Chapter 5
Theoretical Foundation

What computers can and cannot do has been a long-standing topic in the foundation
of computer science. Some of the pioneers of the field had a strong background
in mathematics and, in the early days of computing, worked on the mathematical
formulation of the limits of computation. The work led to the notion of decidability.
Informally speaking, a question that can be answered by either yes or no is decidable
if a computer can compute the correct answer in a finite amount of time.

The relation that the notion of decidability has to our problem of vendor trust
should be obvious. If the question of whether an executable program performs mali-
cious acts is decidable, we can hope to devise a program to check the code made by
an untrusted vendor. If it is known to be undecidable, this conclusion should impact
on where to invest our efforts. In this chapter, we review and explain some of the key
results on decidability and explain how these results impact the problem of untrusted
equipment vendors.

5.1 Godel and the Liar’s Paradox

The easiest accessible pathway into decidability is through the liar’s paradox.
Although we intuitively think that a statement is either true or false, it is possi-
ble to make an expression that is inconsistent if it is true and equally absurd if it is
false. The liar’s paradox is such an example: consider the statement, ‘This statement
is false.” If it is true, then it has to be false and, if it is false, then it has to be true;
thus it can be neither true nor false.

The liar’s paradox has been subject to long philosophical discussions through-
out history. Its first application of relevance to our case was by the logician and
mathematician Kurt Godel [6]. Godel used a slightly modified version of the liar’s
paradox to prove his first incompleteness theorem. This theorem states that no theory
with a countable number of theorems is able to prove all truths about the relation of

© The Author(s) 2018 39
O. Lysne, The Huawei and Snowden Questions, Simula SpringerBriefs
on Computing 4, https://doi.org/10.1007/978-3-319-74950-1_5



40 5 Theoretical Foundation

natural numbers. Roughly, what Godel did was replace the statement ‘This statement
is false’ with ‘This statement is not provable’. Clearly, if the latter statement is false,
it has to be provable, meaning that it has to be true. This situation again implies that
the statement has to be true but not provably so.

The incompleteness theorem of Godel is not of direct interest to us, but his proof
technique is. At the core of it lies the observation that there are limits to what a
statement can say about itself without becoming an absurdity. Our interest in this
question is as follows: we would like to understand what a program can say about a
program or, more precisely, if a program can decide whether another program will
behave maliciously.

5.2 Turing and the Halting Problem

Before we dive into the limits of what a computer can do, we need to have a firm
understanding of what a computer is. The most common way to model the concept
of a computer is through an abstract device described by Alan Turing [10].

There are several manifestations of this device. What they have in common is
that they consist of a finite state machine, a read/writable tape, and a read/write
head that is located over a position on the tape. The device operates by reading the
position on the tape, changing the state of the state machine depending on what it
read, writing a symbol to the tape depending on the state and what it read, and moving
the tape forward or backward depending on the state and what it read. A more formal
definition, similar to the definition given by Cohen [5], is as follows:

X is a finite set of states for the Turing machine.

I is a finite set of symbols that can be read from and written to the tape.

e 2isafunction ¥ x I" — I that decides the symbol to be written to tape in each
computation step.

e Ais afunction ¥ x I' — {—1,0, 1} that decides in which direction the tape
should move after having written a symbol to the tape.

e []isafunction X x I' — X that decides the state that the Turing machine enters

after having written a symbol to the tape.

The Turing machine starts with a tape with symbols on it and executes its operation
by performing the functions defined by §2, A, and IT in each execution step. In this
definition, the computation of the machine halts when a computation step changes
neither the symbol on the tape, the position of the tape, nor the state of the state
machine (Fig.5.1).

A famous postulate is that every function that is computable by any machine is
computable by a Turing machine. Although this postulate has not been proven, it
is widely believed to be true. In the years since its formulation, there has been no
reasonable description of a machine that has been proven able to do computations that
cannot be simulated by a Turing machine. Consequently, the strength of programming
languages and computational concepts is often measured by their ability to simulate a



5.2 Turing and the Halting Problem 41

<—A—>

Fig. 5.1 A Turing machine. Based on the state of the state machine and the symbol on the tape, §2
decides the symbol to be written, A decides how the tape should be moved, and I7 decides the new
state of the machine

Turing machine. If they are able to, then we can assume that anything programmable
can be programmed by the language or the concept.

The definition of a Turing machine and the postulation that it can simulate any
other computing machine is interesting in itself. Still, its most important property,
from our point of view, is that it can help us understand the limits of what a computer
can do. Turing himself was the first to consider the limitations of computations, in that
he proved that a computer is unable to decide if a given Turing machine terminates
by reaching a halt. This is famously known as the halting problem and, to prove it,
Turing used the liar’s paradox in much the same way as Godel did.

In a modernized form, we can state the proof as follows: assume that we have a
programmed function P that, for any program U, is able to answer if U halts for all
inputs. This would mean that P(U) returns a value of true if U halts for all inputs
and false if there is an input for which U does not halt. Then we could write the
following program Q:

Q : if P(Q) then loop forever; else exit
This program is a manifestation of the liar’s paradox. If Q halts, then it will loop
forever and, if it does not halt, then it halts. The only possible explanation for this is

that our assumption that P exists was wrong. Therefore, no P can exist that is able
to decide the halting problem.

5.3 Decidability of Malicious Behaviour

The importance of understanding the work of Gddel and Turing is that it forms the
basis for a series of results on the analysis of what a piece of code actually does. This



42 5 Theoretical Foundation

basis was exploited by Cohen’s [5] Ph.D. thesis from 1985. Cohen first defined the
main characteristic of a computer virus to be its ability to spread. Then the author
assumed the existence of a programmed function P with the ability to decide for any
program U whether it spreads. Using the liar’s paradox in the same way as Godel
and Turing, Cohen found that the following example code constituted an absurdity:

Q :if P(Q) then exit; else spread

The reasoning is the same. If Q spreads, then it exits without spreading. If Q does
not spread, then it spreads. Again, the only consistent explanation is that P does not
exist.

Cohen’s work was a breakthrough in the understanding of the limits of looking
for malicious code. Subsequently, many developments extended undecidability into
other areas of computer security. The most important basis for this development
was the insight that the automatic detection of malicious machine code requires
code with the ability to analyse code. By using the liar’s paradox, we can easily
generate absurdities similar to those described above. A general variant would be
the following: Assume that P is a program that detects any specific behaviour B
specified in any program code. Then we can write the following program:

Q : if P(Q) then exit; else behave according to B

In the same way as seen before, this is a manifestation of the liar’s paradox and
the only conclusion we can draw is that P does not exist.

Note that the latter example is entirely general, in that it does not specify what
behaviour B is. This means that, by using different instantiations of B, we can
conclude the following:

e Itis undecidable if computer code contains a Trojan [4] (B defines the behaviour
of a Trojan).

e Itisundecidable if computer code contains the unpack—execute functionality often
found in Trojans [8] (B defines the behaviour of an unpacker).

e It is undecidable if computer code contains trigger-based malware, that is, mali-
cious computer code that will execute only through an external stimulus [2]
(B defines the behaviour of trigger-based code).

e It is undecidable if computer code is an obfuscated version of some well-known
malware behaviour [1] (B contains a specification of how the well-known malware
behaves).

We will return to these bullet points in Chaps. 7 and 8, where the craft of malware
detection is discussed in more detail.


http://dx.doi.org/10.1007/978-3-319-74950-1_7
http://dx.doi.org/10.1007/978-3-319-74950-1_8

5.4 1Is There Still Hope? 43

5.4 Is There Still Hope?

The theoretical observations that we have elaborated on above appear to extinguish
all hope that we can solve security problems in computer code. This is, of course,
not true, since there is a lively and vibrant computer security industry out there
accomplishing valuable work. In the remainder of this chapter, we take a look at
where the rays of light are that are exploited by this industry. First, however, we
make things even darker by correcting a common misunderstanding regarding the
undecidability proofs above.

All the proofs above were based on the liar’s paradox, meaning that a central part
of the proof is that it is impossible to decide which branch of the following program
will actually be followed:

Q : if P(Q) then exit; else do something bad

This situation has led to the very common misunderstanding that the only undecidable
question is whether the code that does something bad is actually executed. Clearly,
any detection method that found badly behaving code — regardless of whether it
would be executed — would be of great help.

Unfortunately, identifying badly behaving subparts of code is also undecidable
and the proof is very similar to those we cited above. A common misunderstanding
stems from mixing up two proof concepts: proof by counterexample and reductio
ad absurdum. The program Q above is not a counterexample in the sense that it
is a program for which all P will have to give the wrong answer. Rather, Q is an
absurdity that is implied by the existence of P and, consequently, P cannot exist.
The proof itself sheds no light on for what subparts or subsets of programs P would
actually exist.

A ray of light is to be found in the definition of the Turing machine itself. This is
a theoretically defined machine that is not constrained by the realities of the physical
world. Where a real-world machine can only work on a limited amount of memory,
a Turing machine can have an infinitely long tape. Based on this insight, we have
seen some limited results that identify decidable versions of the problems studied
above. The existence of certain malware unpacking behaviour in code is shown
to be decidable and NP-complete [3]. A similar result exists, where, under some
restrictions, the decision of whether some code is an obfuscated version of another is
proven to be NP-complete [1]. Additionally, for the detection of viruses, a restricted
version of the problem is NP-complete [9].

However, NP-completeness is still a major problem. It does imply the existence
of a system that, in finite time, can produce the right answer, but the amount of
time needed rises very steeply with the size of the investigated program. For real-
life program sizes, ‘finite time’ means ‘finite but not less than a thousand years’.
The practical difference between undecidable and NP-complete for our problem
is therefore not significant. Still, the future may have further developments along



44 5 Theoretical Foundation

this axis that will help. Work on identifying decidable formulations of our problem
therefore remains important.

A more promising possibility is to be found in the absoluteness in the definition
of decidability. The proofs based on the liar’s paradox hold as long as we require
that P have no false negatives or false positives. In particular, when looking for
malware injected by a vendor, we may be able to accept a relative high ratio of false
positives, as long as there are few false negatives. Most would be happy to require
a purchased system to be designed so that it tested negatively, if one could assume
that deliberately building a system for a false negative was hard.

5.5 Where Does This Lead Us?

It has been stated [7] that there will never be a general test to decide whether a piece
of software performs malicious acts. Above we have gone through the reasoning that
substantiates this claim, which urges us to ask what options remain. The answer lies in
the observation at the end of the previous section. We must aim to organize processes,
mechanisms, and human expertise for investigating equipment such that deliberately
building equipment that would generate a false negative in the investigation is hard.
In other words, any vendor that deliberately inserts unwanted malicious functionality
into its products should run a high risk of being caught.

This places our problem in the same category as most other sciences related to
security. Itis usually impossible to guarantee that security will never be breached, but
one can make it difficult to the extent that it rarely happens. This is the case in aviation,
in finance, and in traditional computer security. We must therefore understand what
it means to make it difficult to build malicious functionality into a system without
being caught.

Several fields of research have the potential to help. First and perhaps most obvi-
ous, we have all the research that has been done in malware detection. Although
most of the work in that field is based on the assumption that the perpetrator is a
third party and not the vendor, the problem it addresses is close to ours. We study the
applicability of malware detection techniques to our problem in Chap.7. Then we
study how developments in formal methods can help us. The aim of formal methods
is to build formal proofs of the properties of computer systems and we thus consider
how that can help us in Chap.9. Adding to this, Chap. 8 examines how the system-
atic testing of a computer system can help us make it difficult to include malicious
behaviour into a system without being caught. Looking for machine code that can
solve the problem once and for all is, unfortunately, futile.


http://dx.doi.org/10.1007/978-3-319-74950-1_7
http://dx.doi.org/10.1007/978-3-319-74950-1_9
http://dx.doi.org/10.1007/978-3-319-74950-1_8

References 45

References

1. Borello, J.M., Mé, L.: Code obfuscation techniques for metamorphic viruses. J. Comput. Virol.
4(3), 211-220 (2008)

2. Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Song, D., Yin, H.: Automatically identifying
trigger-based behavior in malware. Botnet Detection, pp. 65-88. Springer, New York (2008)

3. Bueno, D., Compton, K.J., Sakallah, K.A., Bailey, M.: Detecting traditional packers, decisively.
Research in Attacks, Intrusions, and Defenses, pp. 184-203. Springer, Berlin (2013)

4. Christodorescu, M., Jha, S., Seshia, S.A., Song, D., Bryant, R.E.: Semantics-aware malware
detection. In: 2005 IEEE Symposium on Security and Privacy, pp. 32-46. IEEE (2005)

5. Cohen, F.: Computer viruses. Ph.D. thesis, University of Southern California (1985)

6. Godel, K.: Uber formal unentscheidbare sitze der principia mathematica und verwandter sys-
teme i. Monatshefte fiir mathematik und physik 38(1), 173-198 (1931)

7. Oppliger, R., Rytz, R.: Does trusted computing remedy computer security problems? IEEE
Secur. Priv. 2, 16-19 (2005)

8. Royal, P, Halpin, M., Dagon, D., Edmonds, R., Lee, W.: Polyunpack: automating the hidden-
code extraction of unpack-executing malware. In: Null, pp. 289-300. IEEE (2006)

9. Spinellis, D.: Reliable identification of bounded-length viruses is np-complete. IEEE Trans.
Inf. Theory 49(1), 280-284 (2003)

10. Turing, A.: On computable numbers, with an application to the entscheidungs problem. Proc.

Lond. Math. Soc. 42, 230-265 (1936-1937)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


http://creativecommons.org/licenses/by/4.0/

	5 Theoretical Foundation
	5.1 Gödel and the Liar's Paradox
	5.2 Turing and the Halting Problem
	5.3 Decidability of Malicious Behaviour
	5.4 Is There Still Hope?
	5.5 Where Does This Lead Us?
	References


