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Abstract. A monotone drawing of a graph G is a straight-line drawing
of G such that every pair of vertices is connected by a path that is
monotone with respect to some direction.

Trees, as a special class of graphs, have been the focus of several papers
and, recently, He and He [6] showed how to produce a monotone drawing
of an arbitrary n-vertex tree that is contained in a 12n × 12n grid.

In this paper, we present a simple algorithm that constructs for each
arbitrary tree a monotone drawing on a grid of size at most n × n.

1 Introduction

A straight-line drawing Γ of a graph G is a mapping of each vertex to a distinct
point on the plane and of each edge to a straight-line segment between the
vertices. A path P = {p0, p1, . . . , pn} is monotone if there exists a line l such
that the projections of the vertices of P on l appear on l in the same order as
on P . A straight-line drawing Γ of a graph G is monotone, if a monotone path
connects every pair of vertices.

Monotone graph drawing has gained the recent attention of researchers and
several interesting results have appeared. Given a planar fixed embedding of a
planar graph G, a planar monotone drawing of G can be constructed, but at
the cost of some bends on some edges [2]. In the variable embedding setting,
we can construct a planar monotone drawing of any planar graph without any
bends [8].

One way to find a monotone drawing of a graph is to simply find a monotone
drawing of one of its spanning trees. For that reason, the problem of finding
monotone drawings of trees has been the subject of several recent papers, starting
from the work by Angelini et al. [1] which introduced monotone graph drawings.
Angelini et al. [1] provided two algorithms that used ideas from number theory
and more specifically Stern-Brocot trees [3,11], [4, Sect. 4.5]. The first algorithm
used a grid of size O(n1.6) × O(n1.6) (BFS-based algorithm) while the second
one used a grid of size O(n)×O(n2) (DFS-based algorithm). Later, Kindermann

The work of Prof. Symvonis was supported by the iRead H2020 research grant (No.
731724).

c© Springer International Publishing AG 2018
F. Frati and K.-L. Ma (Eds.): GD 2017, LNCS 10692, pp. 326–333, 2018.
https://doi.org/10.1007/978-3-319-73915-1_26



Simple Compact Monotone Tree Drawings 327

et al. [9] provided an algorithm based on Farey sequence (see [4, Sect. 4.5]) that
used a grid of size O(n1.5)× O(n1.5). He and He [7] gave an algorithm based on
Farey sequence and reduced the required grid size to O(n1.205)×O(n1.205), which
was the first result that used less than O(n3) area. Recently, He and He [5] firstly
reduced the grid size for a monotone tree drawing to O(n log(n)) × O(n log(n))
and, in a sequel paper, to O(n) × O(n) [6]. Their monotone tree drawing uses a
grid of size at most 12n × 12n which turns out to be asymptotically optimal as
there exist trees which require at least n

12 × n
12 area [6].

Our Contribution: We provide a simple algorithm that given any n-vertex
tree T , outputs a monotone drawing of T on a grid of size n × n. Example
drawings of our algorithm appear at Figs. 1, 2, 3, 4 and 5. Our algorithm does
not employ number theory techniques but a rather simple weighting method and
some simple facts from geometry that can be more analytically expressed. Due
to space limitation, some proofs appear in the arXiv version of the paper [10].

Fig. 1. 3-layer full binary
tree (15 nodes).

Fig. 2. 2-layer full ternary
tree (13 nodes).

Fig. 3. Tree used in [5,6].

Fig. 4. 3-layer full binary tree plus path
(29 nodes).

Fig. 5. 2-layer full ternary tree plus path
(25 nodes).

2 Definitions and Preliminaries

Let Γ be a drawing of a graph G and (u, v) be an edge from vertex u to vertex
v in G. The slope of edge (u, v), denoted by slope(u, v), is the angle spanned by
a counter-clockwise rotation that brings a horizontal half-line starting at u and
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directed towards increasing x-coordinates to coincide with the half-line starting
at u and passing through v. We consider slopes that are equivalent modulo 2π
as the same slope. Observe that slope(u, v) = slope(v, u) − π.

Let T be a tree rooted at a node r. Denote by Tu the subtree of T rooted
at a node u. By |Tu| we denote the number of vertices of Tu. In the rest of the
paper, we assume that all tree edges are directed away from the root.

In order to simplify the description of our algorithm, we extend the definition
of slope-disjoint tree drawings given by Angelini et al. [1]. More specifically, a
tree drawing Γ of a rooted tree T is called a non-strictly slope-disjoint drawing
if the following conditions hold:

1. For every node u ∈ T , there exist two angles a1(u) and a2(u), with 0 ≤
a1(u) < a2(u) ≤ π such that for every edge e that is either in Tu or enters u
from its parent, it holds that a1(u) < slope(e) < a2(u).

2. For every two nodes u, v ∈ T such that v is a child of u, it holds that a1(u) ≤
a1(v) < a2(v) ≤ a2(u).

3. For every two nodes u1, u2 with the same parent, it holds that either a1(u1) <
a2(u1) ≤ a1(u2) < a2(u2) or a1(u2) < a2(u2) ≤ a1(u1) < a2(u1).

The idea behind the original definition of slope-disjoint tree drawings is that
all edges in the subtree Tu as well as the edge entering u from its parent will
have slopes that strictly fall within the angle range (a1(u), a2(u)) defined for
vertex u. (a1(u), a2(u)) is called the angle range of u with a1(u) and a2(u)
being its boundaries. In our extended definition, we allow for angle ranges of
adjacent vertices (parent-child relationship) or sibling vertices (children of the
same parent) to share angle range boundaries. Note that replacing the “≤”
symbols in our definition by the “<” symbol gives us the original definition of
Angelini et al. [1] for the slope disjoint tree drawings.

Lemma 1. Every non-strictly slope-disjoint drawing of a tree T is also a slope-
disjoint drawing.

Theorem 1. [1] Every slope-disjoint drawing of a tree is monotone.

Theorem 2. Every non-strictly slope-disjoint drawing of a tree is monotone.

Based on geometry, we now prove that it is always possible to identify points on
a grid that satisfy several properties with respect to their location.

Lemma 2 [See Fig. 6]. Consider two angles θ1, θ2 with 0 ≤ θ1 < θ2 ≤ π
4 ,

and let d = � 1
θ2−θ1

�. Then, edge e connecting the origin (0, 0) to point p =
(d, �tan(θ1)d + 1�) satisfies θ1 < slope(e) < θ2.

Lemma 3 [See Fig. 7]. Consider angles θ1, θ2 with 0 ≤ θ1 < θ2 ≤ π
2 and let

d = � 1
θ2−θ1

�. Then, a grid point p such that the edge e that connects the origin
(0, 0) to p satisfies θ1 < slope(e) < θ2, can be identified as follows:
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Fig. 6. Geometric representation of
Lemma 2.
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Fig. 7. Point, slopes angular sectors
used in Lemma 3.

θ2 − θ1 > π
4
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π
4
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2
) :

⎧
⎪⎨

⎪⎩

p = (1, 2) if θ1 ≥ π
4

p = (1, 1) if π
4

> θ1 ≥ arctan( 1
2
)

p = (2, 1) if arctan( 1
2
) > θ1

arctan( 1
2
) ≥ θ2 − θ1 :

⎧
⎪⎨

⎪⎩

p = (d, �tan(θ1)d + 1�) if π
4

≥ θ2 > θ1 ≥ 0

p = (1, 1) if θ2 > π
4

> θ1

p = (�tan(π
2

− θ2)d + 1�, d) if θ2 > θ1 ≥ π
4

Moreover, if p = (x, y) is the identified point, it also holds that:

max(x, y)

{
≤ π

2
1

θ2−θ1
if θ2 − θ1 > arctan( 12 )

< 1
θ2−θ1

+ 1 if arctan( 12 ) ≥ θ2 − θ1

3 Monotone Tree Drawing on an n × n Grid

Our tree drawing algorithm will produce a non-strictly slope-disjoint tree draw-
ing which, by Theorem2, is monotone. We make the assumption that the given
tree is rooted, otherwise, it can be rooted at any arbitrary node. In order to
describe a non-strictly slope-disjoint tree drawing, we need to identify for each
vertex u of the tree a grid point to draw u as well as to assign to it two angles
a1(u), a2(u), with a2(u) > a1(u). For every tree vertex, the identified grid point
and the two angles should be such that the three properties of the non-strictly
slope-disjoint drawing are satisfied.

The basic idea behind our algorithm is to split in a balanced way the angle
range (a1(u), a2(u)) of vertex u to its children based on the size of the subtrees
rooted at them. The following lemma formalizes this idea.

Lemma 4. Let u be a node of the rooted tree T such that we already have
assigned values for a1(u) and a2(u), with a1(u) < a2(u). Let u1, u2, . . . , um, m ≥
1, be the children of u in T . Then, the following assignment of a1, a2 for the
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children of u satisfies Property-2 and Property-3 of the non-strictly slope disjoint
drawing:

a1(ui) =

{
a1(u) if i = 1
a2(ui−1) if 1 < i ≤ m

a2(ui) = a1(ui) + (a2(u) − a1(u)) ∗ |Tui
|

|Tu|−1 , 1 ≤ i ≤ m

Observation 1. If a vertex u has only one child, say u1, then the angle assign-
ment strategy of Lemma4 assigns a1(u1) = a1(u) and a2(u1) = a2(u), which
means that the child “inherits” the angle-range of its parent.

Algorithm1 describes our monotone tree drawing algorithm. It consists of three
steps: Procedure AssignAngles which assigns angle-ranges to the vertices
of the tree according to Lemma4, Procedure DrawVertices which assigns
each tree vertex to a grid point according to Lemma3 and Procedure Bal-

ancedTreeMonotoneDraw which assigns the root to point (0, 0) with angle-
range

(
0, π

2

)
and initiates the drawing of the tree.

Algorithm 1. Balanced Monotone Tree Drawing algorithm
1: procedure BalancedTreeMonotoneDraw

2: Input: An n-vertex tree T rooted at vertex r.
3: Output: A monotone drawing of T on a grid of size at most n × n.
4: a1(r) ← 0, a2(r) ← π

2

5: AssignAngles(r, a1(r), a2(r))
6: Draw r at (0, 0)
7: DrawVertices(r)

8: procedure AssignAngles(u, a1, a2)
9: Input: A vertex u and the boundaries of the angle-range (a1, a2) assigned to u.

10: Action: It assigns angle-ranges to the vertices of Tu.
11: for each child ui of u do
12: Assign a1(ui), a2(ui) as described in Lemma 4.
13: AssignAngles(ui, a1(ui), a2(ui))

14: procedure DrawVertices(u)
15: Input: A vertex u that has already been drawn on the grid.
16: Action: It draws the vertices of Tu.
17: for each child ui of u do
18: Find a valid pair (x, y) as in Lemma 3 where θ1 ← a1(u), θ2 ← a2(u)
19: If u is drawn at (ux, uy), draw ui at (ux + x, uy + y)
20: DrawVertices(ui)

Lemma 5. The drawing produced by Algorithm1 is monotone.

Proof. The angle-range assignment satisfies Property-2 and Property-3 of the
non-strictly slope disjoint drawing as proved in Lemma4. In addition, the
assignment of the vertices to grid points satisfies Property-1 of the non-strictly
slope disjoint drawing as proved in Lemma3. Thus, the produced drawing by
Algorithm1 is non-strictly slope disjoint and, by Theorem2, it is monotone. 
�
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It remains to establish a bound on the grid size required by Algorithm1. Our
proof will use induction on the number of tree vertices having more than one
child. The following lemma will be used as the basis of our induction.

Lemma 6. Let T be an n-vertex rooted tree in which all vertices have at most
one child, i.e., T is a path rooted at one of its endpoints. Then, Algorithm1
draws T in the diagonal of an n × n grid.

Lemma 7. Let T be a rooted tree in which k > 0 of its vertices have at least
two children. Let u be a vertex with at least two children and, moreover, every
other vertex in Tu has at most one child. Let T ′ be the tree derived by replacing
(in T ) the subtree Tu by a path of length |Tu|. Then, the size of the grid which
Algorithm1 uses in the worst case for the drawing of T is smaller or equal to
the size of the grid it uses in the worst case for the drawing of T ′.

Proof. Let u be a vertex as the one stated in the lemma, i.e., in Tu, u is the only
vertex having at least two children. Let u1, u2, . . . um, m ≥ 2, be the children of
u, and let Tui

be the subtree rooted at ui. Note that each Tui
is a path. From

Observation 1, we recall that for each node in Tui
, the assigned values for a1 and

a2 by Algorithm1 will be the same as a1(ui) and a2(ui). Let φ(u) = a2(u)−a1(u).
We consider two subcases based on whether arctan(12 ) ≥ φ(u) or not.

Case-1: arctan(12 ) ≥ φ(u). Since Algorithm1 performs its angle-range assign-
ment based on Lemma 4, for each child of u we have that φ(ui) = a2(ui) −
a1(ui) =

|Tui
|

|Tu|−1φ(u). Observe that it also holds that φ(ui) ≤ arctan( 12 ).
A node in Tui

is drawn, based on Lemma3 where θ1 ← a1(ui) and θ2 ←
a2(ui), in a grid of length at most 1

θ2(ui)−θ1(ui)
+ 1 if its parent is considered

to be drawn at the origin. So, the length of the total grid that is used for the
drawing of path Tui

is at most: |Tui
|( 1

θ2(ui)−θ1(ui)
+1) = |Tui

| 1
|Tui

|
|Tu|−1φ(u)

+|Tui
|

= |Tu|−1
φ(u) + |Tui

| ≤ |Tu|−1
φ(u) + |Tu| − 1 = (|Tu| − 1)( 1

φ(u) + 1).
The last term is the maximum grid length dictated by Lemma3 for the draw-
ing of a path of size |Tu| with θ1 ← a1(u) and θ2 ← a2(u). Note also that
in Algorithm1 the largest grid devoted to any of Tui

, 1 ≤ i ≤ m, determines
the grid size of the drawing of Tu since the subtrees rooted at children of u
are drawn completely inside non-overlapping (but possibly touching) angular
sectors. The above statement holds because all the grids that will be used for
the subtrees have the same origin (u) and all angular sectors lies in the first
quadrant since Algorithm1 assigns root with angle-range

(
0, π

2

)
. So, the grid

size that is used in the worst case for the drawing of Tu by Algorithm1 is
smaller or equal to that used by it in the worst case for the drawing of a path
of length |Tu|. Thus, the size of the grid which Algorithm1 uses in the worst
case for the drawing of T is smaller or equal to the size of the grid it uses in
the worst case for the drawing of T ′.

Case-2: φ(u) > arctan( 12 ). Let φ(ui) = a2(ui)−a1(ui), 1 ≤ i ≤ m. We consider
two subcases based on whether arctan(12 ) ≥ φ(ui) or not.
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Case-2a: arctan( 12 ) ≥ φ(ui). A node in Tui
is drawn, based on Lemma3

where θ1(u1) ← a1(ui) and θ2(ui) ← a2(ui), in a grid of length at most
1

φ(ui)
+ 1 < π

2
1

φ(ui)
, assuming that its parent is drawn at the origin. The

last inequality holds for φ(ui) ≤ π−2
2 , and so it also holds for φ(ui) ≤

arctan( 12 ) < π−2
2 . So, the maximum length of the total grid that is used

for the drawing of path Tui
is at most: |Tui

|π
2

1
φ(ui)

= |Tui
|π
2

1
|Tui

|
|Tu|−1φ(u)

=

π
2

|Tu|−1
φ(u) .

Case-2b: φ(ui) > arctan( 12 ). A node in Tui
is drawn, based on Lemma3

where θ1(ui) ← a1(ui) and θ2(ui) ← a2(ui), in a grid of length at most
π
2 ∗ 1

φ(ui)
, assuming that its parent is drawn at the origin. So, the maxi-

mum length of the total grid that is used for the drawing of path Tui
is:

|Tui
|π
2

1
φ(ui)

= |Tui
|π
2

1
|Tui

|
|Tu|−1φ(u)

= π
2

|Tu|−1
φ(u) .

The last term in both subcases is the maximum grid length dictated by
Lemma3 for the drawing of a path of size |Tu| with θ1 ← a1(u) and θ2 ← a2(u)
where φ(u) > arctan(12 ). So, the drawing of Tu uses in the worst case a grid
length that is smaller or equal to that used in the worst case for the drawing
of a path of length |Tu|, when both drawings are done by Algorithm1. Thus,
Algorithm1 uses in the worst case for the drawing of T a grid of size smaller
or equal to the one used in the worst case for the drawing of T ′. 
�

Theorem 3. Given a rooted Tree T , Algorithm1 produces a monotone grid
drawing using a grid of size at most n × n.

Proof. The monotonicity of the drawing follows directly from Lemma5. By
repeatedly applying Lemma7, we get that in the worst case the drawing of
T uses a grid length that is smaller or equal to the one used in the worst case for
the drawing of a path of length |T |, when both drawings are done by Algorithm1.
By Lemma 6, we get that the used grid is of size at most n × n. 
�
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