
A Demonstration of Evidence-Based Action
Research Using Information Dashboard
in Introductory Programming Education

Yoshiaki Matsuzawa1(&), Yoshiki Tanaka2, Tomoya Kitani2,
and Sanshiro Sakai2

1 Aoyama Gakuin University, Tokyo, Japan
matsuzawa@si.aoyama.ac.jp

2 Shizuoka University, Shizuoka, Japan

Abstract. In this paper, we demonstrated an evidence-based action research in
an introductory programming class with the use of an information dashboard
which provides coding metrics to visualize students’ engagement of their
assignments. The information dashboard was designed for teachers to improve
their classroom teaching using the same coding metrics which was verified in
our previous research [9]. The system was equipped with a cross-filter func-
tionality for exploring the entire classroom metrics. Accordingly, teachers can
easily conduct a temporal analysis, an across-year comparison, and a cross
metrics analysis. We examined the system for the improvement of the 5th year
course using a dataset from the past four years from a non-CS introductory
programming course at a university. Qualitative analysis was conducted using
the discourse between teachers and teaching assistants with the proposed
dashboard. The results showed that the system succeeded in promoting dis-
course, which included a clearer understanding of the class and its improvement,
such as teaching method, assignments, or of students’ behavior.

Keywords: Programming education � Information dashboard
Learning analytics � Action research

1 Introduction

Twenty-first century knowledge societies and the commonality of information and
communication technologies in societies have been pushing for a fundamental reform in
education [1]. This request will greatly affect learning management in the informatics
field, with a shift from teaching how to use applications to “computing” - creating and
designing a new problem solution with computational thinking [2]. This new assessment
method for the programming education is significant for research in this field [3, 4].

The issue of definition and its assessment has been a long quest [5]. Recent
technologies are enabling us to collect fine-grained massive logs in educational situ-
ations by an automated way. Using the terms of educational data mining or learning
analytics, a new assessment method using the collected data has been anticipated even
in programming education [6]. The first generation of research in the 2000s was limited
to simple analysis such as compilation error occurrences profiles analysis (e.g. [7]),

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
A. Tatnall and M. Webb (Eds.): WCCE 2017, IFIP AICT 515, pp. 619–629, 2017.
https://doi.org/10.1007/978-3-319-74310-3_62



although recently fine-grained log analysis has increasingly revealed the actual efforts
for student assignments [8], or measuring the impact of block-based language [9].

Prior studies have highlighted the difficulty of reproducing/replicating research
results in this field [6]. There is general difficulty in human subject studies, as con-
troversial discussions are still ongoing in programming education research [10, 11]. We
should continue the pursuit of research toward the goal of the elucidating the nature of
programming education. Simultaneously, the environment for analysis using the col-
lected dataset should be developed in order to improve actual classroom learning.

Towards this end, we proposed an information dashboard for teachers to improve
their introductory programming classroom. The tool was designed to help teachers’
action research to improve the teaching/learning environment, especially in the case of
classes that are repeatedly conducted over a relatively long period of time (imagine the
2nd year course of the subject will be improved by the data of the 1st year course).

The academic contributions of this paper contain three aspects. First is the design of
the dashboard, which is based on our previous research, and enable teachers to
effectively ascertain the unique learning issues in their respective classrooms. In
addition, as we use the latest web technology, teachers can easily access the dashboard
and explore it using a filtering functionality. The second contribution is the application
of the dashboard to actual classroom environments. Teachers tried to make improve-
ments for 5th year course using the dashboard which shows the former 4 years’ data-set.
The third contribution is our study methodology. All of the sessions containing the
detailed discussions of the teachers and assistants with the dashboard were recorded
and in-depth qualitative analyses for each session were carried out.

2 Related Work

As discussed in the previous section, the recorded data in the actual programming
session and proposed method of analyzing the recorded data are a common research
approach within this field. For example, Toll et al. [8] proposed four categories to be
classified by the granularity of the recorded logs. The categories include Compilations,
Text change, Active Use, and Time in Tool. Jadud’s compilation analysis [7] is cat-
egorized as the Compilation level, and Matsuzawa’s compile error visualization [12]
can be categorized at the level as well.

ClockIt [13] and Retina [14] are categorized as the Text change level. Comparing
this approach through focusing on teacher usage of the visualizations, ClockIt is
designed for a single student. Retina is designed for both students and teachers;
however, the teacher’s view shows the detailed errors for each student. There are
limitations in the ability for conducting action research to improve an entire class.

Helminen et al. [15] and PPV [16] are tools to display the replay of programming
sessions using fine-grained typing logs. The purpose of these tools is to perform an
in-depth analysis of each individual student. Alammary et al. [17] advocated a “Smart
Lab”. A dashboard is a system for teachers to visualize the students “seats map” and
shows the status of each student. This kind of tool is considered useful for ascertaining
the progress of student assignments in real-time. But its use is questionable toward the
improvement of an entire class or curriculum.

620 Y. Matsuzawa et al.



In the field of software engineering, Johnson and Zhang [18] proposed a dashboard
system. They used the metaphor of a medical ICU (Intensive Care Unit). The proposed
system shows a commit (code) telemetry which visualizes the current status using the
metrics used in the software engineering field.

Heig et al. [19] advocated a suite of visualization tools to show the usage of the
learning management system and attempted to detect the student behavior patterns. The
data they used were the access logs of a learning management system. Although
differing from our research, the visualization of a heat map for each student has some
resemblance to our tool.

Student performance in undergraduate programming classes has been studied using
paper exams. Lister et al. [20] reported on reading and tracing skills for multi-regional
university students. Ford [21] tried to assess the achievement of their classes incor-
porating tests used in cognitive studies in programming [10]. Results showed that only
50% of students understood class assignments, so they attempted to improve this aspect
of their classroom. This is quite a remarkable result as a form of evidence-based action
research within programming education.

3 Information Dashboard

This section will provide a brief description of the information dashboard which is
designed for teachers to improve an introductory programming class, by providing
coding metrics [9] to show the engagement of students in their assignments. The whole
view of the dashboard is shown below in Fig. 1. According to Few [22], an information
dashboard can be defined as follows:

A dashboard is a visual display of the most important information needed to achieve one or
more objectives; consolidated and arranged on a single screen so the information can be
monitored at a glance.

The main objective of this study is to improve an introductory-level programming
classroom. All the visualization graphs are laid out in an HD (1920 � 1080 pixels)
screen, which provides teachers with a glance view of all the coding metrics. The purpose
of the dashboard is not for real-time “monitoring”, but to promote teacher “exploration”
of the data over a relatively long period of time (weekly, monthly, or yearly). Hence, the
dashboard design resembles an “accumulated” view rather than a general telemetry
system, which promotes understanding of the summary in a short time.

The logs of student computer operations were collected by the previously proposed
framework [16], and the system computes the coding metrics: working time, LOC
(lines of code), compile error correction time, and block editor usage ratio. The metrics
are computed for each unit of assignment x student. Brief explanations of each graph in
Fig. 1 are described as follows:

1. Pie graphs show the years and weeks. A user can filter by clicking this part.
2. A scatter plot shows the relationship between two selected coding metrics.
3. Five line charts are shown for each of the 5 coding metrics, which are arranged with

the assignments ordered chronologically. Each colored line shows a different year.
4. A box plot shows the distribution of students for a selected coding metric.

A Demonstration of Evidence-Based Action Research Using Information Dashboard 621



5. A histogram shows the distribution of a particular selected assignment.
6. Tiled representations provide a graduation analysis environment as used in our

previous research [9].

Fig. 1. Proposed information dashboard (Color figure online)

The system was implemented on the web with Javascript, with the user being able
to use a browser to see the dashboard. The libraries of d3.js, dc.js, and crossfilter.js
were used in the implementation; accordingly, the system is equipped with cross-filter
functionality for exploring the entire classroom metrics. Teachers can easily conduct a
temporal analysis or cross-year comparison.

4 Research Method

4.1 Research Questions

We conducted an evaluation of the dashboard in an actual class setting. The research
questions of the evaluation generally focused on whether or not we would be able to
achieve the objectives of the dashboard design:

RQ1: Can the dashboard facilitate among teachers productive discussions for the
goal of improving the quality of introductory programming classes? Can this be
entirely performed by using coding metrics visualized on the dashboard?
RQ2: While RQ1 is supported, how does it work? What can be facilitated as
discoveries or actual ideas by users for improvements in their classrooms?

4.2 Education Environment Descriptions

The introductory programming course was designed for liberal arts students, as
opposed to computer science students. Therefore, the main objective of the course was

622 Y. Matsuzawa et al.



to develop a better understanding of task-oriented programming. The objective was
independent from any programming language, although Java language was used in the
actual environment. Approximately 100 students participated annually in the course,
which was administered by two teachers and six teaching assistants.

4.3 Use of the Dashboard and Analyzed Discourse

We evaluated the dashboard at teaching staff meetings which were held weekly for the
purpose of classroom management. Two teachers and six teaching assistants partici-
pated in the meetings, and their discussions focused on reflecting on the previous
week’s class and management methods for the next class. The evaluation was con-
ducted in a 2016 course management meeting using the proposed dashboard on a
shared projection screen, which showed the prior four years’ data plus additional data
up until the previous meeting.

All discussion sessions were recorded using a camcorder, and seven cases were
selected (as described on Sect. 5.1) in which the discussants used the dashboard in their
discussions to conduct in-depth qualitative analysis.

4.4 Coding Method

We conducted two types of analyses for the seven discourse cases. An example of the
two analyses is shown in Fig. 2. As for RQ1: to confirm the dashboard properly works,

Reply# Discussant Reply

The next week will be 11th. Students did not take compile errors fixing in the 11th week
's assignments.

It's reasonable, because students will face many opportuni es to run program, but..

The week's compile error fixing me is low in every year, but in terms of working me…

Can I confirm that are we talking about the next week's class.

Yes, we are. There are many assignments for students, students took much working me
while comparing with other weeks'.

Okay, consequently which is the best instruc on for the week?
A debug mode in the programming environment may be used to solve this problem….

We didn't use it before, but we may try to use a debugger

I agree with it.

As the topic of the week is GUI (recursion), studnets can trace their code one by one by
using a debugger, it should work. It clealy guides where is the problem. Though it is not
easy to fix the problem if they find the problem.

Case4, Scene1: Prepara on for the 11th week class

Across-year
Comparison

Men oning
Quan ty

Educa onal
Discovery

Idea for
Improvement

Compile Error Fixing Time (%)

Working Time (minutes)

assignments

assignments

Fig. 2. An example of the coding method used in the qualitative analysis of the discourse using
the proposed dashboard (Color figure online)

A Demonstration of Evidence-Based Action Research Using Information Dashboard 623



we inspected the relationships between the discourse and usage of the dashboard. As
shown in Fig. 2, the arrows reveal the relationships, each indicating an underlined
sentence where an arrow starts from and mentions the part of the dashboard the arrow
points to.

As for RQ2: how the dashboard promotes productive discussions for teachers, we
created a coding scheme as shown in Table 1. The coding categories are comprised of
Across-year Comparison, Mentioning Quality, Educational Discovery, and Idea for
Improvement. The four categories are colored as shown in the legend in Fig. 2, with
the coded parts in the discourse highlighted in each color.

The analysis for entire discourse was performed by a single rater, who also served
as a teaching assistant and participated in the teaching staff meetings. The second rater
performed independently for 4 of 7 cases (57%) of the discourse. The interrater reli-
ability was 73%, conflicts are resolved by a raters’ discussion.

Table 1. The coding scheme for RQ2: how does the dashboard promote productive discussions
for teachers?

Coding
category

Brief definition Representative example(s)

Across-year
comparison

A discussant is talking about an
across-year comparison using
particular parts of the dashboard, by
comparing two lines, or using
filtering functionality

- This year’s shape of line is
opposite to the previous years’
- The maximum of LOC in middle
assignment was around 300 until
2013, but this year…

Mentioning
quantity

A discussant is mentioning to a
quantitative data which indicated in
a particular part of the dashboard

- This 20% means approximately 1
of 5 students used block editor…
- To my surprise, there is a student
who wrote 12000+ lines in
assignment…

Educational
discovery

A discussant (or whole group) found
the new fact or ide for educational
situation including students
behaviors. Tacit knowledge which is
observed by teaching staff in
classroom was clearly supported or
unsupported by data which is shared
between teaching staff as explicit
knowledge

- This student accomplished really
hard work to draw his favor figure
- We can confirm the negative
correlation between working tin and
compile error fixing time, though its
obvious

Idea for
improvement

A discussant suggested or proposed
an idea for improvement of
educational situation, such as
difficulty assignment, method of
instruction, teaching

- This assignment can be split into
two or three small steps because…
- A debug mode I5 in the
programming environment may be
us to solve this problem…

624 Y. Matsuzawa et al.



5 Results

5.1 Short Descriptions of Each Case

Case 1: Effects of reordering assignments
The teaching staff discussed what the obstacles were for why students in previous
courses required a longer time in completing their assignments. The teachers hypoth-
esized that the problem was caused by the ordering of assignments, so that the teachers
tried to reorder the assignments for the current year. A week later, the teachers could
confirm there was improvement, as the dashboard indicated the actual working time
was reduced by nearly 10 min. They also discovered that there were some students
who exhibited a longer compile error correction time, particularly in the target
assignment, later confirming one of the reasons was their low usage of BlockEditor.

Case 2: Compile error correction time and its improvement
One teacher had felt it was difficult to maintain student motivation in some assignments
in which the average compile error correction time was indicated as being longer. The
teaching team isolated the type of assignments, and then realized that students tended to
compile once after writing the whole program. A few suggestions were given for how
to improve the situation, including dividing the assignment into some smaller steps, or
teaching students to compile progressively one by one for each small part.

Case 3: Working time and maximum lines of codes
Midterm assignment: a task to create their own GUI contents (Game or other interactive
contents) was discussed. The average working time was approximately five hours, with
a maximum time of over 25 h. The result was unexpectedly long in a positive way. The
maximum code size was 16,000+. It was negatively evaluated because the teachers
considered it was caused by copying without thinking of the abstraction of the
algorithm.

Case 4: Characteristics of the assignment and improvement of instruction
The dashboard indicated a particular week’s characteristics: students worked long, but
took a short time to compile error corrections. The topic of the week was recursion. The
team concluded to promote student use of a debugger to trace their code.

Case 5: Working time outside of classroom
The team tried to estimate how long students worked outside of classroom time. As the
working time of each assignment was 40 min, the working time outside was estimated
to be one hour. The team discussed the estimation’s validity for education.

Case 6: Correlation between several coding metrics
Correlations between several coding metrics were analyzed in the discussion. For
example, the fact there was no correlation between working time and lines of code was
an unexpected result. After the discussion about the reason for the result, teachers
reached a consensus that the assigned common tasks were well-structured, and the code
size could be estimated within a common solution.

A Demonstration of Evidence-Based Action Research Using Information Dashboard 625



Case 7: BlockEditor usage of the 2016 year’s course
Similar analyses to those of BlockEditor’s research [9] were discussed. During the
current year there were a few compulsory assignments using BlockEditor, although the
results indicated a low BlockEditor usage ratio even during the early weeks of the
course. Whereas during the prior years the usage ratios of BlockEditor were shown to
also be high during the latter weeks of the course. The team also confirmed several
other facts: students selected BlockEditor to reduce compile error corrections, or there
were no significant differences in working time and LOC between BlockEditor users
and non-users.

5.2 Results of Qualitative Analysis

Based on the results of the qualitative analysis of seven cases, we created a heat-map to
visualize the coverage of used graphs on the dashboard. The heat-map is shown in
Fig. 3. In the figure, the used graphs in the discussion of each case are highlighted in
transparent red.

The depth of transparency red in Fig. 3 shows the percentage of usage, which is
calculated by the frequencies of arrows in the discourse (Fig. 2). The heat-map of ALL
indicates the graphs used in all seven cases, which is calculated by the number of cases
in which the graph was used.

100%

0%

50%

75%

25%

Case1 Case2 Case3

Case4 Case5 Case6

Case7

ALL

Fig. 3. A heat-map representing the coverage of graph-usage in each case. ALL shows the
coverage by summing up all seven cases (Color figure online)

626 Y. Matsuzawa et al.



The results of the analysis using the described coding scheme (as shown in Table 1)
are shown in Table 2. We could confirm that the four coding categories can be seen in
most cases broadly. Essentially, many educational discoveries were identified using the
dashboard, and the phenomenon is supported by the descriptions of each case described
in Sect. 5.1. Although the number of Ideas for Improvement was not particularly high
if compared with the other categories, these were ideas supported by the facts dis-
covered in the Educational Discovery category.

6 Discussion

RQ1 asked “Can the dashboard facilitate teachers’ productive discussion to improve
introductory programming classroom? And is it able to be performed by using coding
metrics visualized in the dashboard?” The results were generally positive: we could
examine 100% of the coverage by use of the graphs in the seven cases by the heat-map,
which were effectively used in the discourse on improving the classes. The filtering
functionality was also used in 6 out of 7 cases. To be specific in each case, the use of
line charts of coding metrics was popular, and the other boxplot or tile representations
were used when users needed to use specific data to explore deeper facts in the
classroom.

Table 2. The results of analysis for RQ2: how does the dashboard promote productive
discussion for teachers?

Across-year
comparison

Mentioning
quantity

Educational
discovery

Idea for
improvement

Casel: effects of reordering
assignments

3 2 3 0

Case2: compile error
fixing time in the class and
its improvement

0 0 2 2

Case3: corrrelation
between working time and
maximum lines of codes

3 13 4 0

Case4: characteristics of
particular assignment and
improvement of its
instruction

0 0 2 1

Case5: working time on
outside classroom

0 2 1 0

Case6: correlation
between several coding
metrics

0 0 2 0

Case7: block-editor usage
of this year’s class

1 4 5 0

Total 7 21 19 3

A Demonstration of Evidence-Based Action Research Using Information Dashboard 627



RQ2 asked “While RQ1 is supported, how does it work? And what can be facil-
itated as discoveries or actual ideas by users for improvements of their classroom?” A
surprising result revealed by the qualitative analysis was that 19 Educational Discov-
eries were coded in all of the seven cases. We define Educational Discovery not only as
finding a new fact or idea in an educational situation, but by whether or not the tacit
knowledge observed in the classroom was clearly supported. The results indicate
that evidence-based facts can be shared between teaching staff as explicit knowledge.
Furthermore, misunderstandings of the classroom environment can be fixed through
this process. We strongly believe that a progressive, iterative, and continuous
improvement of classrooms can be attained through this process.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Numbers 25730203,
26280129.

References

1. Griffin, P., McGaw, B., Care, E. (eds.): Assessment and Teaching of 21st Century Skills.
Springer, New York (2012). https://doi.org/10.1007/978-94-007-2324-5

2. Wing, J.: Computational thinking and thinking about computing. Philos. Trans. R. Soc.
A 366, 3717–3725 (2008)

3. Brennan, K., Resnick, M.: New frameworks for studying and assessing the development of
computational thinking. In: Annual American Educational Research Association Meeting
(2012)

4. Lye, S., Koh, J.: Review on teaching and learning of computational thinking through
programming: what is next for K-12? Comput. Hum. Behav. 41, 51–61 (2014)

5. Tedre, M., Denning, P.: The long quest for computational thinking. In: Proceedings of the
16th Koli Calling Conference on Computing Education Research, pp. 120–129 (2016)

6. Ihantola, P., Vihavainen, A., Ahadi, A., Butler, M., Börstler, J., Edwards, S., Isohanni, E.,
Korhonen, A., Petersen, A., Rivers, K., Rubio, M., Sheard, J., Skuupas, B., Spacco, J.,
Szabo, C., Toll, D.: Educational data mining and learning analytics in programming:
literature review and case studies. In: ITiCSE WGR 2016, pp. 41–63 (2015)

7. Jadud, M.: Methods and tools for exploring novice compilation behaviour. In: Proceedings
of the Second International Workshop on Computing Education Research ICER 2006,
pp. 73–84 (2006)

8. Toll, D., Olsson, T., Ericsson, M., Wingkvist, A.: Fine-grained recording of student
programming sessions to improve teaching and time estimations. Int. J. Eng. Educ. 32(3A),
1069–1077 (2016)

9. Matsuzawa, Y., Tanaka, Y., Sakai, S.: Measuring an impact of block-based language in
introductory programming. In: Brinda, T., Mavengere, N., Haukijärvi, I., Lewin, C., Passey,
D. (eds.) SaITE 2016. IAICT, vol. 493, pp. 16–25. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-54687-2_2

10. Dehnadi, S.: A cognitive study of learning to program in introductory programming courses.
Ph.D. thesis, Middlesex University (2009)

11. Lung, J., Aranda J., Easterbrook, S., Wilson, G.: On the difficulty of replicating human
subject studies in software engineering. In: ICSE 2008, p. 191 (2008)

628 Y. Matsuzawa et al.

http://dx.doi.org/10.1007/978-94-007-2324-5
http://dx.doi.org/10.1007/978-3-319-54687-2_2
http://dx.doi.org/10.1007/978-3-319-54687-2_2


12. Matsuzawa, Y., Hirao, M., Sakai, S.: Compile error collection viewer: visualization of
compile error correction history for self-assessment in programming education. Int. J. Eng.
Educ. 32(3A), 1117–1127 (2016)

13. Norris, C., Barry, F., Fenwick, J., Reid, K., Rountree, J.: ClockIt: collecting quantitative data
on how beginning software developers really work. In: ITiCSE 2008, pp. 37–41 (2008)

14. Murphy, C., Kaiser, G., Loveland, K, Hasan, S.: Retina: helping students and instructors
based on observed programming activities. In: SIGCSE 2009, pp. 178–182 (2009)

15. Helminen, J., Ihantola, P., Karavirta, V.: Recording and analyzing in-browser programming
sessions. In: Koli Calling 2013, pp. 13–22 (2013)

16. Matsuzawa, Y., Okada, K., Sakai, S.: Programming process visualizer: a proposal of the tool
for students to observer their programming process. In: Proceedings of the ITiCSE 2013,
pp. 46–51 (2013)

17. Alammary, A., Carbone, A., Sheard, J.: Implementation of a smart lab for teachers of novice
programmers. In: Proceeding ACE 2012 Proceedings of the Fourteenth Australasian
Computing Education Conference, pp. 121–130 (2012)

18. Johnson, P., Zhang, S.: We need more coverage, stat! Classroom experience with the
software ICU. In: 3rd International Symposium on Empirical Software Engineering and
Management, pp. 168–178 (2009)

19. Haig, T., Falkner, K., Falkner, N.: Visualisation of learning management system usage for
detecting student behaviour patterns. In: Proceedings of the Fifteenth Australasian
Computing Education Conference, ACE 2013, pp. 107–115 (2013)

20. Lister, R., Adams, E., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., McCartney, R.,
Mostrom, J., Sanders, K., Seppala, O., Simon, B., Thomas, L.: A multi-national study of
reading and tracing skills in novice programmers. In: SIGCSE 2004, pp. 119–150 (2004)

21. Ford, M., Venema, S.: Assessing the success of an introductory programming course. J. Inf.
Technol. Educ. 9, 133–145 (2010)

22. Few, S.: Information Dashboard Design: Displaying Data for At-a-Glance Monitoring.
O’Reilly Media, Newton (2006)

A Demonstration of Evidence-Based Action Research Using Information Dashboard 629


	A Demonstration of Evidence-Based Action Research Using Information Dashboard in Introductory Programming Education
	Abstract
	1 Introduction
	2 Related Work
	3 Information Dashboard
	4 Research Method
	4.1 Research Questions
	4.2 Education Environment Descriptions
	4.3 Use of the Dashboard and Analyzed Discourse
	4.4 Coding Method

	5 Results
	5.1 Short Descriptions of Each Case
	5.2 Results of Qualitative Analysis

	6 Discussion
	Acknowledgments
	References




