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Abstract. In model-driven engineering (MDE), models are mostly used
in prescriptive ways for system engineering. While prescriptive models
are indeed an important ingredient to realize a system, for later phases
in the systems’ lifecycles additional model types are beneficial to use.
Unfortunately, current MDE approaches mostly neglect the information
upstream in terms of descriptive models from operations to (re)design
phases. To tackle this limitation, we propose execution-based model pro-
filing as a continuous process to improve prescriptive models at design-
time through runtime information. This approach incorporates knowl-
edge in terms of model profiles from execution logs of the running sys-
tem. To accomplish this, we combine techniques of process mining with
runtime models of MDE. In the course of a case study, we make use of a
traffic light system example to demonstrate the feasibility and benefits
of the introduced execution-based model profiling approach.

1 Introduction

In model-driven engineering (MDE), models are put in the center and used as a
driver throughout the software development process, finally leading to an auto-
mated generation of the software systems [14]. In the current state-of-practice in
MDE [3], models are used as an abstraction and generalization of a system to be
developed. By definition, a model never describes reality in its entirety, rather
it describes a scope of reality for a certain purpose in a given context [3]. Thus,
models are used as prescriptive models for creating a software system [11]. Such
models@design.time determine the scope and details of a domain of interest to
be studied. Thereby, different aspects of the domain or of its solution can be
taken into account. For this purpose different types of modeling languages (e.g.,
state charts, class diagrams, etc.) may be used. It has to be emphasized that
engineers typically have the desirable behavior in mind when creating a system,
since they are not aware in these early phases of the many deviations that may
take place at runtime [23].

According to Brambilla et al. [3] the implementation phase deals with the
mapping of prescriptive models to some executable systems and consists of three
levels: (i) the modeling level where the models are defined, (ii) the realization
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level where the solutions are implemented through artifacts that are used in
the running system, and (iii) the automation level where mappings from the
modeling to the realization phase are made. Thus, the flow is from models down
to the running realization through model transformations.

While prescriptive or design models are indeed a very important ingredient to
realize a system, for later phases in the system’s lifecycle additional model types
are needed. Therefore, descriptive models may be employed to better under-
stand how the system is actually realized and how it is operating in a certain
environment. Compared to prescriptive models, these other mentioned types of
models are only marginal explored in the field of MDE, and if used at all, they
are built manually. Unfortunately, MDE approaches have mostly neglected the
possibility to describe an existing and operating system which may act as feed-
back for improving design models. As theoretically outlined in [16], we propose
model profiling as a continuous process (i) to improve the quality of design mod-
els through runtime information by incorporating knowledge in form of profiled
metadata from the system’s operation, (ii) to deal with the evolution of these
models, and (iii) to better anticipate the unforeseen. However, our aim is not to
“re-invent the wheel” when we aim to close the loop between downstream infor-
mation derived from prescriptive models and upstream information in terms of
descriptive models. There exist already promising techniques to focus on run-
time phenomena, especially in the research field of Process Mining (PM) [23].
Thus, our model profiling approach in its first version follows the main idea of
combining MDE and PM. The contribution of this paper is to present a unifying
architecture for a combined but loosely-coupled usage of MDE approaches and
PM techniques.

The remainder of this paper is structured as follows. In the next section, we
present a unified conceptual architecture for combining MDE with PM frame-
works. In Sect. 3, we present a case study of execution-based model profiling con-
ducted on a traffic light system example and present the results. In Sect. 4, we
present recent work related to our approach and discuss its differences. Finally,
we conclude this paper by an outlook on our next steps in Sect. 5.

2 Marrying Model-Driven Engineering and Process
Mining

In this section, we briefly describe the main building blocks of both, MDE as
well as PM, necessary for the context of this paper, before we present a unifying
architecture for their combined but loosely-coupled usage.

2.1 Prerequisites

Model-Driven Engineering (MDE). In each phase of a MDE-based devel-
opment process “models” (e.g., analysis models, design models) are (semi-)
automatically generated by model-to-model transformations (M2M) that take
as input models that were obtained in one of the previous phases. In the last
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step of this process the final code is generated using model-to-text transforma-
tion (M2T) from the initial model [3]. These transformation engineering aspects
are based on the metamodels of the used modeling language, which provide the
abstract syntax of that language. This syntax guarantees that models follow a
clearly defined structure. In addition, it forms the basis for applying operations
on models (e.g., storing, querying, transforming, checking, etc.).

As described in [3], the semantics of a modeling language can be formalized
by giving (i) denotational semantics by defining a mapping from the modeling
language to a formal language, (ii) operational semantics by defining a model
simulator (i.e., implementing a model execution engine), or (iii) giving trans-
lational semantics by defining, e.g., a code generator for producing executable
code. In order to generate a running system from models, they must be exe-
cutable. This means that a model is executable when its operational semantics
is fully specified [3]. However, executability depends more on the used execution
engine than on the model itself. The main goal of MDE is to get running systems
out of models.

In our approach, we consider executable modeling languages which explicitly
state “what” the runtime state of a model is as well as all possible events that
can occur during execution [17]. These executable modeling languages not only
provide operational semantics for interpreters, but also translational semantics
in form of code generators to produce code for a concrete platform to realize the
system.

Process Mining (PM). PM combines techniques from data mining and model-
driven Business Process Management (BPM) [23]. In PM, business processes
are analyzed on the basis of event logs. Events are defined as process steps and
event logs as sequential ordered events recorded by an information system [8].
This means that PM works on the basis of event data instead of prescriptive
models. The main challenge of PM is to capture behavioral aspects. Thereby,
specialized algorithms (e.g., the α-algorithm) produce a Petri net which can be
easily converted into a descriptive model in form of a process model. To put it in
a nutshell, there is a concrete, running system which is producing logs and there
are algorithms used to compute derived information from these logs. Generally
in PM, event logs are analyzed from a process-oriented perspective using general
modeling languages (e.g., UML, Petri nets) [24].

There are three main techniques in PM: (i) the discovery technique by which
a process model can be automatically extracted from log data [23], (ii) the
conformance checking technique, which is used to connect an existing process
model with an event log containing data related to activities (e.g., business
activities) of this process [18], and (iii) the enhancement technique which is
used to change or extend a process model by modifying it, or by adding a new
perspective to this model [23].

Orthogonal to the dimension of these techniques, there exists a dimension of
different perspectives [23]: (i) the control-flow perspective reflects the ordering of
activities, (ii) the organizational perspective focuses on resources, organisational
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units and their interrelations, (iii) the case perspective deals with properties of
individual cases, or process instances, and (iv) the time perspective focuses on
execution time analysis and the frequency of events. These perspectives give a
complete picture of the aspects that process mining intends to analyze. In [19],
van der Aalst suggests to combine perspectives in order to create simulation
models of business processes based on runtime information.

In recent work, van der Aalst already brings together PM with the domain
of software engineering. For instance in [25], the authors present a novel reverse
engineering technique to obtain real-life event logs from distributed software sys-
tems. Thereby, PM techniques are applied to obtain precise and formal models,
as well as to monitor and improve processes by performance analysis and con-
formance checking. In the context of this paper we focus on the control-flow and
time perspectives of PM.

2.2 Unifying Conceptual Architecture

In this section, we combine MDE with PM by presenting a unifying conceptual
architecture. The alignment of these two different research fields may help us,
e.g., to verify if the mapping feature of design models is really fulfilled, or if
important information generated at runtime is actually missing in the design
(i.e., prescriptive) model.

Figure 1 presents an overview of this architecture. On the left-hand side
there is the prescriptive perspective, where we use models for creating a system,
whereas on the right-hand side there is the descriptive perspective, where models
are extracted from running systems (i.e., executed models). In the following, we
describe Fig. 1 from left to right.

Realization
Level

Automation 
Level

Modeling 
Level

Metamodeling
Level Design Language

«conformsTo»

Design Model

Code Generator

Observation Language
(Logging Metamodel)

Observation Models 
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Prescriptive Perspective Descriptive Perspective

Process Mining
Tools

«refersTo»

Legend:
«dependency_kind»
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Execution Platform

Code
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Profiles

«validates, extends»

Fig. 1. Unifying conceptual architecture for MDE and PM.
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The starting point is the design language specification at the metamodeling
level which defines the syntax as well as semantics of a language like UML,
SysML, or a certain domain specific language (DSML). The design model at
the modeling level describes a certain system for a specific purpose and has to
conform to the chosen design language (see Fig. 1, «conformsTo»). In our app-
roach, such a model describes two different aspects of the system: (i) the static
aspect which describes the main ingredients of the domain to be modeled, i.e., its
entities and their relationships, and (ii) the dynamic aspect which describes the
behavior of these ingredients in terms of events and interactions that may occur
among them. For the vertical transition from the modeling level to the realiza-
tion level (i.e., the process of transforming models into source code), we use code
generation at the automation level as introduced in [3]. Finally, at the realization
level, the running software relies on a specific platform for its execution (e.g., a
Raspberry Pi as presented in our case study in Sect. 3).

At the right-hand side of Fig. 1 (at the top right), we present a logging
metamodel—the so-called observation language. This metamodel defines the syn-
tax and semantics of the logs we want to observe from the running system.
In particular, we derive this metamodel from the operational semantics of the
design language. This means that the observation metamodel can be derived
from any modeling language that can be equipped with operational semantics.
Figure 1 indicates this dependency at the metamodel level by the dashed arrow
and the keyword «refersTo». The observation language has an influence on the
code generator, which produces not only the code for the system to run, but also
logging information (see Fig. 1, arrow from the observation language (input) to
the code generator (output)). This means that the observation language deter-
mines which runtime changes should be logged and the code generator provides
the appropriate logging code after every change (e.g., state change, attribute
value change). Finally, these execution logs are stored as so-called observation
models (see Fig. 1, arrow from the execution platform to the observation models).
These observation models, which conform to the observation language, thumb
the logs at runtime and provide these logs as input for any kind of tools used for
checking purposes, e.g., for checking non-functional properties like performance,
correctness, appropriateness. For instance, we transform the design language-
specific observation model to a workflow representation which can be read by
PM analysis tool as presented in our case study.

3 Case Study: Execution-Based Model Profiling

In this section, we perform an exploratory case study based on the guidelines
introduced in [20]. The main goal is to evaluate if current approaches for MDE
and PM may be combined in a loosely-coupled way, i.e., both can stay as they
are initially developed, but provide interfaces to each other to exchange the
necessary information to perform automated tasks. In particular, we report on
our results concerning a fully model-driven engineered traffic light system which
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is enhanced with execution-based model profiling capabilities. All artifacts of the
case study can be found on our project website1.

3.1 Research Questions

As mentioned above, we performed this study to evaluate the feasibility and
benefits of combining MDE and PM approaches. More specifically, we aimed
to answer the following explanatory research questions (RQ) composed of two
requirement satisfaction questions (Transformability, Interoperability), an effect
question (Usefulness), and a trade-off question (Timeliness):

1. RQ1—Transformability: Is the operational semantics of the modeling lan-
guage rich enough to automatically derive observation metamodels?

2. RQ2—Interoperability: Do observation metamodels satisfy interoperability by
fulfilling the requirements of existing process mining formats?

3. RQ3—Verifiability: Are the generated model profiles resulting from the obser-
vation model sufficient for runtime verification?

4. RQ4—Timeliness: Are there significant differences between timing of transi-
tions on the specification level and the implementation level?

3.2 Case Study Design

Requirements. As an appropriate input to this case study, we require a system
which is generated by a MDE approach and equipped with an executable mod-
eling language. This means that its syntax and operational semantics are clearly
defined and accessible. Furthermore, the approach has to provide translational
semantics based on a code generator which may be extended by additional con-
cerns such as logging. Finally, the execution platform hosting the generated code
must provide some means to deal with execution logs.

Setup. To fulfill these case study requirements, we selected an existing MDE
project concerning the automation controller of a traffic light system. We mod-
eled this example by using a small sub-set of UML which we named Class/State
Charts (CSC) language. CSC stands for UML class diagram and UML state
machine diagram, both shown in Fig. 2. The class diagram represents the static
aspect of the system, whereas the state machine diagram describes the dynamic
one. Generally, UML class diagrams consist of classes with attributes, and state
charts containing state machines with states and transitions between them [21].
In a state chart diagram transitions can be triggered by different types of events
like signal event, time event, call event, or change event [21]. Both, states and
transitions can call actions.

Figure 2 presents the class diagram and state machine diagram of the traffic
light system modeled in CSC. This system consists of several components such
as lights (green, yellow, red) for cars and pedestrians, a controller as well as
1 http://www.sysml4industry.org/?page_id=722.

http://www.sysml4industry.org/?page_id=722
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SafetyState
carG = off
carY = off
carR = on
pedG = off
pedR = on

Car -> green
carR = off
carG = on

Car -> yellow
carG = off
carY = on

Car -> red
carY = off
carR = on

Ped -> green
pedR = off
pedG = on

Ped -> blink
entry /pedG = on
exit /pedG = off

Ped -> red
pedR = on

5sec

3sec

2sec 1sec

5sec

1sec [bc<=5] /bc++

1sec [bc>5] /bc=01sec

«case_start» 
«case_end» 

TrafficLightController

bc: int = 0

carG: {on,off}

carR : {on,off}

carY : {on,off}

pedG : {on,off}

pedR : {on,off}

Fig. 2. CSC class diagram and state machine diagram of the traffic light system.

a blink counter for the pedestrian light. While the CSC state machine diagram
(see Fig. 2, on the right-hand side) shows all possible and valid transitions/states
within this example, the CSC class TrafficLightController (see Fig. 2, on the
left-hand side) specifies the blink counter bc:int=0 and the different lights which
can be on or off.

We employed the Enterprise Architect2 (EA) tool to model the CSC class and
state machine diagram. Additionally, we used and extended the Vanilla Source
plug-in of EA to generate Python code from the executed CSC (design) models.
The code can be executed on a single-board computer. For this purpose we used
Raspberry Pi (see Fig. 3, at the bottom left) as specific execution platform. It
has to be noted that we aimed for full code generation by exploiting a model
library which allows to directly delegate to the GPIO module (i.e., input/output
module) of the Raspberry Pi.

3.3 Results

In this subsection, we present the results of applying the approach presented
in Sect. 2.2 for the given case study setup. Firstly, we describe the technical
realization of the example. Subsequently, we present the appropriate observation
metamodel referring to the CSC design language and its conforming observation
model. Finally, we generate different model profiles on the basis of PM techniques
for checking purposes.

Technical Realization at a Glance. The execution logs of the running code
on the Raspberry Pi form the basis for the experimental frame of our approach.
Figure 3 gives an overview of its implementation. We extend the code generator
to produce Python code (CSC2Python) which enables us to report logs to a log
recording service implemented as MicroService, provided by an observation
model repository. For data exchange between the running system and the log
recording service we used JSON. This means that the JSON data transferred
to the MicroService is parsed into log entry elements in the repository. We
used the NoSQL database Neo4EMF3 to store the execution logs for further

2 http://www.lieberlieber.com.
3 http://www.neoemf.com.

http://www.lieberlieber.com
http://www.neoemf.com
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Fig. 3. Technical realization of the traffic light system example.

analysis. To be able to use established PM tools, we generated XML files from
the recorded execution logs (i.e., the observation models).

For the case study of our approach we used ProM Lite 1.14 which is an open
source PM tool. Files that this tool takes as input have to correspond to the
XSD-schema of the workflow log language MXML5. To accomplish this we used
the ATLAS transformation language (ATL) [12] for transforming the observa-
tion models to MXML-conform XML files (Observation2WF). In particular, we
reverse-engineered the XML Schema of the MXML language into a metamodel.
This step enabled us to translate the language-specific observation model into
workflow instances (WF Instances) to directly import these instances in ProM
Lite. For our case study example the used MXML format was sufficient. Never-
theless XES is the current standard, therefore, we will build on the XES format
in future work.

The CSC Observation Metamodel. According to PM techniques, we con-
sider an observation model as an event log with a start and end time registered
as a sequences of transactions that having already taken place. However, we do
not receive event logs from an executed process model (i.e., the activities of a
business process in an ordered manner), rather we receive the traces from trans-
formed log messages of an embedded system. Figure 4 shows the observation
metamodel derived from the operational semantics of the CSC design language
used in the context of this case study. The figure illustrates that changes at
runtime are basically value updates for attributes of the CSC class diagram as
well as updates concerning the current active state and current fired transition
of the CSC state machine diagram.

4 http://www.promtools.org/doku.php?id=promlite.
5 http://www.processmining.org/WorkflowLog.xsd.

http://www.promtools.org/doku.php?id=promlite
http://www.processmining.org/WorkflowLog.xsd
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Fig. 4. Observation language for the CSC class diagram and CSC state machine dia-
gram of the traffic light example.

As shown in the upper section of Fig. 4, these elements are marked with
the «observe» stereotype. The CSC dependent observation metamodel is shown
in the lower section of Fig. 4. The class Log represents a logging session of a
certain running software system with a registered observationStart and an
observationEnd. The class Log consists of process instances related to the
CSC StateMachine. Every ProcessInstance has a unique id, startTime,
and endTime attributes and consists of log entries with the attributes id and
timeStamp for ordering purpose (i.e., indicating when the entry was recorded).

Additionally, we defined a subset of a state machine by indicating the stereo-
types «case_start» and «case_end». These stereotypes have to be annotated in
the design model whenever objects may execute more than one case. The reason
for such a stereotype annotation is that, in contrast to business processes, state
machines do not necessarily have a clearly defined start- and end point, like in
the case of our traffic light system example. This is due to the fact that state
machines are often defined for long-life (persistent) objects. This means that only
values of objects change over time, but not the objects themselves. Therefore, we
defined these stereotypes in our metamodel which enables us to capture single
cycles (like cases in PM) of the state machine to be profiled. In our case study
example, the start point and end point coincide. When the example starts, their
is a safety state only entered once. Each further cycle starts and ends with the
state Car→green (see Fig. 2).

The LogEntry either registers an AttributeValueChange, a CurrentState
Change, or a TransitionFiring. CurrentStateChange and TransitionFiring
are associated with the state and the transition of the CSC design language.
AttributeValueChange has an association with the changing attribute of a class
and includes its currentValue.
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Generated Model Profiles. We used ProM Lite for generating different
model profiles from the observation model of the running code. For this pur-
pose we employed ATL model transformations to import the CSC language-
specific observation model as input into ProM Lite. By doing so, we focused on
two PM-perspectives, (i) the control-flow perspective and (ii) the time perspec-
tive (cf. Sect. 2), as well as a (iii) data manipulation one. In the control-flow
perspective, we employed the α++-algorithm of ProM Lite to generate Petri
nets for reflecting all attribute value changes as well as state changes and their
structure. For profiling the time perspective, we mined the sequence of fired
transitions among all states with the inductive miner of ProM Lite and replayed
the logs on the discovered Petri net by using a special performance plug-in of
this tool.

In a first step of our case study, we implemented a model transformation in
ATL which considered the state occurrences (CurrentStateChange) of the run-
ning system. By this, we checked on the one hand if the CSC state machine dia-
gram is realized by the code generator as intended (see Fig. 5), and on the other
hand, if the state machine executes the specified control-flow on the realization
level. This enables, both, a semantically as well as syntactically “equivalence”
checking of the prescriptive (design) model and the descriptive (operational)
model. In particular, for semantically checking we compared the state space of
the state machine with the state space of the profiled Petri net. As shown in
Fig. 5 (see the dashed arrows) places with the same targets were merged. The
dashed arrow at the bottom right symbolizes a manually interruption of a case.
The figure shows that the places and transitions of the Petri net are equivalent to
the states and transitions of the CSC state machine diagram presented in Fig. 2.
For syntactically checking purpose we may define bi-directional transformation
rules to check the consistency [5].

In a second step, we implemented a Python component in order to simu-
late random system failures which were not reflected in the initial design model
presented in Fig. 2. We observed the control-flow perspective of this extended
system and found out that the randomly simulated failure states were correctly
detected by ProM Lite (compare the Petri net shown in Fig. 6 with that one

Fig. 5. Model profile of state changes.
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Fig. 6. Model profile of state changes including a failure state.

Fig. 7. Model profile of the attribute value changes for the blink counter (bc).

of Fig. 5). Thereby, we proof the usefulness of the approach for runtime verifi-
cation. It shows that failures which may happened in the implementation phase
would be correctly detected and visualized. For instance, this provides useful
insights in the running system for validating the code generator and manual
code changes.

In a next step, we developed another ATL transformation to extract
for each attribute a workflow instance that contains the sequence of
AttributeValueChangess. By this, we extracted the shape of the values stored
in the attribute to enrich the model with this kind of information and to check
if certain value constraints were fulfilled during execution. For instance for the
blink counter attribute, we derived a profile which explicitly shows a loop count-
ing from zero to six as depicted in Fig. 7. These logged value changes conform
to the attribute (bc) of the class TrafficLightController as shown at the left
hand sight of Fig. 2.

In the CSC state machine diagram the timing component is explicitly
assigned to transitions (see Fig. 2, «case_start» and «case_end»). In a last
step of our case study, we observe the time perspective. Therefore, we needed an
additional ATL transformation for filtering the sequence of TransitionFirings
(see Fig. 4 from the upper section to the lower section). This sequence includes
several iterations of the traffic light system and is used as an input for the per-
formance plug-in of ProM Lite. Our simulation covered 78 cycles, which took
22.26min, and computed descriptive statistical values for performance evalua-
tion like minimum, maximum and average transition time and sojourn time (i.e.,
waiting time), as well as the throughput which is the maximum rate at which a
system can be processed. Table 1 presents the outcome of this descriptive anal-
ysis. To count several cycles (i.e., cases), we annotated the state Car→green



48 A. Mazak et al.

Table 1. Outcome of the performance evaluation based on transition firings.

Selected elements: Car→yellow to Car→red
Timing_property Min Max Avg Std.Dev Freq

Throughput_time 0.00 ms 0.00 ms 0.00 ms 0.00 ms 78
Waiting_time 2.02 s 2.12 s 2.04 s 19.24 ms 78
Sojourn_time 2.02 s 2.12 s 2.04 s 19.24 ms 78
Observation_period 22.26 min

with the stereotypes «case_start» and «case_end» as introduced in the CSC
metamodel. On average the transition from car yellow to car red is 2, 04 s, which
is very close to the timing of transition (2 s) of the CSC state machine presented
in Fig. 2.

3.4 Interpretation of Results

Answering RQ1. The operational semantics could be transferred into an obser-
vational viewpoint. By generating a change class for every element in the CSC
design metamodel which is annotated with the «observe» stereotype, we are
able to provide a language to represent observations of the system execution.
This language can be also employed to instrument the code generator in order
to produce the necessary logging statements as well as to parse the logs into
observation model elements.

Answering RQ2. By developing ATL transformations from the language-specific
observation metamodels to the general workflow-oriented formats of existing PM
tools, we could reuse existing PM analysis methods for MDE approaches in a
flexible manner. Not only the state/transition system resulting from the state
machine can be checked between implementation and design, but also other min-
ing tasks may be achieved such as computing value shapes for the given attributes
of the CSC class diagram. Thus, we conclude that it is possible to reuse existing
formats for translating the observations, however, different transformations may
be preferred based on the given scenario.

Answering RQ3. For runtime verification, we took as input transformed event
logs (i.e., selected state changes as a workflow file) and employed the α++-
algorithm of ProM Lite to derive a Petri net. This generated Petri net, as shown
in Fig. 5, exactly corresponds to the state machine, as shown in Fig. 2 on the
right hand side. We are therefore convinced that the state machine is realized by
the code generator as intended. Similarly, we have done this for attribute value
changes. As output we extracted a value shape [0..6] stored in the attribute blink
counter (see Fig. 7). Thus, we are also able to enrich the initial CSC class diagram
presented in Fig. 2 with runtime information in terms of model profiles. Finally,
we manually implemented random failure states in the Python code (not in the
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design model) in order to show that these system down states are reflected in the
generated Petri net. By applying bi-directional transformations, these additional
states may be also propagated to the initial CSC state machine diagram (i.e.,
prescriptive model) for completing the specification for error-handling states that
are often neglected in design models [6].

Answering RQ4. For the detection of timing inconsistencies we filtered the
sequence of transitions using an ATL transformation and analyzed it with the
performance plug-in of ProM Lite. The inconsistencies between the specification
and implementation levels are within the range of milliseconds. The average val-
ues of the delays can be propagated back to the design model in order to make
the timing more precise during the system execution. The information about
timing inconsistencies is especially relevant for time critical and safety critical
systems, since this information may mitigate potential consequences of delays.
However, it is important to observe a system for a sufficiently long period of
time to have enough runtime information for reliable statistical values.

3.5 Threats to Validity

To critically reflect our results, we discuss several threats to validity of our
study. First, in the current realization of our approach we do not consider the
instrumentation overhead which may increase the execution time of the instru-
mented application. Of course, this may be critical for timed systems and has
to be validated further in the future. Second, the current system is running as
a single thread which means we are not dealing with concurrency. Extensions
for supporting concurrency may result in transforming the strict sequences in
partially ordered ones. Third, we assume to have a platform which has network
access to send the logs to the micro service. This requirement may be critical in
restricted environments and measurements of network traffic have to be done.
Finally, concerning the generalizability of the results, we have to emphasize that
we currently only investigated a single modeling language and a single execution
platform. Therefore, more experiments are needed to verify if the results can be
reproduced for a variety of modeling languages and execution platforms.

4 Related Work

We consider model profiling as a very promising field in MDE and as the natural
continuation and unification of different already existing or emerging techniques,
e.g., data profiling [1], process mining [23], complex event processing [15], spec-
ification mining [6], finite state automata learning [2], as well as knowledge dis-
covery and data mining [9]. All these techniques aim at better understanding the
concrete data and events used in or by a system and by focusing on particular
aspects of it. For instance, data profiling and mining consider the information
stored in databases, while process mining, FSA learning and specification min-
ing focus on chronologically ordered events. Not to forget models@run.time,
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where runtime information is propagated back to engineering. There are sev-
eral approaches for runtime monitoring. Blair et al. [4] show the importance of
supporting runtime adaptations to extend the use of MDE. The authors pro-
pose models that provide abstractions of systems during runtime. Hartmann
et al. [10] go one step further. The authors combine the ideas of runtime models
with reactive programming and peer-to-peer distribution. They define runtime
models as a stream of model chunks, like it is common in reactive programming.

Currently, there is emerging research work focusing on runtime phenom-
ena, runtime monitoring as well as discussing the differences between descriptive
and prescriptive models. For instance, Das et al. [7] combine the use of MDE,
run-time monitoring, and animation for the development and analysis of compo-
nents in real-time embedded systems. The authors envision a unified infrastruc-
ture to address specific challenges of real-time embedded systems’ design and
development. Thereby, they focus on integrated debugging, monitoring, verifica-
tion, and continuous development activities. Their approach is highly customiz-
able through a context configuration model for supporting these different tasks.
Szvetits and Zdun [22] discuss the question if information provided by models
can also improve the analysis capabilities of human users. In this context, they
conduct a controlled experiment. Van der Aalst et al. [19] show the possibility to
use runtime information and automatically construct simulation models based
on event logs. These simulation models can be used, e.g., to evaluate performance
of different alternative designs prior to roll-out. Heldal et al. [11] report lessons
learned from collaborations with three large companies. The authors conclude
that it is important to distinguish between descriptive models (used for docu-
mentation) and prescriptive models (used for development) to better understand
the adoption of modeling in industry. Last but not least, Kühne [13] highlights
the differences between explanatory and constructive modeling, which give rise
to two almost disjoint modeling universes, each of it based on different, mutually
incompatible assumptions, concepts, techniques, and tools.

5 Conclusion and Future Work

In this paper, we pointed to the gap between design time and runtime in current
MDE approaches. We stressed that there are already well-established techniques
considering runtime aspects in the area of PM and that it is beneficial to combine
these approaches. Therefore, we presented a unifying conceptual architecture for
execution-based model profiling, where we combined MDE and PM. We built
the approach upon traditional activities of MDE such as design modeling, code
generation, and code execution. In the conducted case study, we demonstrated
and evaluated this approach on the basis of a traffic light system example. While
the first results seem promising, there are still several open challenges, which we
discussed in the threats to validity in the case study section. As next steps, we
will focus on the observation of further PM perspectives (e.g., the organisational
perspective) that can be used for software component communication discovery
and on the reproduction of our current results by conduction additional case
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studies, in this respect, domain-specific modeling languages (DSMLs) would be
of special interest.
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