
Only the Architecture You Need

Richard N. Taylor

1 Introduction

Software architecture has been around for a long time. Even prior to the identifica-
tion of software engineering as a discipline in 1968, there was an explicit focus on
techniques for software design. The 1970s saw many publications detailing various
design techniques and strategies. In 1976 Peter Freeman stated, “Design is relevant
to all software engineering activities and is the central integrating activity that ties
the others together” [1]. More design techniques and strategies emerged in the
1980s, many of them addressing larger-scale systems. “Software architecture” as
the label for this type of work took off in the 1990s, notably with the appearance of
Perry and Wolf’s landmark paper [2]. Subsequent development of the field focused
on various types of architectural models, description languages, analysis techniques,
development environments, canonical solutions, and design processes. Example
architectures abounded, conferences and workshops held, andmany books emerged.

Yet despite all this progress, all too often architecture is ignored in application
development.Consider the following dialog from an imaginedmovie, “The Treasure
of the Silicon Valley,”1 starring a venture capital investor performing due diligence
for a potential acquisition, conversing with a start-up’s lead software developer:

If you’re the chief software engineer on the project, show me your architecture.

Architecture? Architecture?! We don’t need no stinkin’ architecture!

1With acknowledged inspiration from, and apologies to, “The Treasure of the Sierra Madre,” a
1948 film by John Huston.

R. N. Taylor (�)
Institute for Software Research, University of California, Irvine, Irvine, CA, USA
e-mail: taylor@ics.uci.edu

© The Author(s) 2018
V. Gruhn, R. Striemer (eds.), The Essence of Software Engineering,
https://doi.org/10.1007/978-3-319-73897-0_5

77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-73897-0_5&domain=pdf
mailto:taylor@ics.uci.edu
https://doi.org/10.1007/978-3-319-73897-0_5


78 R. N. Taylor

This dialog is all too understandable. The VC wants to know what he’s buying
into and wants to perform his own analysis of the properties of the start-up’s
system. And most assuredly, he does not want to have to read a million lines of
undocumented Python and JavaScript to get that insight. The developer, on the other
hand, has been immersed in the details of the application since day one. He knows
what he has, believes in what he has, and sees any call for an explicit architecture as
a nonproductive demand on his nonexistent free time.

Very different dialogs appear in other “movie scripts.” Developers in regulated
industries, or those working under government contract, are well acquaintedwith the
use of architectural models to facilitate communication and to demonstrate achieve-
ment of some mandated properties. What is appropriate and what is necessary can
vary widely, just as projects and usage contexts vary widely.

The remainder of this chapter, then, considers several different development con-
texts, ranging from “personal software engineering” to large-scale organizational
development of high-consequence software. For each we consider what kinds of
architectural discipline are needed and what purposes such architectural information
serve. Our perspective is one of cost-benefit analysis. Investment in architectural
modeling and analysis should not exceed the benefits reaped by performing such
tasks.

2 Software Architecture: Essence, Benefits, and Costs

Before considering the various development contexts and how they differ in terms
of their need for architectural discipline, we provide a little background on software
architecture and introduce some key terminology. This is not a full presentation
of the key elements of software architecture, but rather a quick highlight of a
few concepts that will appear throughout the remainder of this chapter. Software
architecture is a well-developed field with numerous techniques and strategies
developed to aid the architect. Many of these, along with careful definitions of the
rich vocabulary, are fully presented in [3].

To begin, software architecture, as a term, derives from analogy to the architec-
ture of buildings. The analogy, while imperfect, is strong and provides several key
insights:

• Architecture exists independently from the building/source code.
• The properties of structures (whether buildings or code) are induced by their

architectures, for example, how accommodating of change they can be.
• The necessary skills of an architect are different from the skills of a building

contractor/programmer.
• The process of design and construction is not as important as the architecture

(i.e., the product is ultimately what matters at the end of the day, rather than how
you got there).



Only the Architecture You Need 79

• Architecture is a body of knowledge that can be studied, taught, and improved.
• Every building/application has an architecture, whether implicit or explicit,

whether good, bad, ugly, or elegant.

The best definition of software architecture is that articulated by Eric Dashofy
and put forth in [3].

Definition A software system’s architecture is the set of principal design decisions
made about the system.

This definition places the notion of design decision upfront. Design decisions
encompass every aspect of the system under development, including structure,
functional behavior, nonfunctional properties, user interaction, and decisions related
to the system’s implementation and deployment. Every application embodies at least
one design decision, and hence all systems have architectures.

Not all design decisions carry equal weight, however. Principal is a key modifier
of “design decisions.” It is a matter of degree and pertinence that grants a design
decision “architectural status,” that is, that makes it an architectural design decision.
This also implies that not all design decisions are architectural. Indeed, many of the
design decisions made in the process of system building (such as the programming
details of the selected algorithms) will not impact a system’s architecture.

Determining which decisions are principal is a function of context. It is the
system’s stakeholders (including, but not restricted to, the architect) who rightfully
decide which design decisions are important enough to include in the architecture.

Given that stakeholders may come with very different priorities from a software
architect, even nontechnical considerations may end up driving determination of the
architecture. Moreover, different sets of stakeholders may designate different sets of
design decisions as principal. Thus this definition of software architecture is neither
simplistic nor simple. Architecture concerns the core decisions, and in a significant
system those decisions do not come automatically or without dispute.

Architectural models are means of capturing architectures in a tangible form.
Once again from [3], we have these definitions.

Definitions An architectural model is an artifact that captures some or all of the
design decisions that comprise a system’s architecture. Architectural modeling is
the reification and documentation of those decisions. An architecture description
language (ADL) is a notation for capturing architectural decisions as a model.

Lastly, we consider architectural styles, whose role will figure prominently in the
subsequent discussion.

Definition An architectural style is a named collection of architectural design
decisions that (1) are applicable in a given development context, (2) constrain
architectural design decisions that are specific to a particular system within that
context, and (3) elicit beneficial qualities in each resulting system.

Many architectural styles are widely known, such as client-server, event-based,
REST (REpresentational State Transfer) [4], and SCADA. Styles are essential



80 R. N. Taylor

tools in a software designer’s toolbox. Styles capture the hard-won lessons of past
experience, enabling a designer to reap known benefits in specified contexts in a
new design.

2.1 Benefits

The benefits sought through a focus on software architecture include:

• Effective communication
• Conceptual integrity: intellectual control and management of complexity
• Adequate basis for supporting knowledge reuse
• Support for cost-effective product lines, including management of related

variants

The most widely acknowledged benefit of a focus on software architecture
is improved communication. That communication may be among developers or
between developers and various stakeholders. Seemingly ubiquitous PowerPoint
presentations of system designs, with circles, boxes, arrows, and colors, are attempts
to communicate some of the key design decisions of a system. (Whether those
attempts are effective or accurate is an entirely different subject.) Whatever the
means of modeling, the objective is to communicate the essential decisions to others
so that, for example, developers can proceed with their tasks knowing the context
into which their work fits, or so that other designers can offer their opinions about
the suitability of the design, based on their analysis of the represented decisions.

Maintaining conceptual integrity of a system as it evolves over time is perhaps the
greatest challenge to a project manager. As systems evolve, responding to pressures
for additional or changed features, new platforms, or simply to fix bugs, it is easy
for their architectures to drift from their original key decisions. Knowing whether
a new decision is consistent with key decisions made previously is of fundamental
importance. Determining such consistency demands that there be a record of what
those decisions are, and that is the function of explicit models of the architecture.
With a model there is at least the hope of assessing the impact of a newly proposed
change; without a model the project manager is left with only his memory.

Knowledge reuse is essential to the economic success of an enterprise; redis-
covering insights and reinventing solutions is a recipe for failure. Knowledge reuse
on a small scale became well known and popularized in the 1990s through use of
design patterns: solutions to small-scale problems that are nonetheless common
in programming [5] and which have been subsequently captured for reuse by
others. Stepping up in scale to subsystems of modules and to whole applications,
architectural styles enable developers to similarly reuse solutions captured through
prior experience, thereby achieving the benefits yielded by adherence to those styles.

On a still larger scale, companies often flourish when their products dominate
a market segment. Dominating a segment often results from acquiring deep
knowledge of the domain and having experience developing multiple solutions



Only the Architecture You Need 81

to problems in the domain. New products in a domain are often incremental
variants of prior products that leverage that knowledge. A domain-specific reference
architecture can capture these insights in ways similar to design patterns and
architectural styles and can provide guidance for the design and management of
software product lines.

2.2 Techniques : : : and Costs

The literature of software architecture is full of techniques, strategies, languages,
and tools intended to help the architect from initial conception of a system through
its full product lifetime. Virtually all of the techniques center on, or require, some
form of architectural model. Models form the basis for communication, analysis,
and, if they are good models, implementation and evolution.

Modeling languages run the gamut from informal and shallow (most PowerPoint
architectures) to technically rich and deep, upon which formal and automated
analyses can be performed, and in some cases from which implementations can
be automatically generated, or at least started.

Doing a good job of modeling—in which the key decisions are all identified
and captured—is not an easy or quick task. Modeling languages are not all easy to
use. Indeed, generally speaking, the easier a modeling language is to use, the less
information it captures and the less useful it will be as a project proceeds; conversely,
the most powerful languages have narrow ranges of applicability and can require
costly and rare expertise to effectively employ.

The key issue in the application of any software architecture technology is the
cost-benefit ratio.

Capturing knowledge, of the kind that enables new products in a domain to be
built efficiently, is also costly. It requires, as new products are built and experience
gained, that an investment be made in reflecting on that experience and refining
domain models and architectures for potential future use. The potentiality is a risk;
if the captured knowledge is not reused later in new products, then that effort was
wasted.

Risks exist too, based on the current state of software architecture tools and
techniques. Some modeling languages, for example, may provide significant benefit
to architects during initial design stages, through facilitating communication and
providing the basis for analysis. But when it comes time to push the design into
implementation, the modeling language may provide little help. Indeed, with many
languages, the task of showing conformance between the architecture of the code
(the realized architecture) and the architectural model (the intended architecture)
may be quite difficult. Moreover, when problems arise during implementation and a
need for change to the intended architecture is identified, many design tools provide
no help in “mapping back” to enable a disciplined approach to the redesign.



82 R. N. Taylor

2.3 Summary and Roadmap

The benefits that have the potential to be realized through a disciplined application
of software architecture are many and substantial. But the costs can be significant.
The key, then, is to understand the demands of a development context, and for
that context identify just the architecture techniques that are cost-effective. The
following sections of the chapter will attempt to briefly do just that, examining three
notional development settings: personal software engineering (working by yourself,
for yourself), working in a team in a small corporate setting, and working in a large
company on high-consequence software.

3 Personal Software Architecture

The imaginary screenplay between the venture capitalist and the start-up
entrepreneur found in the Introduction section could very plausibly arise from a
common scenario. An individual, the entrepreneur, learns programming in college
and then decides to use his new skills by writing an app for his iPhone—writing it
both for the pleasure and interest of doing so, and also because he has a particular
way he likes to plan and record his vacations. His app, “MyTravel,” allows him
to record an itinerary, include photos and commentary, and export to his personal
blog. Naturally by doing good development work, his friends are impressed, want
their own copy, and later ask him to add additional features. By word of mouth the
popularity of the app increases until the group of friends decides to form a small
company to further enhance and market the product. Sometime later as success
grows, the need for venture capital appears and the “no stinkin’ architecture” dialog
ensues.

But why would the inventor be so resistant to talking about architecture? Simply
because of how his company evolved. At the outset of his efforts, he was just
“messing around” and the project just accreted features in a haphazard fashion after
that. He was just working for himself, with no intention of ever forming a company.
He never took the time to focus on “architecture.”

There is a deep falsehood in this narrative, however. Unless the developer was
truly ignorant, he will have used Apple’s app developer tools, such as Cocoa,
the XCode software development kit, the Quartz framework, and user interface
guidelines. And prominent in those materials is this statement: “MVC is central to
a good design for a Cocoa application2.” That is, Apple is directing developers’
attention to a particular architectural style, MVC (Model-View-Controller), and
saying that it is of critical importance in the design of new iPhone applications.
The Apple website goes on to say, “The benefits of adopting this pattern are

2https://developer.apple.com/library/content/documentation/General/Conceptual/DevPedia-
CocoaCore/MVC.html, Accessed July 2017.

https://developer.apple.com/library/content/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html
https://developer.apple.com/library/content/documentation/General/Conceptual/DevPedia-CocoaCore/MVC.html


Only the Architecture You Need 83

numerous. Many objects in these applications tend to be more reusable, and their
interfaces tend to be better defined. Applications having an MVC design are also
more easily extensible than other applications. Moreover, many Cocoa technologies
and architectures are based on MVC and require that your custom objects play one
of the MVC roles.” Thus the individual developer is compelled from the outset to be
knowledgeable about and to utilize an important concept from software architecture.

The need for personal architectural knowledge goes beyond MVC, however.
iPhone applications, and indeed virtually every user interface-intensive application,
rely heavily on event-based architectural concepts. From handling interrupts through
publish-subscribe architectural styles, to highly decoupled applications, event-
based styles are powerful and common. Their power arises from supporting strong
decoupling (which indeed may cross host and address space boundaries) and
unpredictable sequences of events, leading to high extensibility. They are seductive
and dangerous, however, because while an individual developer may initially only
use events to coordinate two or three actors in an application, mentally keeping track
of how the events are handled, the situation can quickly become confusing. Indeed,
unwelcome surprises may appear as the developer slowly starts to recognize all the
possible event interactions that may occur.

Cocoa and Quartz introduce even more architectural concepts into the solo
entrepreneur’s world. Cocoa’s AppKit is a framework used to implement the user
interface of an application. Quartz is a framework used to manipulate images.
A framework is a programmatic bridge between concepts (such as “window” or
“image”) and lower-level implementation technologies. Frameworks can be very
architectural in orientation, wherein they cleanly map architectural styles to code;
unfortunately, they may also be rather random collections of nonetheless useful
code.

So, indeed, our intrepid entrepreneur was using multiple explicitly architectural
concepts from the outset, though he may have not known them under that label.

As time progresses, a key question for the entrepreneur is whether his memory
is sufficient to remember all the design choices he has made, and to make future
changes to his application in a manner that is consistent with the previously made
decisions—or at least to be able to recognizewhen a prior decision is being changed,
and then to understand all the downstream consequences of that change. To what
extent has he bothered to record his design decisions in some accessible medium?

The cost-benefit analysis for a developer working on his own, for himself as
a client, is pretty simple, though the analysis itself is “risky.” He must know the
concepts of software architecture, for they will surely figure into his development.
But to what extent does he need to invest in capturing his decisions in a model
of some sort? If his memory is good, or if the application has a very limited time
horizon, then little or no such investment is warranted. But if there is a chance
that the usage and development will progress to a context beyond that of personal
development, then the investment might be very well worth it. It is that context that
we examine next.



84 R. N. Taylor

4 Team Software Architecture

The role of software architecture grows in importance dramatically as development
shifts from an individual working for himself to a team developing a product for use
within a company or for external sale. The consequences of poor decisions or poor
engineering are much more severe, the need for communication within the team and
across the company is critical, and the complexity of the product and project is much
greater.

Though the sources of increased complexity are perhaps obvious, as an example
consider some of the possible ways the “MyTravel” app could grow. The app could
support ingestion of travel itinerary information from a wide range of external travel
vendors by importing the information from confirmation emails. The app could
enable export of selected information to Facebook. A dramatically larger user base
could drive the back end of the app to the cloud, improving access and providing
scalability. With wide usage and broad third-party integration, the need for security
and authentication arises, very possibly supported by services available in the cloud.

4.1 Communication

Perhaps the single greatest need for architecture in this context arises in support
of communication. Not only must all developers be on the same page, but also the
development team must meet its accountability obligations, both to management
within the company and potentially to external clients. If the architecture is not
captured in any tangible form, then communication is limited very unsatisfactorily
to mental recollections and verbal communication. If, rather, explicit models are
used, both during design and during subsequent system evolution, then they may
serve as the anchor for all types of communication. But what kinds of models?
The options range from informal text and diagrams (“PowerPoint architectures”)
to semiformal UML, to precise architectural specifications in a formal architecture
description language. The choice turns on what benefits are needed from the
models, both immediately and also over the project’s lifetime. The typical tragedy,
unfortunately, is that this key decision is often made thinking only of immediate
communication needs, such as to satisfy some corporate review board, and not,
for example, with an eye to how a different downstream development group is
going to attempt to decide through reviewing past documents whether a particular
program reorganization will break security properties of the system. Making the
choice of what to model and how to model, then, requires professional maturity and
engineering discipline, qualities that are often in short supply.

Furthermore, the larger the team and the more diverse the set of project
stakeholders, the greater the need for specialized visualizations, or projections,
of a chosen architectural model. When talking to a customer, for instance, a less
detailed view of the architecture is probably desirable. When internally reviewing



Only the Architecture You Need 85

the architecture for performance properties, a more detailed view is likely essential.
Support for multiple views of a single model is unfortunately uncommon among
modeling techniques.

4.2 Complexity

The complexity of a project is often the initial reason for creating a team to develop
it. And often as a project evolves, its complexity only increases, as additional
interconnections with external systems increase, additional features are added, and
new usage modes considered. While the development team may initially select a
satisfactory, coherent architecture, how is intellectual control over that architecture
maintained over time? As features accrete, how does the team prevent the once-
clean architecture from slowly devolving into a “big ball of mud?” Certainly
explicit models and team discipline are part of the answer, but additional success
can be found in judicious choice of architectural style; some styles are far more
accommodating of change than others. Indeed, some styles, such as event/message
based, are explicitly designed to foster and accommodate change.

Accommodating the need to scale to new dimensions of users, or data, or
platforms is a particularly common and particularly difficult type of change to
satisfy unless good architectural engineering is applied. Coping with issues of
scale requires understanding the source of scaling pressures and then choosing or
combining techniques suited to meet those challenges. The techniques available
include, obviously, choice of architectural style and, especially, choice of appropri-
ate connector technology. Further, with suitable modeling some types of scalability
analysis can be undertaken prior to any system implementation.

A compelling illustration of this approach is the World Wide Web. The well-
known REST architectural style mentioned earlier [4] arose from a careful consid-
eration of the demands on an open, network-based, hypertext-oriented information
integration system. REST was developed as a judicious combination of multiple
simpler and well-known styles, such as replicated data, client-server, layered, and
virtual machine, plus some additional constraints.

Through a team’s shared understanding of a style—why it was chosen, what its
constraints are, what benefits it elicits—and maintaining adherence to that style, a
system’s conceptual integrity can be preserved.

Essential to understanding and applying advanced architectural styles is under-
standing the rich range of connector technologies available. Perhaps the most
common weakness in the educational background of new developers is lack of
understanding of such connectors, and how different types of connectors can
contribute to keeping system complexity under control while achieving scale and
extensibility goals. Many new developers come armed only with method calls,
the simplest and perhaps most limiting of all connector types. More capable
connectors often come hidden inside various middleware packages. “Enterprise
software buses,” for example, can provide a much richer and dynamic connection



86 R. N. Taylor

style, and the many network protocols offer still other connection means. For a full
treatment of connectors, see [6] or [3].

5 Summary

In a team setting the costs of development are higher than in the individual setting
and the consequences of poor engineering are similarly higher. What was sufficient
practice in the individual developer context is no longer adequate. There is a greater
need for planning, and much greater need for support of communication between
developers, customers, and management. Failure to adequately prepare for future
years of product development and modification can lead to numerous downstream
costs and problems, from scalability issues to costly errors and data breaches. How
much architecture do you need? Again, the balance is between the costs of applying
it and the benefits so realized. The essentials, for most projects and teams, are:

• Explicit modeling using some form of architectural description technology to
support communication and analysis

• Broad knowledge of and ability to select and apply a range of architectural styles
• Similar depth in understanding and applying connector technologies

What happens when the organizational setting is even more consequential? For
example, when the product competes in a governmentally regulated industry, or
when the organization develops not just one product in a market space, but a large
family of related products? We consider this context next.

6 High-Consequence Software

“High-consequence software” may mean software whose usage occurs in contexts
where errors or failures can result in death or large-scale economic loss. The phrase
may equally be used to describe software whose economic importance is so great
that the fortunes of a company, or even an ecosystem of companies, may rise or fall
depending on issues with the software. In either situation, the implication is that the
context in which the software is designed, built, and used is larger still from what
we have considered so far. Diverse (and distant) user communities may be involved,
regulatory oversight may exist within multiple jurisdictions, and the development
“organization” may no longer be a single company, but involve a cooperating set of
agents. The “software” too may no longer represent a single application, but a family
of related products, with variants for differing usage contexts. In many dimensions,
then, the context is more complex and the stakes are higher.

The large consequences of key decisions and the large risks that may be
entailed imply that professionalism is not an option, it is essential. But given the



Only the Architecture You Need 87

wide diversity of high-consequence software, what aspects of software architecture
technology are essential?

First, in any high-consequence situation, is an even greater need for attention to
techniques previously mentioned. Increased investment in modeling is warranted
in support of communication, addressing the larger and more diverse community
of stakeholders. Because of increased size and system complexity, specialized
projections of the model likely will be needed. Independent regulatory oversight
may demand specific, particular projections of a system in order to demonstrate
compliance properties.

Similarly needed is a clear focus on and identification of key styles. As an
illustration, consider the importance of precisely identifying the plug-in architecture
for supporting third-party extensions to Adobe’s Photoshop product, Apple’s
identification of the role of the MVC style, or the Web’s identification of the REST
style. In these cases, and many similar ones, explicit styles are key to enabling
an ecosystem of independent development organizations to cooperate and mutually
thrive.

Beyond such increased attention to the previously discussed techniques, two
additional emphases deserve brief discussion. The first is domain-specific software
architectures and its closely related cousin, architecture-based product families.

DSSAs and product families spring from slightly different origins but end up in
a similar place. The key notion of a DSSA is capture and reuse of deep domain
knowledge and experience with developing solutions within that domain. The
key notion of a product family is management of related product variants. Seen
together the notion is exploitation of deep experience (domain and solution) through
management of a family of related products—in short, a technically based product
line3. The technical bases for such product lines are configuration management,
domain knowledge capture, and reference architectures. These concepts merge with
architectural styles and explicit modeling to yield careful management, product
generation, and highly efficient platform and market specialization.

Configurationmanagement is a well-understood, universally practiced discipline,
at least in its simplest form: version control. The focus in the high-consequence con-
text is sensibly managing the relationships between features, deployment platforms,
and architectural entities.

Domain knowledge capture is the discipline of effectively recording the funda-
mental characteristics of an application domain in such a way that new products in
the domain can be described using terminology that enables unambiguous descrip-
tion of novel requirements as well as clear mapping of continuing requirements to
concepts and entities in prior products. Domain knowledge may well be half of
a development organization’s competitive advantage; the other half is based in its
experience with prior solutions in that domain.

3We explicitly distinguish this concept from “product lines” that are nothing more than applying a
uniform marketing badge on products having no common technical foundation.



88 R. N. Taylor

When an organization reflects on its product experiences and captures effective
solution strategies (i.e., architectural decisions) in a form that supports reuse,
those strategies are termed a reference architecture. A good reference architecture
is a company’s “secret sauce”; it is the knowledge that enables it to produce
new solutions within a domain faster and cheaper than its competitors. It is an
architectural style on a very large, grand scale. The fundamental question, though,
is, how is that knowledge, that reference architecture, captured? Often it is merely in
the heads of the company’s lead engineers. What happens if those engineers resign?
The cost-benefit analysis must consider how difficult and expensive it will be to
invest in reifying that knowledge, versus the potential downsides should the key
engineers depart to work for competitors.

The second additional emphasis is security engineering. Data breaches and
security violations seem only exceeded in news articles by hyperventilation over
AI and big data. The ubiquity of the problem, and the inability of repeated
patches to do anything more than slightly delay the next problem, indicates that
security is not an add-on feature. Security properties must be considered from
the outset of a system’s design. Indeed, it must be a key element in designing a
system’s architecture. Explicit architectural models are a starting point for security
analysis and design. Consider the alternative—if the key design decisions are not
recorded and made analyzable, then how can an engineer determine whether there
are system vulnerabilities? Given the enormous range of system designs, there is
little in general that can be said about designing for security properties, but an
emerging view is that no perimeter defense will ever be sufficiently protective for
decentralized systems [7, 8]. Rather, security must be considered at all levels of
design, from the most abstract architecture to specific coding choices. In any event,
explicit consideration is necessary.

7 Conclusion: Excuses Are Not Strategies

“We don’t need no stinkin’ architecture!” Really? Young companies always seem to
have time to address today’s emergency, but never the time to engineer at the right
time to prevent future emergencies. That is an excuse, not a strategy.

Excuses are not strategies, but neither is untempered exhortation to use every
type of software architecture technology. In the end, it is a cost-benefit analysis that
must be applied, but it must be an analysis that looks beyond the next quarter’s
earnings report. Indeed, it must look to a significant product horizon. Only mature
organizations can afford to do that, but only mature organizations survive.

Acknowledgments My understanding of software architecture has been enriched immensely
through my long-standing collaborations with Professor Nenad Medvidovic of the University of
Southern California and Dr. Eric Dashofy of The Aerospace Corporation.



Only the Architecture You Need 89

References

1. Freeman, P.: The central role of design in software engineering. In: Freeman, P., Wasserman, A.
(eds.) Software Engineering Education, pp. 116–119. Springer, New York (1976)

2. Perry, D.E., Wolf, A.L.: Foundations for the study of software architecture. ACM SIGSOFT
Software Engineering Notes 17(4), 40–52 (1992)

3. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations, Theory, and
Practice, 736 pgs. Wiley, Hoboken, NJ (2010)

4. Fielding, R.T., Taylor, R.N.: Principled design of the modern web architecture. ACM Trans.
Internet Technol. 2(2), 115–150 (2002)

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional Computing Series. Addison-Wesley
Professional, Reading, MA (1995)

6. Mehta, N.R., Medvidovic, N., Phadke, S.: Towards a taxonomy of software connectors. In:
Proceedings of the 2000 International Conference on Software Engineering, pp. 178–187.
ACM Press. Limerick, Ireland, 4–11 June, 2000. http://sunset.usc.edu/classes/cs599_2000/
Conn-ICSE2000.pdf

7. Gorlick, M.M., Strasser, K., Taylor, R.N.: COAST: an architectural style for decentralized on-
demand tailored services. In: Proceedings of the 2012 Joint IEEE/IFIP Working Conference
on Software Architecture (WICSA) & 6th European Conference on Software Architecture, pp.
71–80, IEEE. Helsinki, Finland, August 20–24, 2012. doi:10.1109/WICSA-ECSA.212.15

8. Gorlick, M.M.: Computational state transfer: an architectural style for decentralized systems.
Ph.D. Dissertation. Department of Informatics, University of California, Irvine (2016). http://
isr.uci.edu/sites/isr.uci.edu/files/techreports/UCI-ISR-16-3.pdf

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://sunset.usc.edu/classes/cs599_2000/Conn-ICSE2000.pdf
http://isr.uci.edu/sites/isr.uci.edu/files/techreports/UCI-ISR-16-3.pdf

	Only the Architecture You Need
	1 Introduction
	2 Software Architecture: Essence, Benefits, and Costs
	2.1 Benefits
	2.2 Techniques… and Costs
	2.3 Summary and Roadmap

	3 Personal Software Architecture
	4 Team Software Architecture
	4.1 Communication
	4.2 Complexity

	5 Summary
	6 High-Consequence Software
	7 Conclusion: Excuses Are Not Strategies
	References


