
A Software Development Process for Freshman
Undergraduate Students

Catherine Higgins(&), Fredrick Mtenzi, Ciaran O’Leary,
Orla Hanratty, and Claire McAvinia

Dublin Institute of Technology, Aungier St., Dublin 2, Ireland
{catherine.higgins,fredrick.mtenzi,ciaran.oleary,

orla.hanratty,claire.mcavinia}@dit.ie

Abstract. This conceptual paper presents work which is part of an ongoing
research project into the design of a software development process aimed at
freshman, undergraduate computing students. The process of how to plan and
develop a solution is a topic that is addressed very lightly in many freshman,
undergraduate courses which can leave novices open to developing habit-
forming, maladaptive cognitive practices. The conceptual software development
process described in this paper has a learning process at its core which centres
on declarative knowledge (in the form of threshold concepts) and procedural
knowledge (in the form of computational thinking skills) scaffolding freshman
software development from initial planning through to final solution. The pro-
cess - known as Computational Analysis and Design Engineered Thinking
(CADET) - aims to support the structured development of both software and
student self-efficacy.

Keywords: Introductory software development process
Computational thinking � Threshold concepts

1 Introduction

A software development process is a mechanism which informs a software developer
of the steps and stages involved in developing quality software from initial analysis to
final design and implementation [1]. Even though there are many software develop-
ment processes available for experienced developers, very little work has been carried
out on developing appropriate processes for freshman, 3rd level learners [2]. This lack
of appropriate software development processes presents a vacuum for educators which
means that software analysis and design is typically taught very informally and
implicitly on introductory courses at 3rd level with an emphasis instead on teaching a
programming language [3–6]. Unless they are guided to do otherwise, novices will
often jump straight into implementing some aspect of a solution without any planning
because they can find it difficult to separate ideas for solutions from the implementation
of those ideas [7, 8]. This can lead to novices adopting maladaptive cognitive practices
in software development, particularly surface practices (e.g. coding by rote learning)

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
A. Tatnall and M. Webb (Eds.): WCCE 2017, IFIP AICT 515, pp. 599–608, 2017.
https://doi.org/10.1007/978-3-319-74310-3_60



which can be very difficult to unlearn and can ultimately prohibit student progression in
the acquisition of software development skills [9]. It has also been found that problems
in designing software solutions can persist even to graduation [10]. Therefore, it fol-
lows that if a software development process is incorporated explicitly in an appropriate
way into introductory courses to scaffold students in software development, this could
limit the development of such maladaptive practices.

This paper describes a conceptual and dynamic software development process
which has been devised for undergraduate freshman learners. Section 2 describes
related research while Sect. 3 gives a short overview of the framework on which the
process is based. Section 4 describes the factors that guided the operationalision of the
framework into a software development process. Section 5 describes the process and
Sect. 6 concludes the paper with a discussion of the contribution this paper makes to
software engineering educational research.

2 Related Research

There has been a wealth of research over many decades into software development
education within the context of improving retention and development proficiency at
3rd level. Research has focused on many areas such as reviewing the choice of pro-
gramming languages and paradigms suitable for novice learners with a wide variety of
languages suggested from commercial, textual languages through to visual block-based
languages [11]; the development of visualisation tools to create a diagrammatic overview
of the notional machine as a user traces through programs and algorithms [12, 13]; and the
use of game based learning as a basis for learning programming and game construction
[14, 15].

Research that specifically looks at software development processes for introductory
courses at 3rd level have a tendency to focus attention on a particular stage of the
development process. Examples are the STREAM process [2] which focuses on design
in an object oriented environment; the P3F framework [16] with a focus on software
design and arming novice designers with expert strategies; a programming process by
Hu et al. [17] which focuses on generating goals and plans and converting those into a
coded solution via a visual block-based programming language; POPT [18] which has
a focus on supporting software testing; and Morgado and Barbosa’s process [19] which
aims to support students from problem presentation to the development of a solution
though the use of template forms coupled with an instructor supplied prototype. The
process described in this paper is similar to Morgado and Barboso’s process in that it
aims to support all stages of developing software but the focus here is based on the
provision of a process that can grow with students’ experience. The process is not tied
to any particular programming paradigm but its use is assumed to be in the context of
imperative, commercial programming languages which are commonly taught at 3rd

level [20].

600 C. Higgins et al.



3 Computational Analysis and Design Engineered Thinking
(CADET) Framework

Prior to the development of a software development process, it was important to
formulate a framework on which the process will be based. The role of this framework
is to guide the context and content of the resulting software development process. The
first issue that required attention was in understanding the context in which the software
development process would be used. This is an environment where freshman under-
graduate students typically have little or no programming experience and are learning
how to develop software solutions in a systematic fashion. This brought up an inter-
esting question – should students be taught how to program first and then be introduced
to a software development process or should programming concepts and skills be
taught as part of a process? This research takes the latter view as teaching students how
to program independently of process runs the risk of students developing poor
development habits that become ingrained by the time they learn a process. Therefore,
the software development process is scaffolded so that it inherently encompasses a
learning process which can slowly fade as students gain expertise of developmental
concepts, practices and grow their self-efficacy. The relationship between learning
process and software development process is visualised in Fig. 1 where the 4 stages of
competence model [21] is used to timeline the progression of learning.

Initially, the learner is categorised as an unconscious incompetent who doesn’t
know what they need to know so the software development process is heavily scaf-
folded as a learning process where students are guided to use the software development
process to solve a suite of problems that are appropriate to each stage of their learning.
By the time the user has gained experience of the foundational developmental concepts
and practices, the scaffolding of the learning process will be removed to allow the
learner continue to use the software development process in solving new and more
complex problems as they expand their learning and continue their journey towards
becoming unconscious competents.

Once the context of the environment was understood, a conceptual framework was
devised and developed in order to fully identify the components and activities in the
learning process. The full details of the background, rationale for - and development of
- the framework can be found in reference [22]. A diagrammatic overview of the
framework is given in Fig. 2.

Fig. 1. From learning process to software development process (Source: Author)

A Software Development Process for Freshman Undergraduate Students 601



In summary, the concepts represent the declarative knowledge that students need in
order to be able to understand and use programming constructs. These concepts are
categorised as four threshold concepts stages [18]. TC1 State and Sequential Flow
involves gaining an understanding of “simple” data items (e.g. characters, numbers and
strings) and how their state changes when sequential actions are carried out on them.
TC2 Non-sequential Flow Control keeps the focus on state but adds complexity to this
idea by presenting more complex actions such as iteration and how these actions affect
state and flow control. TC3 Modularity introduces modularity and how that affects state
and especially flow control. Finally, TC4 Object Behaviour - which is optional and is
only used in an object-oriented environment - examines the idea of objects and the
connection between state and behaviour and how objects interact and activate each
other’s behaviour.

The practices represent the procedural knowledge that students need in order to be
able to apply the above concepts when solving problems. These practices are cate-
gorised as computational thinking skills and are codified as skills CT1–CT6 in column
2 of Fig. 2. Finally, the perspectives are the affective issues that impact learning which
are considered to be embodied in self-efficacy.

This framework marries current research into threshold concepts, computational
thinking and affective learning to produce a framework that supports declarative
knowledge (threshold concepts), procedural knowledge (computational thinking) and
affective learning issues [18]. Learning these knowledge areas is facilitated by
instruction and by repeatedly solving problems using Pólya’s problem solving model
[23] which has been adapted to suit the context of this research [18]. The framework
(and subsequent process) is known as computational analysis and design engineered
thinking (CADET).

4 Operationalisation of Framework to Process

As part of the operationalisation and development of the framework into a software
development process, current best practice in both the teaching of software develop-
ment and in software development processes for professional developers is considered
for inclusion into the process.

Fig. 2. The CADET framework (Source: Author)

602 C. Higgins et al.



4.1 Best Practice in Teaching Software Development

There are two basic approaches to teaching software development – top-down and
bottom up. The top-down stepwise refinement approach originated in the 1970s by
Wirth [24] and involves breaking down a problem into a series of levels with tasks.
One advantage of the top-down approach is that a high-level overview of the solution is
first constructed which can then be slowly broken down into its constituent parts.
However, critics of top-down design state that it involves creating a monolithic design
where coding cannot begin until the design is fully complete [25]. The bottom-up
approach starts from a finely granulated specification of the problem which is generated
by identifying and implementing the smallest tasks. These tasks are then combined to
form larger tasks with this successive amalgamation of smaller tasks into larger tasks
continuing until the entire solution is implemented. A very high level view of the
solution is not available at the start of the process which can prove problematic for
novices who typically find it difficult to reassemble tasks back into a full solution [26].

In comparing expert developers to novices, experts have a breadth first, top down
approach to formulating solutions whereas novices tend to have a depth first, bottom up
approach where they focus on specific aspects of the problem [26, 27]. However, as
noted above, novices can then find it difficult to re-integrate the different parts of the
problem into a final solution and may revert to trial and error approaches to find
something that works [26]. On the other hand, experts use strategies based on their
experience to avoid trial and error [16] which suggests that novices need to be supplied
with scaffolded strategies to help them problem solve as they gain experience.

This research suggests a hybrid approach - between top down and bottom up
development - as an attempt to keep novices focused on the big picture while allowing
them to use a depth first approach. This approach has been coined by this researcher as
a “design down, code up” approach where solutions are visually designed by students
in a scaffolded, top down fashion; code is produced for low level designs which gives
feedback to the students who are then supported in combining these tasks to effectively
code up to a final solution.

In the context of applying an appropriate learning theory, research into computer
science education has several successes using constructivist and constructionist theory
[28–30]. Social constructivism occurs when learning is perceived as an active process
and where individual knowledge is constructed through solving problems in a col-
laborative exercise. This theory forms the basis of the development process described
in this paper as the students will carry out extensive problem solving to construct their
own individual knowledge and will engage in Vygotsky’s theory of the “more able
other” [31] by participating in paired development and in articulating solutions to the
class cohort. Therefore, the learning process for this software development process has
been designed with the aim of facilitating constructivist learning.

4.2 Best Practice in Software Development Processes

As well as ensuring that best practice in the teaching of software development is
incorporated into the software development process described in this paper, it is also
important to consider and include current best practice in existing software

A Software Development Process for Freshman Undergraduate Students 603



development processes. One way of incorporating best practice is to align this process
with the philosophy of verifiably successful software development processes. Given
that most modern software development projects use Agile processes [32], this is the
category of process chosen to represent best practice. Kastl et al. [33] has demonstrated
how the philosophy and general characteristics of Agile processes can be adapted as a
guide for best practice. This means that the core characteristics that govern all Agile
processes will be used to guide the operation of this process. These characteristics
include the use of iterative and incremental development, adaptive modelling, refac-
toring of development artefacts and paired programming.

5 Computational Analysis and Design Engineered Thinking
(CADET) Software Development Process

The software development process operates as a 4 stage problem solving model based
on an adapted version of Pólya’s model as described in the CADET framework [22].
The four stages of the model are 1. Understand the problem, 2. Break into tasks,
3. Design and Code, 4. Evaluate solution and learning. During the learning process
stage, learners will work in pairs and will be taught the threshold concept stages which
make up the declarative knowledge. This learning aspect of the software development
process is represented as a ladder of learning where each concept is ordered and is a
prerequisite to learning the next concept. Each concept is taught via instruction and the
computational thinking skills required to ustilise the concept are acquired by solving a
suite of problems using the 4 stage adapted problem solving model which is supported
by an Agile philosophy. Each stage of the problem solving model will use a subset of
computational thinking skills. The process is summerised in Fig. 3.

When all 4 threshold concept stages have been taught and practiced, students will
continue to use the 4 stage problem solving model with associated computational
thinking practices as the basis for the software development process. The software
development process is augmented by a support tool which will provide a platform to
provide learners with problems to solve as well as diagrammatic tools to support their
analysis, design and reflective work. While it is expected that student’s self-efficacy

Fig. 3. CADET software development process (Source: Author)

604 C. Higgins et al.



will grow and wane as they attempt to solve problems, it is hoped that the scaffolded
environment based on social constructivist learning will allow the student’s
self-efficacy to generally grow in tandem with their knowledge (identified as A1 in the
vertical arrow beside the ladder of learning in Fig. 3). This will be measured by student
reflection. Each of the 4 stages of the problem solving model are now described in
more detail.

1. Understand the problem - Using the support tool, learners will be invited to
articulate their understanding of either a problem that they have provided or a
problem that is provided to them as part of the learning process stage. This artic-
ulation of understanding is achieved by employing the computational thinking skills
of functional abstraction to generate a high-level summary of the problem and
pattern recognition to see if the problem is similar to any previous problems that the
learner may have solved. This high level summary is recorded in the support tool.

2. Break into tasks - This stage employs decomposition to convert the high-level
summary and specification from stage 1 into an intermediate set of constituent tasks
and to further refine those tasks into more basic tasks if required. In order to make
this stage visual, the tool supports students brainstorming candidate tasks using a
mind map where their problem summary is the central task. Mind mapping has been
shown to be successful in helping learners to brainstorm and specifically in ana-
lysing software solutions [34]. The map will be refined into ordered tasks and
subtasks. The support tool will facilitate leaners to utilise abstraction to visually
trace backwards and forwards from the high-level summary from stage 1 into this
stage to ensure consistency between the stages. Pattern recognition will be
employed by learners to identify any tasks that have been used in previous problems
and colour coding will be employed to identify any complex tasks that need to be
designed.

3. Design and Code - This stage employs decomposition to take a task and generate an
algorithm represented as a flow chart (or optionally a class diagram if operating in
an object oriented paradigm) for the task. This stage also involves data represen-
tation and algorithm writing to represent the computational steps needed to rep-
resent a task solution as a flowchart with a level of detail to make it easy for the task
to be converted into program code. All tasks will be designed, coded and evaluated
in an iterative manner until correct and then reintegrated into a growing final
product. The support tool will facilitate leaners to visually utilise abstraction to
oscillate between tasks identified in the mind map and any associated designs and
code to ensure consistent mapping between stages.

4. Evaluate Solution and Learning - This stage allows learners to reflect on their
solution from start to finish and employ abstraction to zoom in and out of the
solution to understand it at the various functional and data abstraction levels. The
support tool will prompt learners to employ critiquing mechanisms to see if any
aspect of the solution could have benefited from using analysis, design or coding
artefacts from previous problems or if the solution can be optimized by identifying
any duplication. Learners will be required to reflect on and articulate their learning.

A Software Development Process for Freshman Undergraduate Students 605



When the process is being employed solely as a software development process,
learners will be able to use both the process and associated support tool by providing
their own specification for a problem and working through each of the above stages to
systematically develop their final solution.

6 Discussion

Despite the acknowledged importance of using software development processes both in
the software industry and in education, this research has identified a gap in software
engineering education in the provision of appropriate software development processes
for freshman, undergraduate computing students in a context where learners predom-
inately have no prior programming experience. One reason for this gap is due to the
problematic nature of teaching software processes to novices. A software development
process gives guidance to developers in the development of software solutions from
analysis through to final product but for commercial processes, it is assumed that the
developer has pre-existing programming knowledge. This makes the use of such
processes difficult for educators of introductory software development courses and
produces a conundrum in how to support students in the use of development processes
in the absence of programming knowledge. In such an environment, it is natural that
the focus of such courses will gravitate towards the teaching of programming concepts
first with the topic of development process coming later in the course or in later years.
The problem with such a strategy is that it allows students to potentially develop
maladaptive cognitive practices which can prohibit student progression in such courses.

This paper aims to contribute to this gap by presenting a conceptual software
development process which utilities the affordances of computational thinking to create
a software development process that encompasses a learning process. The process
combines current research into computational thinking as a problem solving process
underpinned by the focus of threshold concepts and an Agile philosophy to support
students learning how to develop software solutions from problem specification
through to the final tested product. The aim of the process is to provide scaffolding to
students as they learn how to develop software in a systematic fashion. It is the
contention of this research that the provision of such a process could provide a
structured and scaffolded environment to directly address the maladaptive cognitive
habits that students often form and find hard to unlearn. The next stage of this research
will involve the development of a support tool and the deployment and evaluation of
the software development process.

References

1. Boehm, B.: A view of 20th and 21st century software engineering. In: Proceedings of the
28th International Conference on Software Engineering. ACM (2006)

2. Caspersen, M.E., Kolling, M.: STREAM: a first programming process. Trans. Comput.
Educ. 9(1), 1–29 (2009)

606 C. Higgins et al.



3. Kazimoglu, C., Kiernan, M., Bacon, L., MacKinnon, L.: Developing a game model for
computational thinking and learning traditional programming through game-play. In:
Sanchez, J., Zhang, K. (eds.), pp. 1378–1386. AACE, Chesapeake (2010)

4. Liu, C.-C., Cheng, Y.-B., Huang, C.-W.: The effect of simulation games on the learning of
computational problem solving. Comput. Educ. 57(3), 1907–1918 (2011)

5. Suo, X.: Toward more effective strategies in teaching programming for novice students. In:
2012 IEEE International Conference on Teaching, Assessment and Learning for Engineering
(TALE), p. T2A-1 (2012)

6. Coffey, J.W.: Relationship between design and programming skills in an advanced computer
programming class. J. Comput. Sci. Coll. 30(5), 39–45 (2015)

7. Kokotovich, V.: Problem analysis and thinking tools: an empirical study of non-hierarchical
mind mapping. Des. Stud. 29(1), 49–69 (2008)

8. Fornaro, R.J., Heil, M.R., Tharp, A.L.: What clients want - what students do: reflections on
ten years of sponsored senior design projects. In: 19th Conference on Software Engineering
Education and Training (CSEET 2006), pp. 226–236 (2006)

9. Huang, T.-C., Shu, Y., Chen, C.-C., Chen, M.-Y.: The development of an innovative
programming teaching framework for modifying students’ maladaptive learning pattern. Int.
J. Inf. Educ. Technol. 3(6), 591 (2013)

10. Loftus, C., Thomas, L., Zander, C.: Can graduating students design: revisited. In:
Proceedings of the 42nd ACM Technical Symposium on Computer Science Education.
ACM, Dallas (2011)

11. Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., Bennedsen, J., Devlin, M.,
Paterson, J.: A survey of literature on the teaching of introductory programming.
ACM SIGCSE Bull. 39(2), 19 (2007)

12. Guo, P.J.: Online python tutor: embeddable web-based program visualization for cs
education. In: Proceeding of the 44th ACM Technical Symposium on Computer Science
Education. ACM (2013)

13. Gautier, M., Wrobel‐Dautcourt, B.: artEoz‐dynamic program visualization. In: ISSEP 2016,
p. 70 (2016)

14. Mozelius, P., Shabalina, O., Malliarakis, C., Tomos, F., Miller, C., Turner, D.: Let the
students contruct their own fun and knowledge-learning to program by building computer
games. In: European Conference on Games Based Learning. Academic Conferences
International Limited (2013)

15. Trevathan, M., Peters, M., Willis, J., Sansing, L.: Serious games classroom implementation:
teacher perspectives and student learning outcomes. In: Society for Information Technology
and Teacher Education International Conference (2016)

16. Wright, D.R.: Inoculating novice software designers with expert design strategies. In:
Proceedings of the American Society for Engineering Education. American Society for
Engineering Education (2012)

17. Hu, M., Winikoff, M., Cranefield, S.: A process for novice programming using goals and
plans. In: Proceedings of the Fifteenth Australasian Computing Education Conference, vol.
136. Australian Computer Society, Inc., Adelaide (2013)

18. Neto, V.L., Coelho, R., Leite, L., Guerrero, D.S., Mendon, A.P.: POPT: a problem-oriented
programming and testing approach for novice students. In: Proceedings of the 2013
International Conference on Software Engineering. IEEE Press, San Francisco (2013)

19. Morgado, C., Barbosa, F.: A structured approach to problem solving in CS1. In: Proceedings
of the 17th ACM Annual Conference on Innovation and Technology in Computer Science
Education. ACM, Haifa (2012)

20. Siegfried, R.M., Greco, D., Miceli, N., Siegfried, J.: Whatever happened to Richard Reid’s
list of first programming languages? J. Inf. Syst. Educ. 10(4), 7 (2012)

A Software Development Process for Freshman Undergraduate Students 607



21. Maslow, A.H., Frager, R., Fadiman, J., McReynolds, C., Cox, R.: Motivation and
Personality, vol. 2. Harper & Row, New York (1970)

22. Higgins, C., Mtenzi, F., O’Leary, C., Hanratty, O., McAvinia, C.: A conceptual framework
for a software development process based on computational thinking. In: 11th International
Technology, Education and Development Conference, Valencia, Spain (2017, in Print)

23. Polya, G.: How To Solve It, 2nd edn. Princeton University Press, Princeton (1957)
24. Wirth, N.: Program development by stepwise refinement. Commun. ACM 14(4), 221–227

(1971)
25. Pizka, M., Bauer, A.: A brief top-down and bottom-up philosophy on software evolution. In:

2004 Proceedings of the 7th International Workshop on Principles of Software Evolution.
IEEE (2004)

26. Liikkanen, L.A., Perttula, M.: Exploring problem decomposition in conceptual design
among novice designers. Des. Stud. 30(1), 38–59 (2009)

27. Robins, A., Rountree, J., Rountree, N.: Learning and teaching programming: a review and
discussion. Comput. Sci. Educ. 13(2), 137–172 (2003)

28. Abelson, H., DiSessa, A.A.: Turtle Geometry: The Computer as a Medium for Exploring
Mathematics. MIT press, Cambridge (1986)

29. Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N., Eastmond, E., Brennan, K.,
Millner, A., Rosenbaum, E., Silver, J., Silverman, B., Kafai, Y.: Scratch: programming for
all. Commun. ACM 52(11), 60–67 (2009)

30. Thevathayan, C., Hamilton, M.: Supporting diverse novice programming cohorts through
flexible and incremental visual constructivist pathways. In: Proceedings of the 2015 ACM
Conference on Innovation and Technology in Computer Science Education. ACM (2015)

31. Vygotsky, L.: Interaction between learning and development. Read. Dev. Child. 23(3),
34–41 (1978)

32. Bustard, D., Wilkie, G., Greer, D.: The maturation of agile software development principles
and practice: observations on successive industrial studies in 2010 and 2012. In: 2013 20th
IEEE International Conference and Workshops on the Engineering of Computer Based
Systems (ECBS). IEEE (2013)

33. Kastl, P., Kiesmüller, U., Romeike, R.: Starting out with projects: experiences with agile
software development in high schools. In: Proceedings of the 11th Workshop in Primary and
Secondary Computing Education. ACM (2016)

34. Li, C.L., Yang, L.P., Wang, W.: Application of mind mapping to improve the teaching effect
of Java program design course. In: Computing, Control, Information and Education
Engineering: Proceedings of the 2015 Second International Conference on Computer,
Intelligent and Education Technology (CICET 2015), 11–12 April 2015, Guilin, PR China.
CRC Press (2015)

608 C. Higgins et al.


	A Software Development Process for Freshman Undergraduate Students
	Abstract
	1 Introduction
	2 Related Research
	3 Computational Analysis and Design Engineered Thinking (CADET) Framework
	4 Operationalisation of Framework to Process
	4.1 Best Practice in Teaching Software Development
	4.2 Best Practice in Software Development Processes

	5 Computational Analysis and Design Engineered Thinking (CADET) Software Development Process
	6 Discussion
	References




