processing was applied with Big Data streaming appli-
cations. In pursuit of programming abstractions tailored specifically for stream-
ing applications, and to support sub-second event response times, the Aurora
and Apache Storm Big Data streaming platforms rapidly became popular for
businesses and with the academic community.

Today’s prominent Big Data streaming engines are programmed in Java,
Scala or related programming languages targeting the Java virtual machine
(JVM). The hardware abstraction provided by the JVM facilitates deployment
in the Cloud. Users are provided with high-level programming primitives to com-
pose streaming applications as a set of nodes (actors) connected by FIFO data
channels. The resulting stream-graph topologies can then be readily deployed on
the underlying, Cloud-based streaming engine. It is the sole responsibility of the
underlying streaming engine to orchestrate a given stream graph topology on a
set of Cloud nodes. The programmer is only required to provide high-level con-
figuration parameters such as the number of nodes or virtual machines (VMs).

To assess the efficiency of streaming applications on current state-of-the-
art streaming engines, and to determine the cost of the provided programming
abstractions, this paper makes the following contributions.

1. We created a Java-based trend detection benchmark for Wikipedia user click-
streams. This benchmark was implemented for the Apache Storm and Flink
streaming engines. We employed the Yahoo streaming benchmark [10] as our
second real-world streaming benchmark.

2. We adopted the Kieker dynamic profiling framework [5] for Spark Stream-
ing and the Apache Storm and Flink streaming engines. To the best of our
knowledge, this is the first detailed evaluation of the throughput and CPU
utilization of two real-world benchmarks on the before-mentioned streaming
engines run on the Google Compute Engine. From our measurements we con-
clude that CPU resources are under-utilized with current Big Data streaming
engines.

3. We re-implemented our Java-based trend detector as a multi-threaded appli-
cation in C++. Through manual performance optimizations such as the adop-
tion of lock-free data-structures, it was possible to maintain shared state and
raise the throughput by a factor of 44x to 3.2 million events per second on
a stand-alone shared-memory multicore server. From this result two conclu-
sions can be drawn: (1) the cost of current stream programming abstractions
is non-negligible, and (2) vertical scaling on a multi-CPU, multicore com-
puter benefits from the high bandwidth of chip interconnects and can thus
be preferable to (pre-mature) horizontal scaling.

The remainder of this paper is structured as follows. In Sect. 2, we present the
constituents of the Yahoo benchmark and how the Kieker framework was incor-
porated to obtain dynamic profiling information. Section 3 introduces our trend
detector for the streaming APIs and the low-level C++ version. We present our
experimental evaluation in Sect. 4, discuss the related work in Sect.5 and draw
our conclusions in Sect. 6.
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2 Yahoo Streaming Benchmark

The purpose of the Yahoo streaming benchmark [10] is to determine the per-
formance of three state-of-the-art Big Data streaming engines: Apache Storm,
Apache Flink, and Apache Spark Streaming. The benchmark constitutes a
Cloud-deployment of an advertising analytics pipeline. Events arrive through
Kafka, the JSON format is deserialized, and events are filtered, projected and
joined. Windowed counts of events per campaign are stored in the Redis in-
memory database. The Yahoo streaming benchmark consists of three Cloud
components: (1) the Kafka distributed data queue, (2) the analytics pipeline
expressed for one of the three before-mentioned streaming engines, and (3) the
Redis in-memory database.

The Yahoo streaming benchmark as provided on GitHub [10] is configured
to run on a single (Cloud) node. It was a non-trivial, time-consuming process
to adapt this single-node configuration to multiple nodes. To obtain detailed
dynamic profiling information, we incorporated the Kieker dynamic profiling
framework as a system daemon on each Cloud node. We developed the system
daemon to automatically launch at each boot and it starts to sample per-core
CPU utilization every 500 ms. Sampled data is stored locally on each Cloud node
and from this raw data we analyze performance of Cloud streaming applications.
To make our results reproducible, we have open-sourced these configurations on
GitHub [1].

2.1 Kafka Distributed Streaming Queue

Apache Kafka 0.8.2 is deployed as the default data queue with the benchmark.
Kafka is a subscription-based distributed streaming queue platform. Data gen-
erators written in the Clojure programming language subscribe to the Kafka
platform as producers. A streaming application will subscribe to the Kafka plat-
form as a consumer. Kafka works as a Cloud-based global data-queue which
hides underlying details and only exposes a few interfaces to producers and con-
sumers. The queue is constructed as a Kafka cluster which consists of one or
more Kafka broker servers. In this benchmark, we deploy a Kafka cluster of five
Kafka broker servers where each broker server occupies an entire Cloud node.

2.2 Anatomy of Streaming Engines

Streaming engines are the major targets in this streaming benchmark. Because of
the high arrival rate of tuples from Kafka at the streaming engine, the throughput
of the Yahoo streaming benchmark is solely constrained by the throughput of the
streaming engine itself. The streaming engines compared in this experiment are
Apache Storm version 0.9.7, Spark Streaming version 1.6.2, and Apache Flink
version 1.1.3. With the Storm configuration, Storm Nimbus does bookkeeping
and the orchestration of the entire platform. More than one Storm supervisor
instance is assigned to a Nimbus instance and runs a subset of the target stream
topology. Similarly, the Flink platform is operated by two types of managers,
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Job Managers and Task Managers. A Job Manager is responsible for allocating
subsets of the target stream topology to Task Manager entities. Apache Spark
Streaming is an additional layer built upon the Apache Spark platform. This
enables stream processing using traditional batch processing of Apache Spark.
A Spark cluster is managed by the Spark Master. A Spark Master may have
multiple Spark Slaves. Each Slave instance may be assigned to execute a subset
of the target stream application.

3 Trend Detector

Trend detection is a popular technique employed with real-world enterprises to
discover user trends on Cloud services such as social media, e-commerce and
search engines. It is important to note that user-generated data streams have
to be analyzed by the Cloud streaming environment. Therefore, trend detection
has to be implemented and operated in a Cloud environment using streaming
operators.

Monitoring an incoming data stream of user-generated keywords, a trend
detection algorithm analyzes the stream to detect irregularities in the occur-
rences of registered keywords over the most recent consecutive time-windows.
Each and every uniquely distinguished keyword is given its own timebucket to
store and update a series of occurrences and they are constantly evaluated to
list the most trending keyword(s) in the system.

3.1 Java Trend Detector

We implemented a trend detector in Java for the Storm streaming engine. Based
on the original approach from Twitter’s trend detection [4], our implementation
incorporates the point-by-point Poisson model. This Poisson model is employed
to explicitly distinguish locally irregular occurrences of a particular keyword
within the target time-series, where the overall count of the keyword is insignifi-
cant. The point-by-point model is especially applicable to find trending keywords
from a small set of data. We improved this model by introducing a parallel
reduction algorithm. With our approach, we employ trend-detection actors and
aggregator actors as depicted in Fig. 1. They constitute n layers of actors such
that 2" trend-detection actors receive data streams from spout sg. This layer of
trend-detection actors is followed by n — 1 levels of aggregators. Level k consists
of 2"~*~1 aggregators, where k indicates the position of the aggregators in the
topology.

In this parallel reduction, each trend-detection actor evaluates the trendiness
of incoming keywords with its own set of timebuckets of unique keywords. That
is, for a single stream of keywords that are equally distributed into 2" trend-
detection actors, there will be 2" parallel evaluations of trendiness on local sets
of timebuckets. This strategy was necessary in two aspects: first, in a Big Data
streaming application, there is no guarantee on how many “sibling” instances
of an actor exist in the stream graph topology. No exchange of information is
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Fig. 1. Our Java-based trend-detector’s topology of 3 layers. The topology is dynami-
cally created at the beginning of the run-time with given number of layers for specu-
lative parallel reduction.

allowed between actors except for the FIFO data channels connecting producers
to consumers. Thus in such stream graph topologies it is not possible to share
a single global set of timebuckets across all actors (actors cannot have shared
state). Therefore each trend-detection actor is designed to keep its own set of
timebuckets and evaluate it separately. Secondly, by parallel reduction, multiple
actors can jointly conduct the evaluation.

The trend detection layer is followed by layers of aggregator actors. An aggre-
gator actor accepts a tuple which contains a keyword and its trendiness from
a pair of preceding trend-detection actors or aggregator actors. An aggregator
determines a keyword of the highest trendiness from its local list. With the Java
trend detector, the last layer consists of a single aggregator actor. The resulting
keyword from this actor is considered as the most trending keyword.

In our design of the Java trend detector, actors have local state only. Thus
trend detection is based on local decisions and hence semantically incorrect and
speculative. (Le., the parallel trend detector may not always compute exactly
the same trends as the underlying sequential solution. Nevertheless, differences
materialize only under certain adversary cases of event-distributions, which are
outside of the scope of this paper.)

3.2 C++ Trend Detector

Our goal for the C++ version of the trend detector is to fully utilize the under-
lying hardware of a single multicore node, while focusing on creating a seman-
tically correct, non-speculative trend detector. In conducting an evaluation of
the C++ trend detector, we assumed that all keyword tuples arrive in the right
order between preceding and succeeding tuples in terms of creation time. That
is because, if a tuple arrives too early or too late, it won’t be placed in the right
time window on which trend detection is performed.

As depicted in Fig. 2, one datagenerator is employed per CPU. The program
targets a server with two Xeon E5-2699 v4 CPUs, where one CPU consists of
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Fig. 2. Thread-to-core allocation of the C++ trend detector on a server with two Xeon
E5-2699 v4 CPUs. One datagenerator djy) is assigned per CPUj; the remaining cores
are filled with worker threads ws.
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22 cores. Our design of the C++ trend detector leverages information about the
hardware architecture. To prevent the OS from moving threads between cores,
we pinned one datagenerator thread onto the first core of each CPU and the other
cores are pinned with worker threads. (Pinning was done with the LIKWID-pin
utility [8], which manipulates the CPU affinity of a program’s threads.) At the
worker thread creation stage, allocation of multiple worker threads will take turn
between the two CPUs. The worker threads pinned onto the same CPU receive
tuples in a round-robin fashion from the datagenerator inhabiting the same CPU
through a dedicated queue.

To maximize throughput, we utilize B-Queues [9] as the system-level stream-
ing queues between a datagenerator and its workers. A B-Queue is a lock-free
single-producer, single-consumer queue, and we use one dedicated B-Queue from
a datagenerator to each of its connected workers. We unrolled the innermost loop
of the C++ datagenerator such that tuples are entered into each queue once per
iteration.

Once a worker receives a keyword, it looks up the corresponding, dedicated
timebucket for this keyword in a global hashmap. Then the keyword’s timestamp
of its creation time is inserted into the timebucket and the keyword’s trendiness
is evaluated periodically. The evaluated trendiness is then inserted into the global
trending list and the most trending keyword at the current time is determined
from the list. The global hashmap is a highly-contended shared data-structure
causing serialization from lock contention. We overcame this problem by intro-
ducing a global lock-free hashtable [7].

3.3 An Example Data Set

As an example data set which qualifies as Big Data, we chose a snapshot of
Wikipedia’s traffic from the Amazon web services public data set page [2]. This
data set contains 150 GB of hourly page traffic statistics collected from January
1, 2011 to March 31, 2011. This data set was employed for benchmarking both
the Java and the C++ trend detector.

4 Experimental Results

In this paper, we ran three benchmarks. One is our C++ trend detector which was
evaluated on a CentOS 7 server machine consisting of two Xeon E5-2699 v4 CPUs
with 512 GB of RAM. The other two are Big Data streaming applications—the
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Yahoo streaming benchmark and our Java trend detector (the counterpart of the
C++ trend detector). To evaluate them correctly we referred to Yahoo’s Cloud
setup [3]. First, we configured 30 hypervised machines on the Google Compute
Engine. In this setup, one hypervised machine has 16 virtual CPUs (vCPUs) with
24 GB of RAM. Each vCPU is a hyperthreaded core of an Intel Xeon processor
running at 2.50 GHz. Nineteen hypervised machines are dedicated to “infrastruc-
ture” purposes: three Zookeeper nodes, one Redis in-memory database instance,
five Kafka brokers constituting one Kafka cluster, and 10 Kafka producer nodes
which feed tuple streams into the Kafka cluster. Eleven hypervised machines are
dedicated to the actual application running on the streaming engine under eval-
uation. One coordinator is needed to manage an entire streaming engine and its
workers. Thus we are left with 10 workers which run the streaming application
itself.

We measured the CPU utilization of our Big Data streaming benchmarks
using the Kieker dynamic profiling framework. We configured the Kieker
framework’s periodic sampler facility to measure per-core CPU utilization of
11 streaming engine nodes every 500 ms during the execution of the benchmark
to sample at the double frequency of per-second sampling rate according to the
Nyquist-Shannon sampling theorem. Measurements from the 16 vCPUs of a sin-
gle hypervised machine node are averaged to denote per-node and per-second
CPU utilization during the period of the benchmark execution. From this refine-
ment we produced two graphs: Average (AVG) and Coefficient of Variation (CV)
graphs. Each AVG graph shows per-node CPU utilization of hypervised machines
which run the streaming engine. Each CV graph shows the degree of sparseness
among per-second utilization of each hypervised machine.

To determine the efficiency of each streaming engine’s orchestration of worker
nodes, we generated a diagram where the actor allocation across the 10 worker
nodes is depicted. Each hypervised machine is depicted in a unique color and all
actor instances are included, to provide the complete picture of how a streaming
engine orchestrated actor instances across hypervised machine nodes. Due to
substantial differences with the programming interface, we did not produce actor
orchestration diagrams for the Spark streaming engine.

4.1 Yahoo Streaming Benchmark

Big Data streaming engines require complicated Cloud configurations in which
multiple hypervised machines collaborate to run different types of software com-
ponents which have dependencies to other components. In this benchmark, the
infrastructure consists of Zookeepers, Redis database nodes, the Kafka clus-
ter, Kafka producers, and streaming engines. Thirty hypervised machines are
required to execute a streaming application.

In Fig. 3c and e, CPUs are under-utilized. Most of the worker nodes are only
utilizing 10% or less of their CPU resources. Although Flink has one outlier node
depicted in green, its top CPU utilization is only 40%. On the other hand, Fig. 3a
shows higher CPU utilization. Five worker nodes are utilizing more than 75%
of their CPU resource. It is more clearly depicted in Fig.4a. With the Storm
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configuration, all participating worker nodes are allocated with actor instances
of the target topology. This is different from Flink’s actor distribution diagram
in Fig. 4b. Flink actors are only partly distributed on five worker nodes. Com-
pared to Storm, this orchestration does not seem efficient. However, Flink in fact
achieved higher throughput than Storm. The throughput of the Yahoo streaming
benchmark with Flink is 282 141 tuples per second whereas Storm only achieved
24703 tuples per second. In terms of throughput, Flink’s orchestration works
better, however the problem still remains that it did not utilize five worker
nodes at all. In the evaluation of Cloud applications, this is clearly inefficient
because energy resources to run worker nodes are wasted.

4.2 Trend Detector

In comparing the Java trend detector to the C++ trend detector, two key factors
are to be considered: First, the Java trend detector runs on a Big Data stream-
ing platform, which means there will be multiple worker nodes participating in
an execution of the application. Second, by necessity of the streaming engine
programming abstractions, the actors of the Java trend detector are restricted
to local state only. In particular, each trend-detection actor has its own actor-
local set of timebuckets, and the aggregator actors do not share global state.
Local state reduces the communication overhead compared to a shared, global
(distributed) store of timebuckets. Nevertheless—as pointed out before—this
performance advantage comes at the cost of analysis precision.
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Fig. 5. CPU utilization characteristics of the Java-based trend detector

To benchmark the Java trend detector, we adopted the Cloud setup that we
employed with the Yahoo streaming benchmark. Although Flink’s throughput
was higher than Storm’s in our experiment with the Yahoo streaming bench-
mark, we chose Storm due to its prevalence in industry. Therefore Storm’s pro-
gramming interface was used to implement our Java trend detector. Because our
implementation is based on Storm APIs, we ran the benchmark on Storm only.
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In the benchmark result of Fig. 5, under-utilization of CPUs is also shown with
the Java trend detector’s average utilization (see Fig. 5a). Except for a few nodes
that reach just under 80%, most nodes stay below 20% average CPU utilization.
In Fig. 5b, abundant sparseness of CPU utilization is depicted. Only two nodes
are utilized more, and those are at 80%. In the CV diagram, one node, i.e., “+”,
performs well in terms of consistently utilizing CPU resources. The Java trend
detector’s highest throughput is 72499 tuples per second.

The C++ trend detector was evaluated on a stand-alone Intel Xeon E5-2699 v4
system. The throughput of our shared-memory stateful C++ trend detector
implementation is 3217432 tuples per second. It can be evaluated in two ways:
first, even though we chose to use a global timebucket hashtable, because the
hashtable is designed lock-free, it avoids cache coherence overhead from locking.
This way, we achieved correct semantics with state information shared by all
worker threads. Second, we showed that a single C++ trend detector on a single
machine can obtain higher throughput than its Java-based Cloud counterpart.

To determine the maximum possible throughput in terms of tuples emitted
by the datagenerators, we removed all worker threads except one consumer per
queue which had the sole purpose of emptying its queue. This configuration
achieved 309 360 800 tuples per second.

The shared-memory trend detector shows that it is possible to reduce energy
consumption and increase the performance over current Cloud streaming engines.
However, the C++ programming interface is not as easy as developing streaming
applications with Cloud streaming frameworks. Big Data stream programming
interfaces are easier for beginners than C++ programming. Developing efficient
C++ multi-threaded applications requires careful, manual hand-tuning and opti-
mizations to detect and remove performance bottlenecks.

In conclusion, our experiment shows that the raw performance of sending
tuples across processes is two orders of magnitude higher than the performance
of a carefully hand-tuned, multi-threaded C++ streaming application. And the
performance of this C++ streaming application is 44x times higher than what
can be achieved with current state-of-the-art of Cloud streaming frameworks.

In terms of programming effort, the C++ version required the 3-week atten-
tion of a multicore programming expert, whereas the Java version of our trend
detector was created by a group of software capstone students new to stream
programming—in about the same amount of time.

5 Related Work

In [3], Chintapalli et al. introduce the Yahoo streaming benchmark and its pur-
pose to measure the latency for a complete processing of a tuple at different
Kafka emission rates. Although three streaming engines, namely Apache Spark
streaming, Apache Storm and Apache Flink were compared in the paper, because
of architecture and language differences, Spark streaming was evaluated dif-
ferently with regard to micro-batching intervals. Although the micro-batching
interval does affect the result, Spark streaming was the slowest with Flink being
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as the 2nd-slowest of the three. It is important to note that our measurement
of throughput is different from what its authors intended to measure with the
same framework. Chintapalli et al. measured the up-to-date latency at each
stage of tuple process completion. Contrary, in our benchmark, we measured the
throughput of tuples at the source-node of a streaming application.

In [4], the principles of trend detection are explained. Three popular models
are explained with the point-by-point Poisson model being the simplest but the
most effective for a small set of time series. With large-enough sets of time series,
the authors recommend the cycle-corrected Poisson model, which will increase
the precision of the algorithm. Lastly, a data-driven method is introduced for
its stableness and adaptability. In our Java trend detector and the C++ trend
detector, we adapted the point-by-point Poisson model.

In [6], McSherry et al. propose a new paradigm in evaluating the performance
of distributed data processing systems (aka Big Data processing systems). The
authors take examples of parallelized algorithms that scale well compared to
other algorithms, while in fact, the performance of the compared algorithm is
better. They point out the importance of better (highly-optimized) baselines.
If the baseline single-threaded algorithm is of low performance, a parallelized
algorithm will inevitably perform better than this baseline, even if it is only
parallelizing the overhead contained in the baseline. They suggest to improve
the baseline with better algorithms. The paper’s idea aligns well with our intro-
duction of the C++ trend detector. Our Java trend detector and other streaming
applications that scale well within Big Data platforms should be re-evaluated
in terms of energy-efficiency and throughput, because we have shown that our
stateful C++ trend detector showed the highest throughput over the other bench-
marks, although it runs on a single machine.

6 Conclusions

We have shown that existing Big Data streaming platforms exhibit low through-
put and inefficient utilization of the underlying Cloud infrastructure. Measure-
ment data was obtained for the Yahoo streaming benchmark and our real-time
trend detectors with the help of the Kieker dynamic profiling framework. Our
stateful C++ trend detector uses vertical scaling on a shared-memory multi-
core server. It outperformed its Cloud-based counterparts by 44 times higher
throughput. For reproducibility, we have open-sourced our streaming framework
configurations on GitHub [1].
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