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Abstract. A pseudocircle is a simple closed curve on the sphere or
in the plane. The study of arrangements of pseudocircles was initiated
by Grünbaum, who defined them as collections of simple closed curves
that pairwise intersect in exactly two crossings. Grünbaum conjectured
that the number of triangular cells p3 in digon-free arrangements of n
pairwise intersecting pseudocircles is at least 2n − 4. We present exam-
ples to disprove this conjecture. With a recursive construction based
on an example with 12 pseudocircles and 16 triangles we obtain a fam-
ily with p3(A )/n → 16/11 = 1.45. We expect that the lower bound
p3(A ) ≥ 4n/3 is tight for infinitely many simple arrangements. It may
however be that digon-free arrangements of n pairwise intersecting cir-
cles indeed have at least 2n − 4 triangles.

For pairwise intersecting arrangements with digons we have a lower
bound of p3 ≥ 2n/3, and conjecture that p3 ≥ n − 1.

Concerning the maximum number of triangles in pairwise intersecting
arrangements of pseudocircles, we show that p3 ≤ 2n2/3 +O(n). This is
essentially best possible because families of pairwise intersecting arrange-
ments of n pseudocircles with p3/n

2 → 2/3 as n → ∞ are known.
The paper contains many drawings of arrangements of pseudocircles

and a good fraction of these drawings was produced automatically from
the combinatorial data produced by the generation algorithm. In the
final section we describe some aspects of the drawing algorithm.

1 Introduction

Arrangements of pseudocircles generalize arrangements of circles in the same vein
as arrangements of pseudolines generalize arrangements of lines. The study of
arrangements of pseudolines was initiated 1918 with an article of Levi [7] where
he studied triangles in arrangements. Since then arrangements of pseudolines
were intensively studied and the handbook article on the topic [2] lists more
than 100 references.
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Grünbaum [6] initiated the study of arrangements of pseudocircles. By stat-
ing a large number of conjectures he was hoping to attract the attention of
researchers for the topic. The success of this program was limited and several of
Grünbaum’s 45 year old conjectures remain unsettled. In this paper we report on
some progress regarding conjectures involving numbers of triangles and digons
in arrangements of pseudocircles.

Some of our results and new conjectures are based on a program written
by the second author that enumerates all arrangements of up to 7 pairwise
intersecting pseudocircles. Before formally stating our main results we introduce
some terminology:

An arrangement of pseudocircles is a collection of closed curves in the plane
or on the sphere, called pseudocircles, with the property that the intersection of
any two of the pseudocircles is either empty or consists of two points where the
curves cross. An arrangement A of pseudocircles is

simple, if no three pseudocircles of A intersect in a common point.
pairwise intersecting, if any two pseudocircles of A have non-empty intersec-

tion. We will frequently abbreviate and just write “intersecting” instead of
“pairwise intersecting”.

cylindrical, if there are two cells of the arrangement which are separated by
each of the pseudocircles.

digon-free, if there is no cell of the arrangement which is incident to only two
pseudocircles.

We consider the sphere to be the most natural ambient space for arrange-
ments of pseudocircles. Consequently, we call two arrangements isomorphic if
they induce homeomorphic cell decompositions of the sphere. In many cases, in
particular in all our figures, arrangements of pseudocircles are embedded in the
Euclidean plane, i.e., there is a distinguished outer/unbounded cell. An advan-
tage of such a representation is that we can refer to the inner and outer side
of a pseudocircle. Note that for every cylindrical arrangement of pseudocircles
it is possible to choose the unbounded cell such that there is a point in the
intersection of the interior pseudodiscs of all pseudocircles.

In an arrangement A of pseudocircles, we denote a cell with k crossings on
its boundary as a k-cell and let pk(A ) be the number of k-cells of A . Following
Grünbaum we call 2-cells digons and remark that some other authors call them
lenses. 3-cells are triangles, 4-cells are quadrangles, and 5-cells are pentagons.

Conjecture 3.7 from Grünbaum’s monograph [6] is: Every (not necessar-
ily simple) digon-free arrangement of n pairwise intersecting pseudocircles has
at least 2n − 4 triangles. Grünbaum also provides examples of arrangements
with n ≥ 6 pseudocircles and 2n − 4 triangles.

Snoeyink and Hershberger [10] showed that the sweeping technique, which
serves as an important tool for the study of arrangements of lines and pseudolines,
can be adapted to work also in the case of arrangements of pseudocircles. They
used sweeps to show that, in an intersecting arrangement of pseudocircles, every
pseudocircle is incident to two cells which are digons or triangles on either side.
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Therefore, 2p2+3p3 ≥ 4n, and whence, every intersecting digon-free arrangement
of n pseudocircles has at least 4n/3 triangles.

Felsner and Kriegel [3] observed that the bound from [10] also applies to non-
simple intersecting digon-free arrangements and gave examples of arrangements
showing that the bound is tight on this class for infinitely many values of n.
These examples disprove the conjecture in the non-simple case.

In Sect. 2, we give counterexamples to Grünbaum’s conjecture which are sim-
ple. With a recursive construction based on an example with 12 pseudocircles and
16 triangles we obtain a family with p3/n

n→∞−−−−→ 16/11 = 1.45. We then replace
Grünbaum’s conjecture by Conjecture 2: The lower bound p3(A ) ≥ 4n/3 is tight
for infinitely many non-isomorphic simple arrangements.

A specific arrangement N6 of 6 pseudocircles with 8 triangles appears as a
subarrangement in all known simple, intersecting, digon-free arrangements with
p3 < 2n − 4. From [5] it is known that N6 is not circularizable, i.e., not rep-
resentable by circles. This motivates the question, whether indeed Grünbaum’s
conjecture is true when restricted to intersecting arrangements of circles, see
Conjecture 1. In Subsect. 2.1 we discuss arrangements with digons. We give an
easy extension of the argument of Snoeyink and Hershberger [10] to show that
these arrangements contain at least 2n/3 triangles. All arrangements known to
us have at least n − 1 triangles and therefore our Conjecture 3 is that n − 1 is a
tight lower bound for intersecting arrangements with digons.

In Sect. 3 we study the maximum number of triangles in arrangements of n
pseudocircles. We show an upper bound of order 2n2/3 + O(n). For the lower
bound construction we glue two arrangements of n pseudolines into an arrange-
ment of n pseudocircles. Since respective arrangements of pseudolines are known,
we obtain arrangements of pseudocircles with 2n(n − 1)/3 triangles for n ≡ 0, 4
(mod 6).

The paper contains many drawings of arrangements of pseudocircles and a
good fraction of these drawings was produced automatically from the combina-
torial data produced by the generation algorithm. In Sect. 4 we describe some
aspects of the drawing algorithm which is based on iterative calls to a Tutte
embedding a.k.a. spring embedding with adapting weights on the edges.

From now on (unless explicitly stated otherwise) the term arrangement is
used as equivalent to simple arrangement of pairwise intersecting pseudocircles.

2 Arrangements with Few Triangles

The main result of this section is the following theorem, which disproves
Grünbaum’s conjecture.

Theorem 1. The minimum number of triangles in digon-free arrangements of
n pseudocircles is

(i) 8 for 3 ≤ n ≤ 6.
(ii) � 4

3n� for 6 ≤ n ≤ 14.
(iii) < 16

11n for all n = 11k + 1 with k ∈ N.
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Fig. 1. Arrangements of n = 3, 4, 5 circles and p3 = 8 triangles each. Triangles (except
the outer face) are colored gray.

Figures 1 and 2 show arrangements with the minimum number of triangles for
up to 8 pseudocircles. We remark that, in total, there are three non-isomorphic
arrangements of n = 8 pseudocircles with p3 = 11 triangles, these are the small-
est counterexamples to Grünbaum’s conjecture (cf. Lemma 1). We refer to our
website [8] for further examples.

The basis for Theorem 1 was laid by exhaustive computations, which gen-
erated all simple arrangements of up to n = 7 pseudocircles. Starting with the
unique arrangement of two intersecting pseudocircles, our program recursively
inserted pseudocircles in all possible ways. Since counting arrangements is also
interesting, we state the numbers in Table 1. The table shows the number of sim-
ple intersecting pseudocircle arrangements on the sphere. The first row shows
the numbers when digons are allowed and the second row shows the numbers of
digon-free arrangements. The arrangements and more information can be found
on the companion website [8].

Table 1. Number of combinatorially different arrangements of n pseudocircles.

n 2 3 4 5 6 7

General 1 2 8 278 145 058 447 905 202

Digon-free 0 1 2 14 2 131 3 012 972

Fig. 2. Arrangements with n = 6, 7, 8 and 8, 10, 11 triangles respectively.



Arrangements of Pseudocircles: Triangles and Drawings 131

From the complete enumeration we know the minimum number of triangles
for n ≤ 7. In the range from 8 to 14, we iteratively used arrangements with n
pseudocircles and a small number of triangles and digons to generate arrange-
ments with n + 1 pseudocircles and the same property. Using this strategy, we
found arrangements with �4n/3� triangles for all n in this range. The correspond-
ing lower bound p3(A ) ≥ 4n/3 is known from [10].

A result of the computations was that the triangle-minimizing example for
n = 6 is unique, i.e., there is a unique simple arrangement N6 with 6 pseudocir-
cles and only 8 triangles. In [5] we have shown that N6 is not circularizable. The
arrangement N6 is a subarrangement of all known arrangements with less than
2n − 4 triangles. Therefore, the following weakening of Grünbaum’s conjecture
may be true.

Conjecture 1 (Weak Grünbaum Conjecture). Every digon-free arrangement of n
circles has at least 2n − 4 triangles.

We know that this conjecture is true for all n ≤ 9. The claim, that we
have checked all arrangements with p3(A ) < 2n − 4 in this range, is justified
by the following lemma, which restricts the pairs (p2, p3) for which there exist
arrangements of n pseudocircles whose extensions have p3(A ) < 2n − 4. In
particular, to get all digon-free arrangements with n = 9 and 12 triangles we
only had to extend arrangements with n = 7 and n = 8, where p3 +2p2 ≤ 12. It
turned out, that all arrangements on n = 9 pseudocircles with 12 triangles are
non-circularizable since all of them contain N6 as a subarrangement.

Lemma 1. Let A be an arrangement of pseudocircles. Then for every subar-
rangement A ′ of A we have

p3(A ′) + 2p2(A ′) ≤ p3(A ) + 2p2(A ).

Proof. We show the statement for a subarrangement A ′ in which one pseudocir-
cle C is removed from A . The inequality then follows by iterating the argument.
The arrangement A ′ partitions the pseudocircle C into arcs. Reinsert these arcs
one by one.

Consider a triangle of A ′. After adding an arc, one of the following cases
occurs: (1) the triangle remains untouched, or (2) the triangle is split into a
triangle and a quadrangle, or (3) a digon is created in the region of the triangle.

Now consider a digon of A ′. After adding an arc, either (1) there is a new
digon inside this digon, or (2) the digon has been split into two triangles. 	


We now prepare for the proof of Theorem1 (iii). The basis of the construc-
tion is the arrangement A12 with 12 pseudocircles and 16 triangles shown in
Fig. 3a. This arrangement will be used iteratively for a ‘merge’ as described by
the following lemma.

Lemma 2. Let A and B be digon-free arrangements of nA ≥ 3 and nB ≥ 3
pseudocircles, respectively. If there is a simple curve PA that (1) intersects every
pseudocircle of A exactly once (2) contains no vertex of A , (3) traverses τ ≥ 1
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Fig. 3. (a) A digon-free, intersecting arrangement A12 of n = 12 pseudocircles with
exactly 16 triangles. The dashed curve intersects every pseudocircle exactly once.
(b) An illustration of the construction in Lemma 2. Pseudocircles of A (B) are drawn
red (blue). (Colour figure online)

triangles of A , and (4) forms δ triangles with pairs of pseudocircles from A ,
then there is a digon-free arrangement C of nA + nB − 1 pseudocircles with
p3(C ) = p3(A ) + p3(B) + δ − τ − 1 triangles.

Proof. Take a drawing of A and make a hole in the two cells, which contain
the ends of PA . This yields a drawing of A on a cylinder such that none of
the pseudocircles is contractible. The path PA connects the two boundaries
of the cylinder. In fact, the existence of a path with the properties of PA is
characterizing cylindrical arrangements.

Stretch the cylindrical drawing such that it becomes a narrow belt, where
all intersections of pseudocircles take place in a small disk, which we call belt-
buckle. This drawing of A is called a belt drawing. The drawing of the red
subarrangement in Fig. 3b shows a belt drawing.

Choose a triangle � in B and a pseudocircle B which is incident to �. Let b
be the edge of B on the boundary of �. Specify a disk D, which is traversed
by b and disjoint from all other edges of B. Now replace B by a belt drawing
of A in a small neighborhood of B such that the belt-buckle is drawn within D;
see Fig. 3b.

The arrangement C obtained from merging A and B, as we just described,
has nA +nB −1 pseudocircles. Moreover if A and B are digon-free/intersecting,
then C has the same property. Most of the cells c of C are of one of the following
four types:

(a) All boundary edges of c belong to pseudocircles of A .
(b) All boundary edges of c belong to pseudocircles of B.
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(c) All but one of the boundary edges of c belong to pseudocircles of B and the
remaining edge belongs to A . (These cells correspond to cells of B with a
boundary edge on B.)

(d) Quadrangular cells, whose boundary edges alternatingly belong to A and B.

From the cells of B, only � and the other cell containing b (which is not a
triangle since B is digon-free) have not been taken into account. In C , the cor-
responding two cells have at least two boundary edges from B and at least two
from A . Consequently, neither of the two cells are triangles. The remaining cells
of C are bounded by pseudocircles from A together with one of the two bound-
ing pseudocircles of � other than B. These two pseudocircles cross through A
following the path prescribed by PA . There are δ triangles among these cells,
but τ of these are obtained because PA traverses a triangle of A . Among cells
of C of types (1) to (4) all the triangles have a corresponding triangle in A or B.
But � is a triangle of B which does not occur in this correspondence. Hence,
there are p3(A ) + p3(B) + δ − τ − 1 triangles in C . 	

Proof of Theorem 1 ( iii). We use A12, the arrangement shown in Fig. 3a, in
the role of A for our recursive construction. The dashed path in the figure is
used as PA with δ = 2 and τ = 1. Starting with C1 = A12 and defining Ck+1

as the merge of Ck and A12, we construct a sequence {Ck}k∈N of digon-free
arrangements with n(Ck) = 11k + 1 pseudocircles and p3(Ck) = 16k triangles.
The fraction 16k/(11k + 1) is increasing with k and converges to 16/11 = 1.45
as n goes to ∞. 	


We remark that using other arrangements from Theorem 1 (ii) (which also
admit a path with δ = 2 and τ = 1) in the recursion, we obtain arrangements
with p3 = � 16

11n� triangles for all n ≥ 6.
Since the lower bound � 4

3n� is tight for 6 ≤ n ≤ 14, we believe that the
following is true:

Conjecture 2. There are digon-free arrangements A with p3(A ) = �4n/3� for
infinitely many values of n.

2.1 Arrangements with Digons

We know arrangements of n pseudocircles with digons and only n − 1 triangles.
The example shown in Fig. 4a is part of an infinite family of such arrangements.

Using ideas based on sweeps (cf. [10]), we can show that every pseudocircle
is incident to at least two triangles. This implies the following theorem:

Theorem 2. Every arrangement of n ≥ 3 pseudocircles has at least 2n/3 trian-
gles.

The proof of the theorem is based on the following lemma:

Lemma 3. Let C be a pseudocircle in an arrangement of n ≥ 3 pseudocircles.
Then all digons incident to C lie on the same side of C.
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Fig. 4. Example arrangements (a) n pseudocircles with n digons and n − 1 triangles
(b) “trees of circles” with no triangles (c) connected arrangements of n pseudocircles
with triangle-cell-ratio of 5

6
− O( 1√

n
).

Proof. Consider a pseudocircle C ′ that forms a digon D′ with C that lies, say,
“inside” C. If C ′′ also forms a digon D′′, then C ′′ has to cross C ′ in the exterior
of C. Hence D′′ also has to lie “inside” C. Consequently, all digons incident to
C lie on the same side of C. 	

Proof of Theorem 2. Let A be an arrangement and consider a drawing of A
in the plane. Snoeyink and Hershberger [10] have shown that starting with any
circle C from A the outside of C can be swept with a closed curve γ until
all of the arrangement is inside of γ. During the sweep γ is intersecting every
pseudocircle from A at most twice. The sweep uses two types1 of move to make
progress:

(1) take a crossing, in [10] this is called ‘pass a triangle’;
(2) leave a pseudocircle, this is possible when γ and some pseudocircle form a

digon which is on the outside of γ, in [10] this is called ‘pass a hump’.

Let C be a pseudocircle of A . By the previous lemma, all digons incident
to C lie on the same side of C. Redraw A so that all digons incident to C are
inside C. The first move of a sweep starting at C has to take a crossing, and
hence, there is a triangle � incident to C. Redraw A such that � becomes the
unbounded face. Again consider a sweep starting at C. The first move of this
sweep reveals a triangle �′ incident to C. Since � is not a bounded triangle
of the new drawing we have � = �′, and hence, C is incident to at least two
triangles. The proof is completed by double counting the number of incidences
of triangles and pseudocircles. 	


Since for 3 ≤ n ≤ 7 every arrangement has at least n−1 triangles, we believe
that the following is true:

Conjecture 3. Every intersecting arrangement of n ≥ 3 pseudocircles has at least
n − 1 triangles.

1 There is a third type of move for sweeps of arrangements of pseudocircles, it is
called take a hump and does not occur in our case, as each two pseudocircles already
intersect.
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If the arrangement is not required to be intersecting, then the proof of
Lemma 3 fails and indeed there are examples of non-intersecting arrangements
without triangles, e.g., a “tree of circles”, see Fig. 4b.

3 Maximum Number of Triangles

Regarding the maximal number of triangles the complete enumeration provides
precise data for n ≤ 7. We used heuristics to generate examples with many
triangles for larger n. Table 2 and Fig. 5 shows the results. For n ≥ 4 there is only
one instance where we know an arrangement with more than 4

3

(
n
2

)
triangles. This

number is 1/3 times the number of edges of the arrangement, i.e., it is an upper
bound for the number of triangles in arrangements where each edge is incident
to at most one triangle. In the next subsection we show that asymptotically
the contribution of edges that are incident to two triangles is neglectable. The
last subsection gives a construction of arrangements which show that � 4

3

(
n
2

)� is
attained for infinitely many values of n.

Table 2. Upper bound on the number of triangles.

2 3 4 5 6 7 8 9 10

Simple 0 8 8 13 20 29 ≥37 ≥48 ≥60

Digon-free – 8 8 12 20 29 ≥37 ≥48 ≥60

� 4
3

(
n
2

)� 1 4 8 13 20 28 37 48 60

Fig. 5. (a) and (b) show arrangements with n = 5 pseudocircles. The first one is digon-
free and has 12 triangles and the second one has 13 triangles and one digon. (c) and
(d) show arrangements with n = 6 and 20 triangles. The arrangement in (c) is the
skeleton of the Icosidodecahedron.

Recall that we only study simple arrangements. Grünbaum [6] also looked
at non-simple arrangements. His Figures 3.30, 3.31, and 3.32 show drawings of
simplicial arrangements that have n = 7 with p3 = 32, n = 8 with p3 = 50,
and n = 9 with p3 = 62, respectively. Hence, non-simple arrangements can have
more triangles.
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Theorem 3. p3(A ) ≤ 2
3n2 + O(n).

The proof of this theorem can be found in the appendix of the version sub-
mitted to the arXiv [4].

Remarks

– Since intersecting arrangements have 2
(
n
2

)
+ 2 = n2 − O(n) faces we can also

state the bound as: at most 2
3 +O( 1n ) of all cells of an arrangement are trian-

gles. However, this is not true if we consider non-intersecting arrangements.
Figure 4c shows a construction where this ratio converges to 5

6 as n → ∞. It
can be shown with a counting argument that 5

6 is an upper bound for the
triangle-cell-ratio of simple arrangements.

– It would be interesting to get more precise results. In particular, we would
like to know whether p3 ≤ 4

3

(
n
2

)
+ O(1) is true for all n.

3.1 Constructions Using Arrangements of Pseudolines

Great circles on the sphere are a well known model for projective arrangements
of lines. Antipodal pairs of points on the sphere correspond to points of the pro-
jective plane. Hence, the great circle arrangement corresponding to a projective
arrangement A of lines has twice as many vertices, edges, and faces of every type
as A . The same idea can be applied to projective arrangement of pseudolines.
If A is a projective arrangement of pseudolines take a drawing of A in the unit
disk D such that every line � of A connects two antipodal points of D. Project D
to the upper hemisphere of a sphere S, such that the boundary of D becomes the
equator of S. Use a projection through the center of � to copy the drawing from
the upper hemisphere to the lower hemisphere of S. By construction the two
copies of a pseudoline � from A join together to form a pseudocircle. The collec-
tion of these pseudocircles yields an arrangement of pseudocircles on the sphere
with twice as many vertices, edges, and faces of every type as A . Arrangements
of pseudocircles obtained by this construction have a special property:

– If three pseudocircles C, C ′, and C ′′ have no common crossing, then C ′′

separates the two crossings of C and C ′.

Grünbaum calls arrangements with this property ‘symmetric’. In the context
of oriented matroids the property is part of the definition of arrangements of
pseudocircles.

Arrangements of pseudolines which maximize the number of triangles have
been studied intensively. The end of this line of research is marked by Blanc [1].
This paper gives precise bounds for the maximum both in the Euclidean and
in the projective case. In particular, Blanc constructs examples of projective
arrangements of pseudolines with 2

3

(
n
2

)
triangles for an infinite number of val-

ues of n. This directly yields arrangements of pseudocircles with 4
3

(
n
2

)
triangles.

The ‘doubling method’ that has been used for constructions of arrangements of
pseudolines with many triangles, see [1], can also be applied for pseudocircles. In
fact, in the case of pseudocircles there is more flexibility for applying the method.
Therefore, it is possible that � 4

3

(
n
2

)� triangles can be achieved for all n.
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4 Visualization

Most of the figures in this paper have been automatically generated by our
framework, which was written in the mathematical software SageMath [11] and
is available on demand. We encode an arrangement of pseudocircles by its dual
graph. Each face in the arrangement is represented by a vertex and two ver-
tices share an edge if and only if the two corresponding faces share a common
pseudosegment. As our arrangements are intersecting, it is easy to see that the
dual graph is 3-connected and thus its embedding is unique on the sphere (up to
isomorphism).

To visualize an arrangement of pseudocircles, we draw the primal
(multi)graph using straight-line segments, in which vertices represent crossings
of pseudocircles and edges connect two vertices if they are connected by a pseu-
docircle segment. Note that in the presence of digons we obtain double-edges.

In our drawings, pseudocircles are colored by distinct colors, and triangles
(except the outer face) are filled gray. In straight-line drawings, edges correspond-
ing to digons are drawn dashed in the two respective colors alternatingly, while in
the curved drawings digons are represented by a point where the two respective
pseudocircles touch.

4.1 Iterated Tutte Embeddings

To generate nice aesthetic drawings automatically, we iteratively use weighted
Tutte embeddings. We fix a non-digon cell as the outer cell and arrange the
vertices of the outer cell as the corners of a regular polygon. Starting with edge-
weights all equal to 1, we obtain an ordinary plane Tutte embedding.

For iteration j, we set the weights (force of attraction) of an edge e = {u, v}
proportional to p(A(f1)) + p(A(f2)) + q(‖u − v‖/j) where f1, f2 are the faces
incident to e, A(.) is the area function, ‖ · ‖ is the Euclidean norm, and p, q are
suitable monotonically increasing functions from R

+ to R
+ (we use p(x) = x4

and q(x) = x2/10).
Intuitively, if the area of a face becomes too large, the weights of its incident

edges are increased and will rather be shorter so that the area of the face will
also get smaller in the next iteration. It turned out that in some cases the areas
of the faces became well balanced but some edges were very short and others
long. Therefore we added the dependence on the edge length which is strong
at the beginning and decreases with the iterations. The particular choice of the
functions was the result of interactive tuning. The iteration is terminated when
the change of the weights is small.

4.2 Visualization Using Curves

On the basis of the straight-line embedding obtained with the Tutte iteration
we use splines to smoothen the curves. The details are as follows. First we take
a 2-subdivision of the graph, where all subdivision-vertices adjacent to a given
vertex v are placed at the same distance d(v) from v. We choose d(v) so that
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it is at most 1/3 of the length of an edge incident to v. We then use B-splines
to visualize the curves. Even though one can draw Bézier curves directly with
Sage, we mostly generated ipe files (xml-format) so that we can further process
the arrangements. Figures 6a and b show the straight-line and curved drawing
of the same arrangement.

Fig. 6. (a) Straight-line and (b) curved drawings of the arrangement of pseudo (great)
circles, which consists of two copies of (c) the (non-stretchable) non-Pappus pseudoline
arrangement of pseudolines.

4.3 Visualization of Arrangements of Pseudolines

We also adopted the code to visualize arrangements of pseudolines nicely. One of
the lines is considered as the “line at infinity” which is then drawn as a regular
polygon. Figure 6c gives an illustration.

For arrangements of pseudolines we used the framework pyotlib, which orig-
inated from the Bachelor’s thesis of Scheucher [9].
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