
Chapter 12
Summary and Way Forward

In this book, we have asked the following question: What if one or more of the
providers of the core components of an information and communication technology
(ICT) system are dishonest? This question has been actualized by recent discussions
and events, such as the Snowden revelations, the discussions that have taken place
in many Western countries on the inclusion of equipment from Chinese providers
into telecommunications infrastructures, and the case of Volkswagen cars having
electronics recognizing that they were being tested for emissions.

Our problem is widely distinct from the traditional problem of the prevention and
detection of malware in a system, first, because the malware is already present at the
time of purchase, so preventing it from entering into the system is meaningless, and,
second, because there is no clean malware-free sample for comparison, something
that is the basis for most effective malware detection techniques. In this book, we
havewandered through the landscape of ICT knowledge. Throughout the journey, we
have tried to determine how onemight verify if a producer of an artefact consisting of
electronic hardware and software has included unwanted functionality in the product.

12.1 Summary of Findings

The notion of trust has been heavily studied in modern philosophy since the 1980s
and onwards. In most aspects of life, our relationships to the people and institutions
we interact with are influenced by the amount of trust we have in the people and
institutions in question. Our need to verify their actions depends on our earlier his-
tory with them, their reputation among other people we trust, and the consequences
for ourselves and the other party if they defect on us. In Chap. 2, we discuss the
trust relationship between a buyer and a vendor of electronic equipment. Ultimately,
we find that meaningful trust in this relationship can only be attained through an
ability to verify the functionality of the equipment that is being sold. Most of this

© The Author(s) 2018
O. Lysne, The Huawei and Snowden Questions, Simula SpringerBriefs
on Computing 4, https://doi.org/10.1007/978-3-319-74950-1_12

109

http://dx.doi.org/10.1007/978-3-319-74950-1_2


110 12 Summary and Way Forward

book is therefore devoted to the technical verification of the properties of electronic
equipment.

In Chap.3, we embarked on the notion of a system, pointing out that it spans many
dimensions. The most obvious dimension is that going from the user interface of a
given system – through many layers of software, firmware, and hardware – down
to the physical phenomena that allow us to build the machines in the first place.
Another dimension emerges from the distributed nature of most complex systems.
These are typically constituted by a series of subsystems, many of which physically
reside on different machines. In addition, these subsystems may be owned and run
by different organizations in different countries. Since the outsourcing of services
and the usage of cloud facilities are becoming commonplace, the diversity of the
ownership of subsystems is likely to increase.

A usual assumption when looking for weaknesses in computer systems is that
the weakness, or, in our case, the security hole, will be visible from the source code.
Several companies have therefore made efforts to let their customers study the source
code of their systems. This is a strong act of goodwill but, unfortunately, we cannot
assume that the absence of malicious actions in the source code guarantees freedom
from malicious behaviour in the equipment itself. In Chap.4, we use a result from
the 1980s to show that malicious executable code and electronic circuits can be
introduced by the tools used by developers. In these cases, not even the developers
of the product need be aware that malicious code is being embedded into the product
they are building. Therefore, to look for malicious code or malicious circuits, we
have to study gate-level electronics and the executable code.

One reason reverse engineering and the search for malware are challenging is that
there are theoretical limits to what can be achieved through code analysis. This is
studied in Chap. 5.We showed proof that decision procedures for detectingmalicious
functionality are a mathematical impossibility.

Understanding and making sense of executable code and gate-level definitions
of hardware in life-size systems is a massive task. There is, however, an active
community with well-developed tools for the reverse engineering of systems. The
expertise of this community is used in analysing the effects of known malware, as
well as in reverse engineering programmer interfaces for software development. We
provided an overview of the classes of tools used for the reverse engineering of
hardware and software in Chap.6. Although these tools have shown their worth in
analysing limited problems, they are a far cry from bringing us close to analysing
entire systems in the full complexity illustrated in Chap. 3.

The detection of intrusion is perhaps themost developedfield in computer security.
Such detection consists of scanning a system in the search for a computer virus,
Trojan, or unwanted active processes placed there by third parties. Chapter 7 gave a
high-level overview of the different known methods. The success of this field is one
of the finest stories in the tale of computer security. Still, its methods fall short of
solving our problem. The most efficient modus for intrusion detection is to scan a
system for the signature of a piece of code that is not supposed to exist in a healthy
system.Whenmalware is inserted into a system at the development phase, no system

http://dx.doi.org/10.1007/978-3-319-74950-1_3
http://dx.doi.org/10.1007/978-3-319-74950-1_4
http://dx.doi.org/10.1007/978-3-319-74950-1_5
http://dx.doi.org/10.1007/978-3-319-74950-1_6
http://dx.doi.org/10.1007/978-3-319-74950-1_3
http://dx.doi.org/10.1007/978-3-319-74950-1_7


12.1 Summary of Findings 111

will be healthy. The distinction between code that is supposed to be there and code
that is not disappears.

An alternative to analysing an electronic product before it is powered on is to start
it up, let it run, and then study its behaviour. In Chap.8, we explained that this can be
done in one of twoways. One is to build a controlled environment around the piece of
equipment, a so-called sandbox This has the advantage of containing the malicious
acts the equipment could carry out so that no real harm is done. Another benefit
of this approach is that the sandbox itself can conduct a systematic test of how the
piece of equipment acts under different stimuli. The main weaknesses of sandboxes
are, first, that they only run for a limited time and, second, that malicious pieces of
code may try to check if it is running in a sandbox before it exposes its malicious
behaviour. These weaknesses form separate battlefields where malware creators try
to hide malicious functionality from the sandbox and the sandboxes creators work
on tricking the malware into exposing itself.

The second approach to dynamic analysis consists of putting the device into
ordinary production outside of a sandbox and then observing its behaviour. By doing
so,we avoid sandboxes’ drawbacks of time limitations and test detection.On the other
hand, malicious acts performed by the device will have real-life effects. The severity
of these effects will differ, depending on what the effects were. If the malicious effect
is to render a piece of equipment unusable, then it will be too late by the time it is
detected. If it is to leak confidential information, it may not be too late but, depending
on the criticality of the function of the equipment and alternative ways of providing
this function, it may be hard to stop.

The key to understanding if dynamic testing – either in a sandbox or in production
– can help solve the problem lies in the question of whether the malicious acts can
actually be detected. As stated, acts that render the equipment useless are easily
detected when they occur. When they occur in real production, however, it will be
too late and, since they can be triggered by arbitrarily complex external stimuli,
one cannot expect to be able to trigger them in a sandbox. As for the leakage of
information, there is more bad news. It has been shown through information theory
that undetectable leakage is possible, although with limited bandwidth.

Although we have presented a series of undecidability results that seem to end
our analysis, several theoretical developments have promise. In the field of formal
methods, which we discuss in Chap.9, we have a plethora of logic systems for
programs and deduction systems that are sound and complete. This means that,
for every property of a program that can be expressed in the logic system, there
exists a proof for this property. Although the undecidability results mean there is no
systematic way the absence of malicious behaviour can be proven, it is clear that
an honest developer will have a clear mental picture of this during the development
phase. We can therefore envision that the programmer provides proof of absence of
malicious behaviour as part of the development process. Checking the correctness
of such proofs is a trivial task that can be done by a machine.

However, even formal methods have limitations. In this case, the limitations are
related to the fact that the developer mainly works on source code. This source code
is automatically transformed into binary code before it is executed on a machine or

http://dx.doi.org/10.1007/978-3-319-74950-1_8
http://dx.doi.org/10.1007/978-3-319-74950-1_9


112 12 Summary and Way Forward

into gate-level structures before it is implemented in hardware. For the proofs to be
watertight, theywill therefore have to refer to code on another level of abstraction than
what is in the developer’s mind. Another difficulty is that an ICT system is generally
exceptionally complex, as discussed in Chap. 3. This complexity overwhelms the
current state of the art in formal methods. Finally and most importantly, the notion
of sound and complete is deceptive. It leaves the impression that every property of
a program can be proven. What it really means is that every property expressible in
the logic system can be proven. A logic system that is sound and complete therefore
has the limitation that properties that are undecidable in the Turing sense cannot be
expressed in the system. As mentioned above, this will be the case for most of the
malicious properties we are interested in finding.

We discussed in Chap. 10 the existence of various systematic approaches to the
assurance of software quality. The most common one of these for computer security
is called the Common Criteria and these are formed around seven quality assurance
levels. Although the gist of these assurance levels is that the developer of the equip-
ment collaborates with the customer to secure the system against third parties, they
can be made relevant for our discussion as well. They do, however, encounter the
same limitations as those discussed in the various chapters of this book, with regards
to both the static analysis of code and dynamic testing.

If our system has only a few components that we do not trust, we could try to
execute them in a controlledmanner. They can be put in a sandbox environmentwhere
they cannot send information to the outside and where the information going into
the components is controlled and even encrypted to ensure that all communications
from the outside are scrambled before reaching the component in question. We study
these mechanisms in Chap.11. Unfortunately, they are usable only for a limited set
of cases.

12.2 The Way Forward

The conclusion on the current state of the art with respect to our problem is rather
bleak. If we do not trust the makers or vendors of our electronic equipment, there
seems to be no framework of knowledge that adequately addresses the full complexity
of the question. However, some approaches appear to be more promising than others
and they should receive the additional attention that the seriousness of the problem
seems to justify. We will mention some of them in the following sections.

12.2.1 Encryption

Distrust in the equipment you communicate through and collaborate with is one
of basic assumptions in encryption algorithms and protocols. This is therefore an
example – and possibly the only example – of a field of ICT security and robustness

http://dx.doi.org/10.1007/978-3-319-74950-1_3
http://dx.doi.org/10.1007/978-3-319-74950-1_10
http://dx.doi.org/10.1007/978-3-319-74950-1_11


12.2 The Way Forward 113

where the premise of the field need not be changed as a result of distrusting the
equipment vendor instead of accidents or a third party. The researchfield has therefore
resulted in numerous methods that provide a solid basis for trust in our case as well,
even when communication can be leaked and even in the presence of attempted
man-in-the-middle attacks.

The development, harnessing, and proliferation of strong encryption techniques
should therefore be encouraged and will be an important component in the solution
to the problem of untrusted equipment. Still, encryption does not solve the problem
altogether, for two reasons: First, the equipment used for encryption and decryp-
tion will also consist of electronic devices. The question of who built the encryption
equipment, from the transistors up to the application, will be important. If one can-
not place complete trust in the people who built the encryption equipment, in all the
complexity we have described in Chap.4, then the encryption methods offer nothing.
Second, while encryption promises to build defences against threats such as eaves-
dropping and man-in-the-middle attacks, it does not touch the problem of remotely
controlled kill switches. For that problem, we must look for solutions elsewhere.

12.2.2 Formal Methods

Wehave argued above that formalmethods currently fall short of solving the problem
of fully verifying electronic equipment. In spite of this, we choose to list it as one
of the research fields that should be pursued with greater intensity in the search for
solutions to our problem. Our reason for this is that, of all the existing approaches
to quality and the scrutiny of code – such as software quality management, reverse
engineering, code review, and static and dynamic analysis – the field of formal
methods is the only one that holds the promise of being able to issue guarantees of
the absence of unwanted functionality.

One particularly promising approach lies in the combination of specification-
based techniques in defining proper benign system behaviour, discussed in Sect. 7.8,
and proof-carrying code, discussed in Sect. 9.8. Specification-based techniques have
the advantage over other static detection methods of not requiring a clean, uninfected
sample of the system. Proof-carrying code has the advantage that the computational
challenges of finding the proof of a system’s correctness are transferred from the
system’s customer to its provider. The customer of the system will therefore only
have to carry out proof-checking, usually a fairly simple computational task.

Several problems, however, need to be addressed through research. First, much
research in the field has focused on providing specifications in which a piece of code
performs some specified predefined actions. Our problem is somewhat different, in
that we need to be able to prove that a system is free of unwanted side effects, such
as the leakage of information or the halting of operations. The latter problem is
particularly challenging, since it is well known that the halting problem is generally
undecidable (see Chap.5). A second challenge is that many of the existing results
of formal methods relate to source code. As made clear in Chap.4, it is the machine

http://dx.doi.org/10.1007/978-3-319-74950-1_4
http://dx.doi.org/10.1007/978-3-319-74950-1_7
http://dx.doi.org/10.1007/978-3-319-74950-1_9
http://dx.doi.org/10.1007/978-3-319-74950-1_5
http://dx.doi.org/10.1007/978-3-319-74950-1_4


114 12 Summary and Way Forward

code that needs to be verified. We will therefore need, not only scalable tools to help
programmers construct correctness proofs of the source code, but also compilers that
create machine code and translate proofs from source code to machine code. Finally,
the production of proof-carrying code is highly resource intensive. The approach is
therefore most likely only applicable to a relatively small trusted computing base
(see Sect. 2.6).

The verification of hardware chips is, however, challenging in a different way.
Whereas the development chain from an algorithmic description of the hardware
down to gate-level descriptions can be framed in by formal methods, the actual
production of the chip cannot. Furthermore, as described in Sect. 6.7, determining
what logic was actually placed on a chip is no easy task. Whereas formal methods
seem to be an interesting prospect in solving the software side of our problem, it is
hard to see how it can help us prove that malicious functionality is not being included
into hardware in the production phase.

12.2.3 Heterogeneity and Containment

Themost potent approach to handling untrusted electronic equipment is through con-
tainment and heterogeneity. This basically means that systems must be constructed
to the extent possible so that no code and no piece of hardware is universally trusted.
Unfortunately, this field has received limited attention, as discussed in Chap.11.

The strength of the approach is that it holds the promise to handle all sides of
the problem. Disjoint pieces of equipment can handle disjoint pieces of information,
so that damage through information leakage is limited. Whenever a kill switch is
triggered, rendering a piece of equipment out of service, other pieces of equipment
can take over. Once it has become clear that parts of an infrastructure can no longer
be trusted, software can be replaced and hardware isolated for later replacement.

Another strong aspect of this approach is that it can be applied to the entire
technology stack. Intellectual property integrated onto a chip can be controlled and
contained by other pieces of intellectual property, pieces of software can be controlled
and contained by other pieces of software, and entire devices can be controlled and
contained by other devices.

Still, there are problematic aspects to the state of the art in this area. The first
is that most methods currently applicable were developed for the purpose of fault
tolerance. This means that much of the work assumes that faults strike in an arbitrary
fashion and that, at a given time, there will be few faulty components to handle.
These assumptions will not necessarily hold when there is an intelligent adversary
and this adversary controls a large number of components in your system. Another
problematic aspect is that of cost. Duplication of functionality is costly at all levels,
and heterogeneity itself will significantly increase the cost of maintenance. Finally,
the containment of malicious actions is not a trivial feature to build into a system. It
will require a great deal of research to understand how to do so and most likely its
implementation will come at the cost of loss of performance.

http://dx.doi.org/10.1007/978-3-319-74950-1_2
http://dx.doi.org/10.1007/978-3-319-74950-1_6
http://dx.doi.org/10.1007/978-3-319-74950-1_11


12.2 The Way Forward 115

Even if many problems are involved in handling untrusted vendors through het-
erogeneity and containment, we still see these as the most promising way forward.
Unlike other conceivable approaches, there are no important parts of the problem that
we can identify upfront as impossible to handle. In particular, whenwe are challenged
by possible kill switches implemented in hardware, it seems that heterogeneity and
containment are the only viable path that can lead to a solution at all.

12.3 Concluding Remarks

Industrialized nation states are currently facing an almost impossible dilemma. On
one hand, the critical functions of their societies, such as the water supply, the power
supply, transportation, healthcare, and phone and messaging services, are built on
top of a huge distributed digital infrastructure. On the other hand, equipment for the
same infrastructure is made of components constructed in countries or by companies
that are inherently not trusted. In this book, we have demonstrated that verifying the
functionality of these components is not feasible given the current state of the art.

The security implications of this are enormous. The critical functions of society
mentioned above are so instrumental to our well-being that threats to their integrity
also threaten the integrity of entire nations. The procurement of electronic equip-
ment for national infrastructures therefore represents serious exposure to risk and
decisions on whom to buy equipment from should be treated accordingly. The prob-
lem also has an industrial dimension, in that companies fearing industrial espionage
or sabotage should be cautious in choosing fromwhom to buy electronic components
and equipment.

Honest providers of equipment and components see this problem from another
angle. Large international companies have been shut out of entire markets because
of allegations that their equipment cannot be trusted. For them, the problem is stated
differently: How can they prove that the equipment they sell does not have hidden
malicious functionality? We have seen throughout the chapters of this book that we
are currently far from being able to solve the problem from that angle as well. This
observation implies that our problem is not only a question of security but also a
question of impediments to free trade.

Although difficult, the question of how to build verifiable trust in electronic
equipment remains important and its importance shows every sign of growing. The
problem should therefore receive considerablymore attention from the research com-
munity as well as from decision makers than is currently the case. The question has
implications for national security as well as for trade and is therefore simply too
important to ignore.



116 12 Summary and Way Forward

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	12 Summary and Way Forward
	12.1 Summary of Findings
	12.2 The Way Forward
	12.2.1 Encryption
	12.2.2 Formal Methods
	12.2.3 Heterogeneity and Containment

	12.3 Concluding Remarks


